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Abstract: Given an undirected, unweighted graph G = (V , E) the minimum vertex cover (MVC) problem is a subset 
of V whose cardinality is minimum subject to the premise that the selected vertices cover all edges in the 
graph. In this paper, we propose a meta-heuristic based on Ant Colony Optimization (ACO) approach to 
find approximate solutions to the minimum vertex cover problem. By introducing a visible set based on 
pruning paradigm for ants, in each step of their traversal, they are not forced to consider all of the remaining 
vertices to select the next one for continuing the traversal, resulting very high improvement in both time and 
convergence rate of the algorithm. We compare our algorithm with two existing algorithms which are based 
on Genetic Algorithms (GAs) as well as its testing on a variety of benchmarks. Computational experiments 
evince that the ACO algorithm demonstrates much effectiveness and consistency for solving the minimum 
vertex cover problem. 

1 INTRODUCTION 

1.1 Minimum Vertex Cover Problem 

Given an undirected, unweighted graph G = (V , E), 
the minimum vertex cover problem is to find a 
subset of V such that for each edge in E, at least one 
of its two end vertices is in the subset and that its 
cardinality is minimum. Formally, given an 
undirected, unweighted graph G = (V , E), the 
minimum vertex cover problem seeks to find a 

subset VV ⊆'  satisfying EveVv =∈ )('∪ , where 
)(ve  denotes the edges incident on vertex v, such 

that
'V

 is minimized. 
In (Karp, 1972) the decision version of the 

minimum vertex cover problem had been shown as 
NP-complete. After then, the vertex cover problem 
is one of the core NP-complete problems that have 
been frequently used for delivering to NP-hardness 
(Gary and Johnson, 1979). In practice, the minimum 
vertex cover problem can be used to model many 
real world situations in the areas of circuit design, 
telecommunications, network flow and so on. For 

example, whenever one wants to monitor the 
operation of a large network by monitoring as few 
nodes as possible, the importance of the MVC 
problem comes into the rule (Papadimitriou and 
Steiglitz, 1982). 

Due to the computational intractability of the 
problem, many researchers have instead focused 
their attention on the design of approximation 
algorithms for delivering quality solutions in a 
reasonable time. An intuitive greedy approach for 
solving the problem is to successively select the 
vertex with the largest degree until all of the edges 
are covered by the vertices in V'. This 
straightforward heuristic is not a good one as 
demonstrated by (Papadimitriou & Steiglitz 1982, p. 
407). They considered regular graphs, each of which 
consists of three levels. The first two levels have the 
same number of vertices while the third level has 
two vertices less than the number of vertices found 
on the previous two levels. The regular graph for 
k=3 can be found in (Papadimitriou and Steiglitz, 
1982). As (Papadimitriou, 1994) shows, this greedy 
algorithm never produces a solution which is more 
than )ln(n  times the optimum, where n  is the 
number of vertices. However, the best 
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approximation algorithm known for the minimum 
vertex cover problem has been reported in (Khuri 
and Back, 1994), in which at each iteration, we 
randomly choose an edge, say ),( vu  and add its 
end points to current vertex cover being constructed 
deleting them from the graph. The algorithm reveals 
a performance guarantee of 2. As a part of our 
experimental results, we compare our proposed 
algorithm with two existing algorithms based on 
GAs on this type of graphs. Finally (Dinur and 
Safra, 2001) show that it is impossible to attain 
approximate solutions to the minimum vertex cover 
problem within any factor smaller than 1.36067, 
unless .NPP =  After this, the meta-heuristic 
approaches for solving the problem come into the 
role. 

In solving the minimum vertex cover problem, 
we also have a solution for another graph problem: 
The maximum independent set (MIS) problem (exact 
definition of this problem can be found in (West, 
2001), for example). The close relationship between 
these problems is shown by the following Lemma 
(see e.g. (Papadimitriou and Steiglitz, 1972)): 

Lemma 1. For any graph G = (V , E) and V' ≤ V, the 
following statements are equivalent:  

● V' is the minimum vertex cover in G. 
● V – V' is the maximum independent set of G. 

Consequently, one can obtain a solution of the 
maximum independent set problem by taking the 
complement of solution to the minimum vertex 
cover problem (Hifi, 1997). However, many meta-
heuristic approaches for solving the MIS have been 
used, so far. Specifically, we have used a hybrid GA 
for its solving which results in very near to optimum 
solutions for a variety of large scale MIS problem 
benchmarks (Mehrabi and et al., 2009).  

1.2 Ant Colony Optimization 

In the optimization literature, meta-heuristic also 
foster a viable alternative for delivering quality 
approximate solutions (Mehrabi and Mehrabi, 2009). 
Like genetic algorithms, simulated annealing and 
tabu search, the Ant Colony Optimization (ACO) is 
a meta-heuristic using natural metaphor to solve 
complex combinatorial optimization problems such 
as the traveling salesman problem, graph coloring 
problem (Costa and Hertz, 1997) and so on. The 
general framework of the ACO algorithms is 
presented in Fig. 1. Basically, the problem under 
study is transformed into a weighted graph. Then, 
the ACO algorithm iteratively distributes a set of 

artificial ants onto the graph to construct the paths 
corresponding to potential optimal solutions. 

The optimization mechanism of the ACO is 
based on two important features: The state transition 
rule and the pheromone updating rule. The first one, 
which is a probabilistic operation, is applied when 
an ant is choosing the next vertex to visit. The 
second one dynamically changes the preference 
degree for the edges that have been traversed 
through. As the literature shows, apply these two 
simple parts of an ACO can solve many complex 
optimization problems. This paper also explains 
their role in algorithm by next section.  

2 THE ACO ALGORITHM 

As we mentioned, the structure of MVC problem is 
different from those of problems which have been 
solved by ACO in literature. In fact, the solution to 
MVC is an unordered subset of vertices obtained by 
each ant, while the most ACO-based solvers so far 
get the solution as an ordered or unordered subset of 
edges (Dorigo and Gambardella, 1997). So it 
becomes more challenging and desirable to 
transform the MVC problem characteristics into an 
appropriate graph representation. Also, the 
implementation of a standard ACO phases, 
providing an efficient local heuristic for the state 
transition rule and the design of pheromone updating 
rule becomes an important issue. We devoted this 
section for presenting our implementations in detail.  

 
Figure 1: The outline of an ACO algorithm. 

2.1 Graph Representation 

Suppose that G = (V , E) denote the underlying 
graph for MVC problem and the solution to this 
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instance is an unordered vertex subset VV ⊆' . 
Each ant should traverse some path across the edges 
of graph to cover exactly and only the vertices in 

'V , however this path may really do not exist. For 
overcoming this problem, we constitute a complete 
graph Gc = (V , Ec) including the vertex set V of G 
such that every pair of vertices are connected by an 
edge in Ec. To aware some ant, say ant k, of 
distinguishing between original and added edges in 
Ec, we define a binary connectivity function 

{ }1,0: →cEC  for each edge ),( ji  as: 

⎩
⎨
⎧

−∈
∈

=
EEji

Eji
jiC

c),(0
),(1

),( (1) 

For a better understanding aims, we explained 
our implementations on a graph with 5 vertices 
which have shown in Fig. 2(a). Also, applying Eq. 
(1) to it is given in Fig. 2(b). We know that this 
special instance has more than one solution such as 
{ }ECA ,, , { }ECB ,,  and so on, and so for most of 
the solutions we can not find a corresponding path in 
graph that covers exactly and only the solution 
vertices. However, by our graph transformation the 
solution paths, which can obtained in any order of 
vertices, can be reached. 

2.2 Connectivity Updating Rule 

The value of an edge, connectivity value, in E is 
updated when one of its edge vertices was visited by 
some ant, say ant k, in the following way: 

n
jiC 1),( = , if edge Eji ∈),(  and either 

vertex i or j is visited by ant k. 
(2) 

in which n  is the number of graph vertices, V . 
Fig. 3 shows the graph of previous example in which 
the connectivity values of edges ),( BA , ),( CA  

and ),( EA  have been updated to 51  when vertex 
A  is visited. The update settings according to Eq. 

(2) have a twofold benefit. First, the desirability of 
each vertex, as the next one to visit, can be evaluated 
dynamically. To be exact, we define: 

∑
∈

=
cEjr

k
j jrCD

),(
),( (3) 

as the preference number for vertex j. So, the larger 
preference values the higher desirability of vertex j 
for ant k. Second, since a solution to MVC is a 

subset of vertices the ants may need to pass some 
steps in order to complete their own tours. However, 
if 1<k

jD  for all j, the ant k has completed its own 
tour, a good stopping criteria. Note that, before 
starting the next cycle, the connectivity values 
should be reset using Eq. (1) to restore the original 
graph information. 

2.3 State Transition Rule 

One of the main parts of an ACO-based solver, 
which results the improvement in both optimality 
and efficiency of the algorithm, is the state transition 
rule. So we have devised an efficient pruning-based 
heuristic for this phase of our ACO for MVC 
problem. 

 
(a) 

 
(b) 

Figure 2: An example. (a) The original graph instance. (b) 
Illustration of our graph transformation. 

Unlike the most of ACO-based solvers, that the 
preference information is deposited on edges, we 
(due to underlying problem characteristics) 
deposited the preference information on vertices. 
Our state transition rule which describes the 
probability of selecting vertex j, as next vertex, for 
ant k by: 

∑
∈

=

kAr
rkr

jkjk
jP βα

βα

ητ
ητ

(4) 
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where kA  is the set of accessible vertices for ant k. 

also, j
ατ  and βη jk  represent the global pheromone 

updating factor and local desirability scale for vertex 
j, respectively. As the pruning part of Eq. (4), the ant 
k is not forced to consider all of the vertices to select 
the best one, vertex j. Instead, we define kV  as the 
visible set for ant k. In fact, we provide: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥= ∑
∈ kAr

k jrCjV 1),(
 

(5) 

as the checklist for ant k and prune the other 
vertices. We will show soon that this simple 
heuristic of Eq. (5) results very high efficiency in 
both time and solution optimality for MVC problem. 

2.4 Pheromone Updating Rule 

The ACO relies on the synergy among a population 
of ant agents. Here, we use the global and local 
pheromone updating rules as follows. First, at the 
end of each cycle, the pheromone left on the vertices 
of the currently best solution is reinforced. Suppose 
that V'c is the currently best solution. For each vertex 

 
Figure 3: Applying connectivity updating rule to our 
running example. 

cVi '∈  we will update its pheromone according to 
global updating by: 

iii τρτρτ Δ+−= )1( (6) 

where 

c
i V '

1
=Δτ

 

(7) 

and )1,0(∈ρ  is a parameter which simulates the 
evaporation rate of the pheromone intensity and 
enables the ants to forget the bad decisions 
previously done.  

Second, we apply a local pheromone updating 
rule to explore the solution space as far as possible 
and permit new ants to visit the unvisited vertices 
with a higher probability which leads to diversity of 
the solutions obtained. This is accomplished by the 
following rule: 

0')'1( τρτρτ +−= ii (8) 

where )1,0('∈ρ  is a parameter adjusting the 

pheromone previously laid on vertex i and 0τ  is the 
same as the initial value of pheromone laid on each 
vertex before starting the algorithm. Reduction in 
the pheromone intensity of the vertex i is obvious 
from Eq. (8), as expected. 

2.5 Stopping Criterion 

The stopping criterion of an ACO could be a 
maximum number of iterations, a constant CPU time 
limit, or any other fixed criteria which leads to best 
improvement of the algorithm. In this paper, we use 
an alternative, a given number of iterations in which 
no improvement on the solution is obtained.  

3 EXPERIMENTAL RESULTS 

In this section, we present the experimental results 
obtained by MVC-AC for solving the problem. 
The algorithm has been implemented by Java 
programming language on windows platform and 
Intel Pentium(R) 4 CPU 2.40 GHz processor. The 
parameters used in our implementation are α =0.7 
and β =0.3. The parameter setting for ρ has an 
important role in the ACO algorithms. For some 
fixed values of α  and β , we run our algorithm 
with different values of ρ . According to 
experiences, MVC-AC with ρ =0.03 exhibits the 
best performance for getting the optimum solution. 

After that, we first, run our algorithm on regular 
graphs of (Papadimitriou and Steiglitz, 1972), with 
k=32 and k=66, namely "ps100" and "ps202", 
respectively. We got the optimum solutions in 100 
runs of MVC-AC, consistently. Our comparisons 
with GENEsYs, a genetic algorithm software 
package, from (Khuri and Back, 1994) and HGA of 
Kotecha and Gambhava, 2003) on these graphs are 
reported in Tables 1 and 2. 
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Table 1: Comparison results for "ps100" graph. 

 

Table 2: Comparison results for "ps200" graph. 

 
Then, we tested algorithm on more challenging 

instances of random graphs which described in 
(Khuri and Back, 1994). We got very surprising 
results in comparison with Khuri and Back's results 
(Khuri and Back, 1994) and vercov heuristic's 
reported there. The results of 100 runs of MVC-AC 
on "mvcp100-02", "mvcp100-03", "mvcp200-01" 
and "mvcp200-02", which are more challenging, 
summarized in Tables 3 and 4. According to 
comparisons, MVC-AC treats very consistent and 
effective for solving the minimum vertex cover 
problem.  

4 CONCLUSIONS 

One of the most challenging problems of the graph 
theory is the NP-complete minimum vertex cover 
problem. In this paper, we introduced a simple but 
efficient Ant Colony Optimization algorithm, called 
MVC-AC, for solving this problem. Most of our 
ACO components incorporate with the standard 
ACO algorithms. According to ACO literature, we 
speed up the ants traversal by considering a heuristic 
into the state transition rule of our ACO. Also, by 
introducing a new pruning based approach, the 
visible set for each ant, we restricted the ant search 
space only to vertices in its visible set, resulting 
substantial improvement for both time and 
convergence rate of the algorithm.  
For experience, we compared our algorithm with 
some efficient existing algorithms based on 
evolutionary algorithms, such as GENEsYs and 

HGA. Also a variety of benchmarks is used to test 
MVC-AC. As the experimental results show, MVC-
AC not only outperforms the algorithms above, but 
it also treats very efficient and consistent with for 
solving the minimum vertex cover problem. 
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Table 3: The comparison of vercov heuristic and Back's results with MVC-AC results on "mvcp100-02" and "mvcp100-03" 
random graph instances. 

 

Table 4: The comparison of vercov heuristic and Back's results with MVC-AC results on "mvcp200-01" and "mvcp200-02" 
random graph instances. 
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