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Abstract: The dynamical system model proposed by VOSE provides a theory of genetic algorithms as specific random
heuristic search (RHS) algorithms by describing the stochastic trajectory of a population with the help of
a deterministic heuristic function and its fixed points. In order to simplify the mathematical analysis and to
enable the explicit calculation of the fixed points the simple genetic algorithm (SGA) withα-selection has been
introduced where the best orα-individual is mated with individuals randomly chosen from the population with
uniform probability. This selection scheme also allows to derive a simple coarse-grained system model based
on the equivalence relation imposed by schemata.
In this paper, theα-selection scheme is generalised toα⋆-selection by allowing theβ best individuals of the
current population instead of the single bestα-individual to mate with other individuals randomly chosen
from the population. It is shown that most of the results obtained forα-selection can be transferred to the SGA
with generalisedα⋆-selection, e.g. the explicit calculation of the fixed points of the heuristic function or the
derivation of a coarse-grained system model based on schemata.

1 INTRODUCTION

As specific instances of random heuristic search
(RHS), genetic algorithms mimic biological evolu-
tion and molecular genetics in simplified form. Ge-
netic algorithms process populations of individuals
which evolve according to selection and genetic op-
erators like crossover and mutation. The algorithm’s
stochastic dynamics can be described with the help
of a dynamical system model introduced by VOSE

et al. (Reeves and Rowe, 2003; Vose, 1999a; Vose,
1999b). The population trajectory is attracted by the
fixed points of an underlying deterministic heuristic
function which also yields the expected next popula-
tion. However, even for moderate problem sizes the
calculation of the fixed points is difficult.

The simple genetic algorithm (SGA) withα-
selection allows to explicitly derive the fixed points
of the heuristic function as well as to formulate a
simple coarse-grained system model based on the
equivalence relation imposed by schemata (Neubauer,
2008a; Neubauer, 2008b). In this selection scheme,
the best orα-individual is mated with individuals ran-

domly chosen from the current population with uni-
form probability. This paper extends theα-selection
scheme to generalisedα⋆-selection by allowing the
β best individuals of the current population instead
of the single bestα-individual to mate with other in-
dividuals randomly chosen from the current popula-
tion. It is shown that most results obtained for the
SGA with α-selection can be transferred to the SGA
with generalisedα⋆-selection by redefining the sys-
tem matrix of the dynamical system model, e.g. the
explicit calculation of the fixed points of the respec-
tive heuristic function or the derivation of a simple
coarse-grained system model based on schemata.

The paper is organised as follows. In section 2, the
SGA with α-selection is defined, the dynamical sys-
tem model, the corresponding heuristic function and
its fixed points are formulated, and a simple coarse-
grained system model based on the equivalence rela-
tion imposed by schemata is described. In section 3,
these results are extended to the SGA with generalised
α⋆-selection. A brief conclusion is given in section 4.
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2 SGA WITH α-SELECTION

The SGA withα-selection, crossover and mutation
defined by masks is described in this section follow-
ing (Neubauer, 2008a; Neubauer, 2008b) and the no-
tation and definition of the SGA in (Vose, 1999a).
In the present context, the genetic algorithm is used
for the maximisation of a fitness functionf : Ω → R

which is defined over the search spaceΩ = Z
ℓ
2 =

{0,1}ℓ. Each binaryℓ-tuple (a0,a1, . . . ,aℓ−1) will
be identified with the integera = a0 · 2ℓ−1 + a1 ·
2ℓ−2 + . . . + aℓ−1 · 20 leading to the search space
Ω = {0,1, . . . ,n− 1} with cardinality |Ω| = n = 2ℓ.
With this binary number representation, the bitwise
modulo-2 additiona⊕b, modulo-2 multiplicationa⊗
b and binary complementa are defined. The integera
is also viewed as a column vector(a0,a1, . . . ,aℓ−1)

T;
the integern− 1 = 2ℓ − 1 corresponds to the all-one
ℓ-tuple1. Finally, the indicator function[i = j] is de-
fined by[i = j] = 1 if i = j and 0 if i 6= j.

The SGA with α-selection formulated in
(Neubauer, 2008a; Neubauer, 2008b) works over
populations ofr individual binaryℓ-tuplesa∈ Ω. In
each generation, offspring individuals are generated
by genetic operators like crossoverχΩ and mutation
µΩ which are applied to selected parental individuals.
In the α-selectionscheme, the best individual or
α-individual b in the current population is mated
with individuals randomly chosen from the current
population with uniform probabilityr−1 (see Fig. 1).

initialise population;
while end of iteration6= truedo

selectα-individualb as first parent;
for the creation ofr offspringdo

select second parentc randomly;
create offspringa = µΩ (χΩ (b,c));

end
end

Figure 1: SGA withα-selection.

ThecrossoveroperatorχΩ : Ω×Ω→ Ω randomly
generates an offspringℓ-tuple a = (a0,a1, . . . ,aℓ−1)
according toa = χΩ(b,c) with crossover probabil-
ity χ from two ℓ-tuples b = (b0,b1, . . . ,bℓ−1) and
c= (c0,c1, . . . ,cℓ−1). With the crossover maskm∈ Ω
the ℓ-tuplesa = b⊗m⊕m⊗ c or a = b⊗m⊕m⊗ c
are generated one of which is chosen as offspringa
with equal probability 2−1. The crossover maskm is
randomly chosen fromΩ according to the probability
distribution vectorχ = (χ0,χ1, . . . ,χn−1)

T.
ThemutationoperatorµΩ : Ω → Ω randomly flips

each bit of theℓ-tuplea = (a0,a1, . . . ,aℓ−1) with mu-
tation probabilityµ. It can be equivalently formulated

with the help of the mutation maskm∈ Ω according
to µΩ(a) = a⊕m. The mutation maskm is randomly
chosen fromΩ according to the probability distribu-
tion vectorµ= (µ0,µ1, . . . ,µn−1)

T.

2.1 Dynamical System Model

The dynamical system model of the SGA with
α-selection can be compactly formulated with the
population vectorp = (p0, p1, . . . , pn−1)

T. Each
component pi gives the proportion of element
i ∈ Ω in the current population. The popula-
tion vector p is an element of the simplexΛ =
{p ∈ R

n : pi ≥ 0∧∑i∈Ω pi = 1}.
The SGA withα-selection is an instance of RHS

τ : Λ → Λ. The RHSτ is equivalently represented by
a heuristic functionG : Λ → Λ according toq = τ(p)
with the expected next generation population vec-
tor q (see Fig. 2). For a given population vectorp
the heuristic functionG yields the probability distri-
bution G (p)i = Pr{individual i is sampled fromΩ}
which underlies the generation of the next population.
The stochastic trajectoryp, τ(p), τ2 (p), . . . approx-
imately follows the trajectoryp, G (p), G 2 (p), . . .
of the deterministic dynamical system defined byG .
The RHSτ behaves like the dynamical system model
in the limit of infinite populations (Vose, 1999a).

p q = G (p)G

Figure 2: Dynamical system model of the SGA.

2.1.1 Heuristic

In the α-selection scheme, theα-individual b is se-
lected as the first parent whereas the second parent is
chosen uniformly at random from the current popu-
lation. The heuristic functionG (p) is then given by
(Neubauer, 2008a; Neubauer, 2008b)

q = G (p) = A ·p (1)

with thesystem matrix

A = σb ·M
∗ ·σb . (2)

Here, (σb)i, j = [i ⊕ j = b] denotes the permutation
matrix. Then×n mixing matrixis defined by (Vose,
1999a)

Mi, j = ∑
u,v∈Ω

µv ·
χu + χu

2
· [i ⊗u⊕u⊗ j = v] . (3)

The twist M∗ of the symmetric mixing matrixM =
MT is given by(M∗)i, j = Mi⊕ j ,i . The components of
then×n system matrix are given by
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Ai, j = Mi⊕b,i⊕ j . (4)

Compared to the SGA in (Vose, 1999a), theα-
selection scheme yields a simpler heuristic function
G which is completely described by theα-individual
b and the mixing matrixM. This dynamical system
model is illustrated in Fig. 3.

p qσb M∗ σb

Figure 3: Dynamical system model of the SGA withα-
selection.

2.1.2 Fixed Points

For a given α-individual b the heuristic function
G (p) = A · p of the SGA withα-selection is linear.
The fixed pointsω = G (ω) = A·ω are obtained from
the eigenvectors of the system matrixA to eigenvalue
1. There exists a single eigenvalueλ0 = 1 with corre-
sponding eigenvectorω whereas the remainingn−1
eigenvalues fulfill 0≤ λi ≤ 1−2µ. The eigenvectorω
yields the unique fixed point of the heuristic function
G for a givenα-individualb.

The fixed pointω can be determined explicitly
with the help of the WALSH transform. For the ma-
trix A the WALSH transform isÂ = W ·A ·W with
the symmetric and orthogonaln× n WALSH matrix
Wi, j = n−1/2 · (−1)iT j (Vose and Wright, 1998). The
WALSH transform of the vectorω is ω̂ = W ·ω. A
and its WALSH transformÂ have the same eigenval-
ues with eigenvectors which are also related by the
WALSH transform, especially yieldingω = A ·ω ⇔

ω̂ = Â · ω̂. The WALSH transform of the system ma-
trix is given by

Âi, j = M̂i⊕ j , j · (−1)bT(i⊕ j) . (5)

For 1-point crossoverχΩ and mutationµΩ the
WALSH transform of the mixing matrixM is formu-
lated in (Vose, 1999a). Because the WALSH trans-
form of the mixing matrix fulfillsM̂i, j ∝ [i ⊗ j = 0]

the WALSH transformÂ is a lower triangular matrix
(Neubauer, 2008a; Neubauer, 2008b). Due to the rela-
tion ω̂ = Â· ω̂ the WALSH transform of the fixed point
can be iteratively determined from

ω̂i =
1

1− Âi,i
·

i−1

∑
j=0

Âi, j · ω̂ j (6)

for 1≤ i ≤ n−1 starting withω̂0 = n−1/2 which en-
sures∑i∈Ω ωi = 1. The fixed pointω =W · ω̂ is finally
obtained via the inverse WALSH transform.

2.2 Schemata

Following (Vose, 1999a)schematacan be considered
as specific equivalence relations in which two equiva-
lent individualsi ≡ j in the search spaceΩ belong to
the same equivalence class[i] = { j ∈ Ω : j ≡ i}. With
the help of thequotient mapΞ[i], j = [i ≡ j] this can be
expressed asi ≡ j if and only if Ξ[i], j = 1. Two popu-
lations are equivalent if the proportions of individuals
in each equivalence class[i] ∈ Ω/≡ with i ∈ Ω are the
same in both populations. With population vectorsp
andp′ this corresponds to the conditionΞp = Ξp′.

A schemata familyis defined by theℓ-tupleξ ∈ Ω
via the quotient mapΞ[i], j = [ j ⊗ξ = i] with i ∈ Ωξ =

{i ∈ Ω : i ⊗ ξ = 0} and j ∈ Ω leading to the 21
Tξ ×2ℓ

matrix Ξ. Two individualsi, j ∈ Ω are equivalent if
they agree on the defining positions of the schemata
family according toi ≡ j ⇔ i ⊗ ξ = j ⊗ ξ. The cardi-
nality of Ωξ is

∣∣Ωξ
∣∣ = 21Tξ with the number of defin-

ing positions1Tξ.

2.2.1 Schema Heuristic

A dynamical systemG is consistently modeled by
the simplified coarse-grained system̃G implied by the
equivalence relation≡ if the diagram in Fig. 4 com-
mutes, i.e. for two equivalent population vectorsp and
p′ the population vectors in the next generationG (p)
andG (p′) must also be equivalent.

p G (p)

p̃ ΞG (p)

ΞΞ

G

G̃

Figure 4: Commutativity diagram with quotient mapΞ.

For the SGA withα-selection, crossover and mu-
tation the proportion of the expected next population
representing schema[i] = i ⊕Ωξ with i ∈ Ωξ is given
by (Neubauer, 2008a; Neubauer, 2008b)

ΞG(p) = Aξ ·Ξp . (7)

The 21Tξ ×21Tξ schema system matrix

(
Aξ

)
[i],[ j ]

=
(
Mξ

)
[i⊕b],[i⊕ j ]

(8)

with i, j ∈ Ωξ is defined with the help of the 21Tξ ×
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21Tξ schema mixing matrix

(
Mξ

)
[i],[ j ]

= ∑
u,v∈Ωξ

(Ξµ)[v] ·
(Ξχ)[u] +(Ξχ)[u]

2
·

[i ⊗u⊕u⊗ j = v] . (9)

The schema system matrixAξ can be obtained from
system matrixA and quotient mapΞ according to

Aξ =
21Tξ

n
·Ξ ·A ·ΞT . (10)

The schema heuristic functioñG is defined ac-
cording toG̃ (Ξp) = Aξ ·Ξp. Since the schema system
matrixAξ depends on theα-individualb the heuristic
functionG is not compatible with the equivalence re-
lation imposed by schemata in the strict sense. If the
α-individual b is lost or a better individual is sam-
pled from the search spaceΩ in the next generation
the schema system matrixAξ and the schema heuristic

functionG̃ change. Theα-individualb can be consid-
ered as an exogenous parameter to the coarse-grained
system model (see Fig. 5).

p̃ G̃ (p̃)G̃

b

Figure 5: Coarse-grained system model of the SGA with
α-selection depending on theα-individual b.

2.2.2 Schema Fixed Points

As for the dynamical system model and the corre-
sponding heuristic functionG , there exists a unique
fixed point of the schema heuristic functioñG which
can be calculated from the WALSH transformÂξ =
Wξ ·Aξ ·Wξ of the schema system matrixAξ. Here, the

21Tξ×21Tξ WALSH matrixWξ is defined overΩξ. The

WALSH transformÂξ of the schema system matrixAξ
is given by

(Âξ)[i],[ j ] = (M̂ξ)[i⊕ j ],[ j ] · (−1)bT(i⊕ j) (11)

with i, j ∈ Ωξ. Âξ is obtained fromÂ by choosing
rows and columns with indices inΩξ, i.e.

(Âξ)[i],[ j ] = Âi, j . (12)

Similar to the system matrixA it can be shown that
the WALSH transformÂξ of the schema system ma-
trix Aξ is a lower triangular matrix with an eigenvalue

λ[0] = (Âξ)[0],[0] = 1 leading to the unique schema
fixed point ω̃ = Aξ · ω̃ which is related to the fixed
point ω according toω̃ = Ξω. Taking into account
̂̃ω = Âξ ·

̂̃ω the WALSH transform of the schema fixed
point can be iteratively determined from

̂̃ω[i] =
1

1− Âi,i
· ∑

j∈Ωξ∩{0,1,...,i−1}

Âi, j · ̂̃ω[ j ] (13)

for i ∈ Ωξ starting with ̂̃ω[0] = 2−1Tξ/2. The schema

fixed pointω̃ = Wξ ·
̂̃ω is finally obtained via the in-

verse WALSH transform overΩξ.

3 SGA WITH GENERALISED
α⋆-SELECTION

Theα-selection scheme can be generalised by allow-
ing the β best individuals of the current population
instead of the single bestα-individual to mate with
other individuals randomly chosen from the current
population. Most of the theoretical results obtained
for α-selection with a singleα-individual are trans-
ferrable to the SGA with generalisedα⋆-selection.

The SGA with generalisedα⋆-selection is illus-
trated in Fig. 6. For thegeneralisedα⋆-selection
scheme theβ best individualsb0, b1, . . ., bβ−1 in
the current population are mated with individuals ran-
domly chosen from the current population. For the
creation of each offspring individual one of theβ best
individualsb0, b1, . . ., bβ−1 is chosen with uniform
probabilityβ−1 as the first parentb whereas the sec-
ond parentc is chosen uniformly at random from the
current population with probabilityr−1.

initialise population;
while end of iteration6= truedo

selectβ best individualsb0, b1, . . ., bβ−1;
for the creation ofr offspringdo

select first parentb from β
best individuals randomly;

select second parentc from
population randomly;

create offspringa = µΩ (χΩ (b,c));
end

end

Figure 6: SGA with generalisedα⋆-selection.
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3.1 Dynamical System Model

In this section, the dynamical system model, the cor-
responding heuristic function and its fixed points are
derived for the SGA with generalisedα⋆-selection.

3.1.1 Heuristic

In the generalisedα⋆-selection scheme, one of theβ
best individuals is selected from the set{bk}0≤k≤β−1

as the first parent with uniform probabilityβ−1

whereas the second parent is chosen uniformly at ran-
dom from the current population according to the
probability distribution Pr{individual j is selected}=
p j with j ∈ Ω. The heuristic functionG is given by

G (p)i =
β−1

∑
k=0

1
β

n−1

∑
j=0

p j ·Pr{µΩ (χΩ(bk, j)) = i} .

The mixing operation comprises crossoverχΩ and
mutationµΩ. With the help of the probability distri-
butions for crossover and mutation this leads to

Pr{µΩ (χΩ(bk, j)) = i}

= ∑
u∈Ω

µu ·Pr{χΩ(bk, j) = i ⊕u}

= ∑
u∈Ω

µu ∑
v∈Ω

χv + χv

2
· [bk⊗v⊕v⊗ j = i ⊕u]

= Mi⊕bk,i⊕ j

with n× n mixing matrix M according to (3). The
heuristic function is

G (p)i =
n−1

∑
j=0

p j ·
1
β

β−1

∑
k=0

Mi⊕bk,i⊕ j .

With then×n system matrix

Ai, j =
1
β

β−1

∑
k=0

Mi⊕bk,i⊕ j (14)

this leads to the linear system of equations for the ex-
pected next population vector

qi = G (p)i =
n−1

∑
j=0

Ai, j · p j (15)

or equivalently

q = G (p) = A ·p (16)

which corresponds to the heuristic function in (1) for
the SGA withα-selection. By making use of the per-
mutation matrixσb and the twistM∗ of the mixing
matrix the system matrixA can be expressed as

A =
1
β

β−1

∑
k=0

σbk ·M
∗ ·σbk . (17)

The corresponding dynamical system model is illus-
trated in Fig. 7.

p q

σb0 M∗ σb0

σb1 M∗ σb1

σbβ−1 M∗ σbβ−1

...
...

...

β−1

+ ×

Figure 7: Dynamical system model of the SGA with gener-
alisedα⋆-selection.

3.1.2 Fixed Points

Similar to the SGA withα-selection the fixed points
ω of the heuristic functionG are obtained from the
eigenvectors of the system matrixA to eigenvalue 1
due to the linear relationG (p) = A ·p for a given set
{bk}0≤k≤β−1 of β best individuals. Since the system

matrix A and its WALSH transformÂ have the same
eigenvalues with eigenvectors, which are also related
by the WALSH transform, the WALSH transform of
the system matrix

Âi, j = M̂i⊕ j , j ·
1
β

β−1

∑
k=0

(−1)bT
k (i⊕ j) (18)

is derived. The system matrixA as well as its WALSH

transformÂ depend on theβ best individuals.
The WALSH transformÂ is a lower triangular ma-

trix with eigenvaluesλi given by the diagonal ele-
mentsλi = Âi,i = M̂0,i leading to

λi =
(1−2µ)1Ti

2
· ∑

k∈Ωi

(χk + χk⊕i) . (19)

Because ofλ0 = 1 and 0≤ λi ≤ 1− 2µ for 1 ≤ i ≤
n−1 there exists a single eigenvectorω to eigenvalue
1 which is a fixed point of the heuristic functionω =

G (ω) = A · ω. Taking into account̂ω = Â · ω̂ with
lower triangular matrix̂A the WALSH transformω̂ of
the fixed point can be recursively calculated according
to (6). The fixed point is then obtained via the inverse
WALSH transformω = W · ω̂.

3.2 Schemata

In correspondence to the SGA withα-selection, the
schema heuristic function will be formulated for the
SGA with generalisedα⋆-selection in this section.

3.2.1 Schema Heuristic

The proportion of the expected next population repre-
senting schema[i] = i ⊕Ωξ with i ∈ Ωξ is given by

ΞG(p) = Aξ ·Ξp . (20)
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The 21Tξ ×21Tξ schema system matrixis defined by

(
Aξ

)
[i],[ j ]

=
1
β

β−1

∑
k=0

(
Mξ

)
[i⊕bk],[i⊕ j ]

(21)

with i, j ∈ Ωξ and the 21
Tξ ×21Tξ schema mixing ma-

trix Mξ defined in (9). As in (10), the schema system
matrix Aξ can be obtained from system matrixA and
quotient mapΞ.

The schema system matrixAξ and the schema

heuristic functionG̃ defined byG̃ (Ξp) = Aξ ·Ξp de-
pend on the set{bk}0≤k≤β−1 of β best individuals.
This set (or the set{[bk]}0≤k≤β−1 of their correspond-
ing equivalence classes) thus acts like an exogenous
parameter set to the coarse-grained system model, as
illustrated in Fig. 8.

p̃ G̃ (p̃)G̃

{bk}0≤k≤β−1

Figure 8: Coarse-grained system model of the SGA with
generalisedα⋆-selection.

3.2.2 Schema Fixed Points

For a given set{bk}0≤k≤β−1 of β best individuals
there exists a unique fixed point of the schema heuris-
tic functionG̃ which again can be calculated from the
WALSH transformÂξ of the schema system matrixAξ
which is given by

(Âξ)[i],[ j ] = (M̂ξ)[i⊕ j ],[ j ] ·
1
β

β−1

∑
k=0

(−1)bT
k (i⊕ j) (22)

with i, j ∈ Ωξ. As for the SGA withα-selection,Âξ

is obtained fromÂ by choosing rows and columns
with indices inΩξ according to (12). By exploiting

the lower triangularity of the WALSH transformÂξ of
the schema system matrixAξ and the existence of an

eigenvalueλ[0] = (Âξ)[0],[0] = 1 the schema fixed point
ω̃ = Aξ · ω̃ can be determined as in (13).ω̃ can also be
obtained from the fixed pointω according tõω = Ξω.

4 CONCLUSIONS

The dynamical system model describes the stochastic
dynamics of genetic algorithms with the help of the

deterministic heuristic functionG and its fixed points.
Since for practical problem sizes the calculation of
the fixed points is difficult the SGA withα-selection
has been introduced in (Neubauer, 2008a; Neubauer,
2008b). For a givenα-individualb the heuristic func-
tion G of the SGA withα-selection is defined by a
linear system of equations with system matrixA. The
unique fixed pointω can be calculated analytically
from the WALSH transformed system matrix̂A.

As is shown in this paper, the theoretical re-
sults obtained for the SGA withα-selection can be
transferred to the SGA with generalisedα⋆-selection.
In this selection scheme, theβ best individuals of
the current population instead of the single bestα-
individual mate with other individuals randomly cho-
sen from the current population. Generalisedα⋆-
selection withβ > 1 represents a weaker selection
scheme thanα-selection in the sense that not only the
best individualb is used as the first parent but theβ
best individualsb0, b1, . . ., bβ−1 are allowed to repro-
duce as the first parent. For a given set{bk}0≤k≤β−1
of β best individuals the heuristic functionG of the
SGA with generalisedα⋆-selection is also formulated
by a linear system of equations with a suitably re-
defined system matrixA. As for the SGA withα-
selection, the SGA with generalisedα⋆-selection al-
lows to explicitly determine a simple coarse-grained
system model for a schemata family defined by the
ℓ-tuple ξ. The corresponding RHS is defined by the
schema system matrixAξ with similar properties as
the system matrixA.
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