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Abstract: This paper proposes a novel dual adaptive neuro-control scheme based on the unscented transform for the

dynamic control of nonholonomic wheeled mobile robots. The controller is developed in discrete time and
the robot nonlinear dynamic functions are unknown to the controller. A multilayer perceptron neural network

is used to approximate the nonlinear robot dynamics. The network is trained online via a specifically devised
unscented Kalman predictor. In contrast to the majority of adaptive control techniques hitherto proposed in the
literature, the controller presented in this paper does not rely on the heuristic certainty equivalence assumption,

but accounts for the estimates’ uncertainty via the principldual adaptivecontrol. Moreover, the novel dual

adaptive control law employs the unscented transform to improve on the first-order Taylor approximations
inherent in previously published dual adaptive schemes. Realistic simulations, including comparative Monte

Carlo tests, are used to illustrate the effectiveness of the proposed approach.

1 INTRODUCTION ignoring completely the inherent uncertainty in the es-
timations. When the uncertainty is large, for instance
Many publications on the control of nonholonomic during startup or when the functions are changing,
wheeled mobile robots (WMRs) (Kanayama et al., HCE often leads to large tracking errors and exces-
1990; Canudas de Wit et al., 1993) completely ig- sive control actions, which can excite unmodelled dy-
nore the robot dynamics and rely on the assumption namics or even lead to instabilithgtrom and Witten-
that the control inputs, usually motor voltages, in- mark, 1995). In contrast, the so-called dual adaptive
stantaneously establish the desired wheel velocities.controllers based on thgual controlprinciple intro-
Others, explicitly account for the robot dynamics due duced by Fel'dbaum (1965), do not rely on the HCE
to its mass, friction and inertia (Fierro and Lewis, assumption but account for the estimates’ uncertainty
1995; Corradini and Orlando, 2001) show that dy- in the control design. Specifically, a dual adaptive
namic control leads to an improvement in perfor- control law is designed with two aims in mind: (i) to
mance. However, as argued by Fierro and Lewis ensure that the output tracks the reference signal with
(1995), perfect knowledge of the robot dynamics is due consideration given to the estimates’ uncertainty;
unavailable in practice. In addition, these parame- (ii) to excite the plant input sufficiently so as to accel-
ters can also vary over time due to loading, wear and erate the estimation process, thereby reducing quickly
ground conditions. These issues inspired the develop-the uncertainty in future estimates. These two fea-
ment of several robust and adaptive WMR controllers tures are known asautionand probing respectively
over the last decade. These include: pre-trained ar-(Astrom and Wittenmark, 1995; Fabri and Kadirka-
tificial neural network (ANN) based controllers and manathan, 2001).
robust sliding-mode methods (Corradiniand Orlando,  Of the few dual adaptive controllers proposed in
2001), parametric adaptive schemes (Wang and Tsairecent years, only our work presented in (Bugeja
2004), and functional adaptive controllers (Bugeja and Fabri, 2009) focuses on the dynamic control of
and Fabri, 2008). WMRs. However, the multilayer perceptron (MLP)
Yet, all these adaptive controllers rely on the dual adaptive scheme employed in this work, not only
heuristic certainty equivalence (HCE) assumption. uses the extended Kalman filter (EKF) (which inher-
This means that the estimated functions are used byently involves a first order approximation) as a neuro-
the controller as if they were the true ones, thereby estimator, butthe control law itself is based on another
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first-order Taylor approximation of the measurement Y+ Geometric centre
model. In contrast, the novelty of the control scheme Passive wheels
presented in this paper comprises: the use of a specif-
ically devised form of the unscented Kalman filter
(UKF) (Julier and Uhlmann, 1997; Wan and van der
Merwe, 2001) as a recursive weight tuning algorithm
instead of the EKF; and more importantly, the devel- e I
opment of a novel dual adaptive control law based on ¢
the unscented transform (UT) (Julier and Uhlmann,
1997), instead of the first-order Taylor approxima-
tion. Together, these novel developments lead to a sig-
nificant improvement in performance over the EKF- Driving wheels
based scheme in (Bugeja and Fabri, 2009). To the best T
of our knowledge, this is the first time that the UT is  Figure 1: Differentially driven wheeled mobile robot.
being used in the context of dual adaptive control.

The rest of the paper is organized as follows. Sec- 5 4
tion 2 presents the dynamic model of the WMR. In where the velocity £ [v; vj]" = 6 6|]T and
Section 3 we present the novel UT-based dual adap- r

X . : . X COSP 5 Cosp
tive dynamic control scheme. Simulation results, in- %sincp %sincp
r r

Centre of mass

cluding those from a Monte Carlo comparative test, s ia " W
are presented in Section 4, which is followed by a D 5
brief conclusion in Section 5. 0 1

2.2 Dynamics
2 PLANT MODEL . I .
The WMR dynamic model, also detailed in (Bugeja

Figure 1 depicts the differentially driven wheeled and Fabri, 2009), is given by:

mobile robot considered in this paper. The following Mpu+V(qv+F(q) =T, (2)
notation is adopted throughout the article: where:
2 2
P,:  midpoint on the driving axle M- Z(MP+)+ly 5 (mbP—1)
P.:  centre of mass without wheels 4r—;z(mb2* 1) %(mb2+|)+|w ’
d: distance fronP, to P; o2
b:  distance from each wheel B Sy 0 B Flo)— ST Fld
r:  radius of each wheel via)= l mrde g | (@) =5 (@F),
me:  mass of the platform without wheels _ 5 5 _
my. mass of each wheel I _.(I?ercd )+2(Im_+,m”b ): m= mc+2m,¥,
I angular mass of the platform abdt F(q) is a vector of frictional forces, antl = [t T/]

with 1, andTt, being the torques applied to the right
and left wheel respectively.

o To account for the fact that the controller is im-
The robot state vectoris givenlgy=[x y ¢ 6; 8]]",  plemented on a digital computer, the continuous-time
where (x,y) is the Cartesian coordinate &, @ is  dynamics (2) are discretized through a first order for-

the robot’s orientation with r_eference to thxaframe,_ ward Euler approximation with a sampling interval of
and®, 6 are the angular displacements of the right T geconds, resulting in

and left driving wheels respectively. Tipeseof the

lw:  angular mass of wheel about its axle
Im:  angular mass of wheel about its diameter
]T

robot refers to the vectgr =[x y q. U= U1 = fiert Geeanes, (3)
where subscrigt denotes that the corresponding vari-
2.1 Kinematics able is evaluated &T seconds, and vectdf_1 and

matrix Gx_1, which together encapsulate the WMR

Assuming that the wheels roll without slipping, the dynamics, are given by

kinematic model of this WMR, detailed by Bugeja fic1 = —TM Y (Ve + Fied), 4
and Fabri (2009), is given by: Gi1 = TM[_ll-
g=S(q)v, (1) The following condition is assumed.
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A NOVEL DUAL ADAPTIVE NEURO-CONTROLLER BASED ON THE UNSCENTED TRANSFORM FOR MOBILE
ROBOTS

Assumption 2.1. The control input vectos remains dependent on mass, inertia, friction and possibly sev-
constant over a sampling interval of T seconds, which eral unmodelled phenomena; are typically unknown
is chosen low enough for the Euler approximation er- and may even change over time. In addition perfect
ror to be negligible. sensor measurements are never available.

To address these complex issues of uncertainty,

we propose a novelual adaptivecontroller employ-

3 CONTROL DESIGN ing a MLP ANN trained online via an UKF algo-
rithm in prediction mode. In contrast to the hitherto
proposed innovation-based suboptimal dual adaptive
laws (Fabri and Kadirkamanathan, 2001; Bugeja and
Fabri, 2009), the control law we propose here em-
ploys the UT to approximate better the mean and co-
variance terms arising in the chosen cost function.
Hence, the envisaged improvement is not solely due
to the superior stochastic estimator employed to train

The trajectory tracking task of a nonholonomic WMR
is chosen as a test problem in this paper. In trajectory
tracking the robot is required to track a nonstationary
kinematically identicalirtual vehicle, in both pose
and velocity at all times, by minimizing the tracking
error vectorex (Kanayama et al., 1990) defined as

cospx sing; O the ANN (the UKF instead of the EKF), but also due
ex=| —singk cos O | (prx—pK), (5) to the dual adaptive law itself, as clarified further in
0 0 1 the following sections.

wherep, = [Xrk Yrk (p(k]T denotes the virtual vehi- 3.2.1 Neuro-Stochastic Estimator
cle pose vector. Hence, the kinematic control task is

to makee converge to zero so thatconverges tg,.. To deal with the uncertainty and/or time-varying na-
ture of the dynamic functiongx and Gy, we opt to
3.1 Kinematic Control assume that they are completely unknown to the con-

troller and employ a stochastically trained ANN algo-
To address the trajectory tracking problem we em- rithm for their approximation in real-time.
ploy a discrete-time version of the well-established A sigmoidal MLP ANN with one hidden layer is
trajectory tracking controller originally proposed in used to approximate the nonlinear vecfer, as de-
(Kanayama et al., 1990), given by picted in Figure 2. Its output is given by

Vck:|:

where v, is the wheel velocity command vector in the light of the following statements:
computed by the kinematic controlldg, ko, andks Definition 3.1. @y_1 = [_1 1] denotes the ANN in-

are positivedesign parametersy andwry are the  pyt. The augmented constant serves as a bias input.
translational and angular reference velocities respec-

tively corresponding to the desired trajectory, angd Definition 3.2. ¢(-,) is th%.vector of sigmoidal
e, 3 are the elements ad in (5). activation functlonAsT, whosé |elgm_en.¥h|s given by

If one assumegperfect velocity trackindi.e. vx = @ =1/(1+exp(—3]x)), wheres; is i"" vector el-

vek V K), hence ignoring the WMR dynamics ex- ement in the group vectdy; i.e. a = [3] --- §E]T
pressed in (2), then this kinematic control law alone where L denotes the number of neurons. The time in-
solves the trajectory tracking problem. However, as dex has been dropped for clarity, and throughout the
pointed out earlier, mere kinematic control rarely suf- paper the” notation indicates that the operand is un-
fices and often leads to substantial degradation in per-dergoing estimation.

formance (Fierro and Lewis, 1995).

T PRGN
? ] |: Vr i COSesy + Ki ey fkflf ¢ (Tk-1,aK) W1k (6)

—2 | | wrk+koVrkeok + Kavrksinegy | T @ (w1, a0 Wak |

=Sl

Definition 3.3. w;, represents the synaptic weight

. estimate vector of the connection between the neuron
3.2 UT-based Dual Adaptive Control hidden layer and thel output element of the ANN.

Assumption 3.1. The input vectory_1 is contained

If the nonlinear dynamic functionfi andGy are as- o )
y o K within a known, arbitrarily large compact sgt C R2.

sumed to beerfectlyknown, a simple feedback lin-
earizing control law, like the one detailed in (Bugeja It is known thatGy_; is a state-independent ma-
and Fabri, 2009), solves tliynamic controproblem trix with unknown elements (refer to (4)). Hence, its
(i.e. assuring thawy tracksv.kVk). However, it is an estimation does not require the use of an ANN. More-
undeniable fact that in practice the robot dynamics; over it is a symmetric matrix, a property which is ex-
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Figure 2: Sigmoidal Multilayer Perceptron neural network.

ploited to construct its estimate as follows

|

wheregi,_; andgz,_, represent the estimates of the
unknown elements irx_1.

The ANN online weight-tuning algorithm is de-
veloped next. The following formulation is required
in order to proceed.

Oi-1 G2k-1

Gr 1=
k1 {QZK—l O1k—1

()

Definition 3.4. The unknown parameters requir-
ing estimation are grouped in a single vector
sc=[7] a7]", wheresy = [w1} wsf a7]" and

~ N s T

Gk = [J1k-1 G2x-a] -

Definition 3.5. The measured output in the dynamic
model (3) is denoted by = vk — vi_1.

Assumption 3.2. By the Universal Approximation
Theoremof ANN, inside the compact sgt the ANN
approximation error is negligibly small when the es-

timate 7 is equal to some unknown optimal vector
denoted by-;. The* notation denotes optimality.

In view of the stochastic adaptive approach taken

Since the resulting measurement model (8) is nonlin-
ear (due to the MLP network), in a stochastic frame-
work one has to a employ a nonlinear estimator, con-
ventionally the suboptimal EKF, to train the ANN in
real-time. However as shown in (Wan and van der
Merwe, 2001), the UKF can be a better alternative for
stochastic nonlinear estimation. Its benefits over the
EKF include, a derivative-free algorithm and superior
accuracy in its approximations. For this reason, we
opt to employ the UKF in predictive mode for the es-
timation ofzy, ,, as detailed below and in Lemma 3.1.

Definition 3.6. Theinformation statedenoted by,
consists of all output measurements up to instant k
and all the previous inputs; Yand U1 respectively.

Assumption 3.3. ex and pi are both zero-mean white
Gaussian processes with covariandes and @, re-
spectively. Moreovegy, px andzg are mutually in-
dependentk.

We propose the use of an unscented Kalman predic-
tor, detailed in Algorithn??, to generate recursively
estimates for the mean and covariancegf, condi-
tioned onl¥, denoted respectively b§k 1 and Pc,1.

This leads to the following lemma:

Lemma 3.1. In the light of (8), Defini-
tion 3.6, and Assumption 3.3, it follows that
(2, 1I1%) ~ A (21, Pr), and so 2. is con-
sidered to be the estimate ef,; conditioned on
hise

Proof. The proof follows directly by applying a pre-
dictive type UKF (additive noise version) on the non-
linear stochastic state-space model in (8). The pre-
dictive UKF is effectively the standard UKF algo-

in this work, the unknown optimal parameter vector fithm as presented in (Wan and van der Merwe, 2001)
2, is treated as a random variable, with the initial con- for parameter estimation, with the difference that
dition p(zg) ~ A (20, Po), where the covarianc the measurement-update step precedes that for time-
reflects the confidence in the initial guegs More- update. In addition, the time-update step is advanced
over, z;. is characterized as a stationary process cor- by one sample to obtaiy.. 1 at instani. O
rupted by an artificial process noigg, which aids
convergence and tracking during estimation. In ad-
dition, observation uncertainty is catered for by aug-
menting a random measurement NGg¢o yy.

By (6), (7), all previous definitions and assump-
tions; it follows that the model in (3) can be repre-
sented in the following stochastic state-space form

Lemma 3.2. On the basis of Lemma 3.1, it follows
that p(yk. 1/1¥) is approximately Gaussian with mean
Jk+1 and covariancePy,,, ., given by:

Okr1 = fit Gimy, (10)

2N
where, fi = _;WmiFi,k+l\ka Gk =G (gk+1) (11)
i=

* A *
Zerl = At Pk . (8)  and the covariance
Yk = h($k—l)7-k—lazk) +€k7
. ) Pyyy.1= (12)
where the vector functioh (zk_1, 71, ;) is non- oN

linear in the unknown optimal parameter veckjs,
and is given by

h(-) = f@r1.7) + Glg) k1.

ZOWci [Dy;+ Dgin| [Dyg; + DGiTk]T + R,
i=

9) where, Dy, =Fi,1k— fk.  Dai = Giki1k— Gk-
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Algorithm 3.1. The unscented Kalman predictor algorithm.

Given the previous prediction (2,;‘,(,1.3(‘](,1),
denoted in short-form by (2, P); the following
algorithm generates the new prediction (2, 1, Py ):

Sigma-points sampling and propagation

Zyp—1 = [ﬁk 2+ (Y\/ -Pk> Zr— (Y\/ P/)}
Frje—1 F(@i-1. Rip—1): Gt = G (Giji—1)
Yk\kfl - Fk\kfl + Gk\kfl Tk—1
W
G = X WmiYimeo (10)

i=0
Measurement update and estimate prediction

2N

Pyyk = 2 VVC;’ [Yi.k\kfl - Q/;] [Yi.k\kfl - g](] ! + R,
i=0

2N
. . T
szk - 2 VVci [Z'i.k\kfl - zk] [Yi.k\kfl - yk]
i=0
K]( szkpygjji ) i/\' =Yi— :gk
£I(+1 = Z+ Kkik (1 1)
Py = Pi—KiPy K{ +Q, (12)
where: 2T = [?{T (jT]T, Yy=+VN+A , N
is the length of 2;, the scaling parameter

A=0?(N+K)—N, constant o determines the
spread of the sigma-points, constant ¥ is a sec-
ondary scaling parameter, the UT weights are given

by: Wno = N%A Weo = Wmo +1— 02 + B, and
Wi = Wei = m (i=1,48 2N), and B includes

prior knowledge of the estimate’s distribution.
Moreover, in the UKF framework the linear algebra
operation of adding a column vector to a matrix
is defined as the addition of the vector to each
column of the matrix. For further details, including
guidelines for selecting the UKF scaling parameters,
one is referred to (Wan and van der Merwe, 2001).

Proof. The proof for fi in (11) follows directly
by applying the UT to estimate the mean of
P ( f(ask,r;+l)||k). The equation foiG in (11) is
simply an application of the basic results in linear
probability theory, i.e.p(Axz) = AZ. It can be ap-
plied sinceG is linear in the parameters. To derive the
equation ofP,,,, ., in (12) one needs to advance the
equation forPy,,, in Algorithm 3.1. by one sampling
instant, and substitute faf; ., 1k andgx-1, using the
relations leading to (10) in the same algorithm. J

ROBOTS

3.2.2 UT-based Dual Adaptive Control Law

The stochastic formulation in Lemmas 3.1 and 3.2
constitutes the weight adaptation law for the proposed
MLP dual adaptive scheme. In addition, it provides a
real-time update of the densify(yk;1|1¥). This in-
formation is crucial in dual control since unlike HCE
schemes, dual adaptive controllers do not ignore the
uncertainty of the estimates, but employ it in the de-
velopment of the control law itself, as follows.

The explicit-type suboptimal innovation-based
performance indexJ,,, adopted from (Fabri and
Kadirkamanathan, 2001), and modified to fit
the multiple-input-multiple-output (MIMO) nonlin-
ear scenario at hand is given by

Jon = E{ (Yki1 — Yair1)' Q1 (Y1 — Yatsr)
+ (10 Qam) + (i1 Qainer) |1}, (13)

whereE {-[IX} is the mathematical expectation con-
ditioned onl¥, and the following definitions apply:

Definition 3.7. yay 1 is the reference vector @ji;1
and is given byWay 1 = Veky1 — Vk-

To obtainv, 1 atinstank we advance the kinematic
control law by one sampling interval as explained in
(Bugeja and Fabri, 2009).

Definition 3.8. Design parameter§)1, Q2 and Qs
are diagonal ande R?*2, Additionally: Q; is
positive definite,Q, is positive semi-definite, and
—Q1 < Q3 <0 (element-wise).

Remark 3.1. The design paramet&p, is introduced

to penalize tracking errors@), induces a penalty on
large control inputs, andl; affects the innovation
vector so as to induce the dual adaptive feature char-
acterizing this stochastic control law.

The UT-based dual adaptive control law proposed
in this paper is given in the following theorem.

Theorem 3.1. The control law minimizing perfor-
mance index g, in (13), subject to: the WMR dy-
namic model in (3), all previous definitions, assump-
tions and lemmas, is given by

R . 1
* = (GIQle+ Q2+ NGGk+1)

. . (14)
x (GIQl (Yars1 — fi) — ntk+l) )
2N
where, Nggki1 = %WciDG;erLDGia
i=
2N .
NGfr1 = _%WciDGi Q4Dy;,
i=
Qi = Q1+Qs.
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Proof. Given the approximate Gaussian distribution
of p(yk:1/1¥) specified in Lemma 3.2, and several
standard results from multivariate probability theory,
it follows that cost function (13) can be rewritten as

Jin = (Gke1—Yarer)' Q1 (Fki1— Y1)
+ TkTQsz + tr(Q4Pyyk+l)' (15)

By substituting forgx1 and Py, . , in (15), using the
relations in (10) and (12) respectively, it is possible to
factorize completely in terms af. The resulting ex-
pression is then differentiated with respectfoand
equated to zero, in order to get the dual control law in
(14). The resulting second order partial derivative of
Jinn With respect tory, the Hessian matrix, is given by
2 (GIQlék + Q2+ NGGk+1) . By Definition 3.8
and (15), it is clear that the Hessian matrix is posi-
tive definite, meaning thaty in (14) minimizes the
dual performance index in (13) uniquely. Moreover,
the latter implies that the inverse term in (14) exists
without exceptions. O

Remark 3.2. Q3 which appears in the control law
via Q4 acts as a weighting factor, where at one ex-
treme, withQs = —Q1, the controller completely ig-
nores the estimates’ uncertainty, resulting in HCE
control, and at the other extreme, wit}s =0, it
gives maximum attention to uncertainty, which leads
to cautious control For intermediate settings @3,

the controller strikes a compromise and operates in
dual adaptive mode. It is well known that HCE con-
trol leads to large tracking errors and excessive con-
trol actions when the estimates’ uncertainty is rela-
tively high. On the other hand, cautious control is
notorious for sluggish response and control turn-off
(Fabri and Kadirkamanathan, 2001). Consequently,
dual control exhibits superior performance by strik-
ing a balance between the two extremes.

4 SIMULATION RESULTS

This section presents a number of MATLABsim-

ysis the proposed UT-based dual adaptive controller
detailed in Section 3 is compared to the recently pro-
posed EKF-based dual adaptive controller in (Bugeja
and Fabri, 2009).

4.1 Simulation Scenario

The differential WMR under study was simulated us-
ing the continuous-timedynamic model detailed in
(Bugeja and Fabri, 2009). To render the simulations
more realistic, a number of model parameters, namely
d, m, lc and F(q), were allowed to vary about a
set of nominal values from one simulation trial to
another. These variations adhere to the physics of
realistic randomly generated scenarios, which repre-
sent various load configurations and surface frictional
conditions. The nominal parameter values used for
simulations correspond to thoseNé&urobot the real
WMR we presented in (Bugeja and Fabri, 2008), with
a typical load. These ardr=22.95cm,r = 6.25cm,

d =10cm, me = 32kg, my = 1kg, lc = 0.84kgn?,

lw = 0.002kgn?, and I, =0.005kgnf. Moreover,
viscous friction was included in the model by set-
ting F(q) = F.q, where F, is a diagonal matrix

of coefficients, with nominal diagonal values set to
[2.6,2.6,0.35,0.3,0.3]. The control sampling interval

T was set to 50ms, and a zero-mean Gaussian mea-
surement noise with covariance 1T, whereI de-
notes the identity matrix, was included.

Each simulation trial consists of eight consecutive
simulations. The first six of these correspond to the
three modes of operation; i.e. HCB§{ = —-Q1),
cautious Qs =0) and dual Qs =—0.8Q,); for
each of the two adaptive schemes being compared.
The remaining two trials correspond to: (1) a nomi-
nally tuned non-adaptive (NT-NA) controller, which
represents a non-adaptive dynamic controller that as-
sumes the model parameters to be equal to their nom-
inal values. This is the best a non-adaptive controller
can do when the exact robot parameters are unknown
(very realistic); (2) a non-adaptive controller which
is perfectly tuned (PT-NA) to thexact value®f the

ulation results demonstrating the effectiveness of the model parameters. The latter is not realistic, and is
UT-based dual adaptive control scheme proposed inused solely for the purpose of relative comparisons.
this paper. Given the non-deterministic nature of In contrast, the HCE, cautious and dual adaptive con-
the stochastic system in question, one cannot relytrollers assume no preliminary information about the
solely on a single simulation trial to validate the con- robot whatsoever, since closed-loop control is acti-
troller under test. Moreover, the analytical proof of vated immediately with the initial parameter estimate
strict convergence and stability for a dual adaptive vectorZo selected at random from a zero-mean, Gaus-
controller for a nonlinear system, is still considered sian distribution with variance.0025.

an open problem. For these reasons, a comprehen- For the sake of fair comparison the same noise se-
sive Monte Carlo comparative analysis is also pre- quence, reference trajectory, initial conditions, iditia
sented. This renders the performance evaluation pro-filter covariance matrix o = 0.11I), artificial pro-
cess much more objective and reliable. In this anal- cess noise covarianc&(, = 107°I), tracking er-
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ror penalty Q1 =1I), and control input penalty " HGE 11GE MODE
(Q2 = 0), are used in each simulation in a particu- e} Boa: AL ot 1
lar trial. In addition, the sigmoidal MLP ANN used | N N Ty TUNED NN ADabTve |

in each of the two schemes under test contained five -
neurons L = 5= N = 27). Our experiments indi- oo ‘
cated that adding more neurons did not improve the : ;
control performance significantly. In the UT-based ' : H

COST

600

scheme, the UKF scaling parameters were set o T
1,k = 0andp = 2. The noise sequence is randomly 29
generated afresh for each trial. 0

‘ +
H L 25 - - T _

C L L L L L L L L |
EKF (HCE) EKF (CAU) EKF (DUA) UT (HCE) UT(CAU) UT(DUA) NT-NA _ PT-NA

4.2 Single Trial Results Figure 4: Monte Carlo analysis cost distributions (100juns

A number of simulation results, typifying the perfor- a54s to high initial transient errors, while the dual
mance of the three control modes of the UT-based mode exhibits the best transient performance. This

adaptive scheme are presented in Figure 3. is in accordance with Remark 3.2. Plot (d) compares
@ ®) the UT-based dual adaptive controller with the EKF-
z ﬁ s, ﬁ ) based dual adaptive controller. The plot indicates that
N °%° $o°% the former has better transient performance, while in
£og T oo :o: x steady-state the two controllers lead to the same error.
s "o,o °§° S i-w In addition, with minimal code optimization the

. E g \ V] computation time for the proposed UT-based dual

LG ? O controller is around 30% more than that of the EKF-
based dual controller. This is not unexpected, mainly
due to the time-intensive sigma-points propagation

0.5 /HCE
o8 within the UKF algorithm. Yet, the computation time
o e of the UT-based controller is still around 12% of the
B zf : whole sampling period.
e fime () 4.3 Monte Carlo Comparative Results

Figure 3: (a): referencéx) and actual(Q) trajectories
E(L:J)T't?:ﬁg% r?tut?zla)ck(lgzg ei?grtr(ﬂTlnt?al\]ste(yg-raﬁieeds)s (rg)‘_)(i?:r)\? A Monte Carlo simulation involving 100 simulation
sient tracking error (UT-based dual vs EKF-based dual). F”als was performed. Each O.f the elght Slmu.latlons
in a trial corresponds to a trajectory time horizon of

) 4 ' one minute in real time under the simulation condi-
Plot (a) depicts the WMR tracking a demanding ref- yjong specified earlier (and with zero error initial con-
erence trajectory, with a non-zero initial tracking er- gisions).  After each simulation the following cost
ror, controlled by the proposed UT-based dual adap- Ksin
tive controller. It depicts the good tracking perfor- cosT— Z lp- — p| is calculated. This serves as a
mance of the proposed scheme, even when the trajec- &L
tory reaches high speeds of around 1m/s. Plots (b) toperformance measure for each of the eight controllers
(d) correspond to another simulation trial; purposely operating under the same conditions, where lower val-
initiated with zero error conditions, so that any initial ues of COST are naturally preferred.
transient errors can be fully attributed to the conver-  The salient statistical features of the eight cost dis-
gence of the estimators. Plot (b) compares the Eu-tributions resulting from the Monte Carlo analysis,
clidian norm of the control input vector, for the three are depicted in the boxplot of Figure 4. Additionally,
modes of the UT-based controller, during the first 20s. the mean and variance of each of these cost distribu-
The very high transient control inputs of the HCE tions are listed and ranked in Table 1. These results in-
controller reflect the aggressive and incautious naturedicate clearly thain generalthe UT-based dual adap-
of this mode, which ignores completely the high un- tive controller brings about a significant improvement
certainty in the initial estimates. Plot (c) compares the in tracking performance, not only over non-adaptive
Euclidian norm of the pose error vector, for the three controllers which assume nominal values for the robot
modes of the UT-based controller, during the first 20s. parameters, but also over the EKF-based dual con-
This plot shows clearly how the HCE mode typically troller presented in (Bugeja and Fabri, 2009). More-
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Table 1: Mean and Variance of the cost distributions. REFERENCES

| Controller | Mean cost| Cost variance] Rank | Astrom, K. J. and Wittenmark, B. (1995)daptive Contral
EKF-HCE 192 40225 6 Addison-Wesley, Reading, MA, 2nd edition.
EKF-CAU 67 3847 4 Bugeja, M. K. and Fabri, S. G. (2008). Multilayer per-
EKF-DUA 61 731 3 ceptron adaptive dynamic control of mobile robots:
- experimental validation. In H. Bruyninckx, L. P.
UT-HCE 140 32813 > and Kulich, M., editors European Robotics Sympo-
UT-CAU 48 30 2 sium 2008 (EUROS'08),PragueSpringer Tracts in
UT-DUA 47 26 1 advanced Robotics (STAR), pages 165-174. Springer.
NT-NA 372 59614 7 Bugeja, M. K. and Fabri, S. G. (2009). Dual adaptive dy-
PT-NA 39 5 -na- namic control of mobile robots using neural networks.

IEEE Trans. Syst., Man, Cybern, 89(1):129-141.
over, it is just as evident that within each of the two Canudas de Wit, C., Khennoul, H., Samson, C., and Sor-
schemes, the dual control mode is even better than dalen, O. J. (1993). Nonlinear control design for mo-
the cautious mode, as anticipated in Remark 3.2. This bile robots. In Zheng, Y. F., editoRecent Trends
complies with the dual control philosophy that a bal- I(:nhg./l(zg:’leS R‘;b%ts 'fgfoi'gg mgrﬁuéocﬂfgf?csyswms’
ance betweeopautionandprobingyields the best per- _ p » Pag i ; _
formance in adaptive control. It is also not surprising Co”ﬂ'ﬂ'& g\(lb}_}n%r::)(?lgrré%%?g’irﬁh (ezg?els)énigbcﬂsﬁfcaecr'fé?ﬁ
.that the performance O.f the HCE modes is character- ties in the dynamic model.Journal of Robotic Sys-
|;ed by a hlgh cost variance and several extremelout- tems 18(6):317—323.

!Ierz' Thisis the refsrllj.lt ﬁf_tht? (l:omplete.laCklc’f (a{?lutlon Fabri, S. G. and Kadirkamanathan, V. (200Bunctional

In the presence of nig mltla uncertainty, eading to Adaptive Control: An Intelligent Systems Approach
high transient errors. An important obfservatlo_n is that Springer-Verlag, London, UK.

each mOde_m the UT—pased scheme is superior to theFierro, R. and Lewis, F. L. (1995). Control of a honholo-
corresponding mode in the EKF-based scheme. We nomic mobile robot: Backstepping kinematics into

associate this to the superior (second order) approxi- dynamics. InProc. IEEE 34th Conference on Deci-
mations introduced by the UT when compared to the sion and Control (CDC’95) pages 3805-3810, New
EKF (first order). Orleans, LA.

Julier, S. J. and Uhlmann, J. K. (1997). A new ex-
tention of the Kalman filter to nonlinear systems.
In Proc. of AeroSense: The 11th Int. Symp. on

5 CONCLUSIONS Aerospace/Defence Sensing, Simulation and Controls
) . . Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T.
The novelty in this paper comprises the use of the (1990). A stable tracking control method for an au-
UT to improve on the EKF-based dual-adaptive dy- tonomous mobile robot. IRroc. IEEE International
namic controller recently proposed in (Bugeja and Conference of Robotics and Automatigrges 384—

Fabri, 2009). Specifically the proposed UT-based 389, Cincinnati, OH.
dual-adaptive scheme employs the UKF (in predic- Wan, E. A. and van der Merwe, R. (2001). The unscented
tive mode) as a recursive weight tuning algorithm, and kalman filter. In Haykin, S., editoKalman Filtering
in addition includes a novel dual-adaptive control law and Neural Networkshdaptive and Learning Systems

: . for Signal Processing, Communications, and Control,
that uses the UT to propagate nonlinear mappings of

distributi ther that the first6rd ati chapter 7, pages 221-280. John Wiley & Sons, Inc.
Istributions, rather that the tfirst oraer approximations R . ) . .
involved in the EKFE-based law. Wang, T.-Y. and Tsai, C.-C. (2004). Adaptive trajectory

tracking control of a wheeled mobile robot via lya-
The presented results show clearly that the proposed  pynoy techniques. Ifroc. 30th Annual Conference

novel dual controller exhibits significant improve- of the IEEE Industrial Electronics Societyages 389—
ments in performance, not only over the EKF-based 394, Busan, Korea.

dual scheme, but also on all other non-dual and non-

adaptive controllers tested in this paper.

Recently we have also implemented this novel con-

troller successfully oNeurobot The obtained exper-

imental results validate the proposed scheme on a real

mobile robot for the first time and will soon be pub-

lished elsewhere.
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