
A FRAMEWORK FOR MANAGING COMPONENTS USING
NON-FUNCTIONAL PROPERTIES∗

Jean-Michel Hufflen
LIFC (EA CNRS 4269), University of Franche-Comté, 16, route de Gray, 25030 Besançon Cedex, France

Keywords: Non-functional properties, Component-based approach, Component configuration,TACOSproject,XML .

Abstract: As part of a component-based approach, we propose a framework to group specifications of component hi-
erarchies, possibly including the specification of non-functional properties. We show how we are able to
choose a particular implementation of a component—or change an implementation to another—regarding
non-functional properties, and how we are able to express configurations of component-based architectures.
Our approach uses programs related toXML , and non-functional properties are managed by means of a termi-
nology originating from the metadata used by theDublin Core.

1 INTRODUCTION

It is known thatfunctionalrequirements specify what
a system is supposed to do whereasnon-functional
requirements express what a system is supposed to
be. Non-functional requirements include constraints
and quality factors (Sommerville, 2006, Ch. 2). Ex-
amples are time-constrained response or requested
services’ availability. Presently, there is no consen-
sus about classifying these properties, as reported in
(Glinz, 2007). In this article, we propose a framework
to handle some hierarchies of components, within a
component-based approach, suitable for systems with
high-safety requirements. By ‘some hierarchies’, we
mean thatseveralimplementations may be associated
with a component’s specification. The choice among
such implementations of a same specification can be
guided by considering non-functional properties. We
assume that preliminary steps of designing some ver-
sions about components and interactions among them
have already been done. We aim to assist designers
when they wish to compare different configurations of
the same service. For example, they can study what
is induced by the replacement of a component by an-
other one.

At first glance, our approach may be compared
with usingMakefiles, in order to build executable files
from source ones by means of themake command2.

∗This work is supported by the French agency for re-
search (TACOS ANR-06-SETI-017-03).

2See (Oram and Talbott, 1991) for more details.

But it is well-known that such files contain informa-
tion redundancy since dependences have to be put ex-
plicitly. As an example, such a specification is related
to files written using theC programming language:

f.o: f.c dep1.h ... depn.h

expresses that thef.o object file has to be rebuild
if a file belonging tof.c, dep1.h, . . . , depn.h is
newer than the presentf.o file, or if this last file does
not exist. But this information must be put even if it
is already expressed within files. Since we consider
source files written inC, the dependence of thef.o
file on thedep1.h file has probably been expressed
within thef.c source file by the macro-instruction:

#include "dep1.h"

In particular, that is why some additional programs—
e.g., automake (Vaughn et al., 2000) or (cmake,
2009)—have been developed to supply this informa-
tion from source files. The same drawback related to
information redundancy exists with the configuration
files used by theAnt program3: a target element in-
cludes adepends attribute, even if this information
can be deduced from source files.

Our configuration files useXML 4-like syntax. We
also use the terminology originating from (Dublin
Core Metadata Initiative, 2008) formetadatarelated
to non-functional properties. In addition, types qual-
ifying the possible values for non-functional proper-
ties can be specified by the rigorous approach ofXML

3See (Tilly and Burke, 2002) for more details.
4eXtensibleMarkupLanguage.

460
Hufflen J. (2009).
A FRAMEWORK FOR MANAGING COMPONENTS USING NON-FUNCTIONAL PROPERTIES.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 460-463
DOI: 10.5220/0002309104600463
Copyright c© SciTePress



Schema (W3C, 2008). We explain all these points in
§ 2. Then § 3 gives the different steps of the use of
our framework. § 4 discusses ourmodus operandi,
and § 5 sketches which ways are open. Reading this
article only requires basic knowledge ofXML .

2 BASIS

We consider a basic notion of component: a unit of
construction implementing some servicesvia inter-
faces. If a component is built from other subcom-
ponents, it is said to becomposite. Otherwise, it is
simple. Such a simple component can be specified by
the tacos:component element5 (several successive
tacos:implements elements are allowed):

<tacos:component id="id-0" path="path-to-id-0">
<tacos:implements ref="interface-0"

role="server" name="..."/>
<tacos:nonfunctional-properties>

<tacos:nf-property name="nfp:complexity"
as="nfp:performance"
value="linear"/>

<tacos:nf-property
name="nfp:reliability" as="nfp:specific"
check-up="http://tacos.loria.fr/..."/>

...
</tacos:nonfunctional-properties>

</tacos:component>

The id attribute is unique—of typexsd:ID—
whereaspath is used to localise the component. Then
non-functional properties are grouped. For each of
them, if thecheck-up attribute is present, its value
is a URI6 denoting a program that applies to what is
located atpath’s value and reports about this prop-
erty. For example, if thereliability is expressed as the
mean time between failures, it can be computed by a
tool and the result—thevalue attribute—is the type
xsd:decimal. Likewise, a non-functional property
related to efficiency can be reported by a tool running
the component with benchmarks. If a non-functional
property is supposed to be not checkable by means of
a program, thevalue attribute is to be supplied by
designers. Most non-functional properties are prede-
fined, they belong to the namespace identified by the
nfp prefix. A designer can add new properties by re-
fining our XML schema. Theas attribute is used to
group non-functional properties into several families:
it allows us to retrieve information concerning non-
functional properties belonging to a same class. A
composite component can be specified as follows:

5The prefix originates from theTACOSproject, cf. § 4.
6Uniform Resource Identifier (Network Working

Group, 2002).

<tacos:composite-component id="id-2"
path="...">

<tacos:implements .../>
<tacos:refers-to ref="id-0" nb="2"/>
<tacos:refers-to ref="id-1"/>
<tacos:nonfunctional-properties>...</...>

</tacos:composite-component>

There are three subcomponents of this last com-
ponent: two instances of theid-0 component (thenb
attribute gives the number of replications), and one
instance ofid-1 (nb defaults to1). Non-functional
properties specified for this composite component
hold for the whole of it, without reference to its sub-
components’ properties. The general layout is:

<tacos:components ... (Namespace definitions.)>
<tacos:general-metadata>
<dc:title>Example</dc:title>
<dc:creator>H., J.-M. (...)</dc:creator>
...

</tacos:general-metadata>
<tacos:component-specifications>
<tacos:component id="id-0">...</...>
<tacos:composite-component id="id-2">

...
</...>

</tacos:component-specifications>
</tacos:components>

The elements introducing metadata use the ba-
sic elements of the Dublin Core, prefixed bydc.
The specification of all the components is flatten,
in the sense that no component is defined inside
the specification of a composite component. A ref-
erence to another component is expressed by an
tacos:refers-to element, as shown above.

3 STEPS

Here are the five successive steps of our method.

1. This step is sketched at § 2, it just states the result
of the conception of a hierarchy of components.
This result is close has been shown, but without
the specification of non-functional properties.

2. Elements of non-functional properties are added
by designers, with accurate values associated with
thecheck-up or value attributes.

3. We consider all thetacos:nf-property ele-
ments of our configuration file. If thecheck-up
attribute is used, the corresponding program is
called, and the result is given as a new or updated
value attribute. So eachtacos:nf-property
element is given avalue attribute. In addition,
some metadata elements are computed, e.g., the
following element is put at the specification’s end
of theid-0 component:

A FRAMEWORK FOR MANAGING COMPONENTS USING NON-FUNCTIONAL PROPERTIES

461



<tacos:technical-metadata>
<dcterms:isReferencedBy>id-1</...>

</tacos:technical-metadata>

Thedcterms prefix is used for the elements be-
longing to theQualified Dublin Core: such ele-
ments refine the semantics of Dublin Core’s basic
elements. This step is performed by applying an
XSLT7 program (W3C, 2007c). The result is given
in a new configuration file, extending the original
one, and so-calledcomplete.

4. Several complete configuration files modelling hi-
erarchies can be merged into one, in order to share
the common parts—interfaces or components. In
addition, metadata about alternatives and refine-
ments are added, e.g., if another configuration file
contains another componentid-3, implementing
the same interface thanid-0, the technical meta-
data of the specification ofid-0 will include:

<dcterms:alternative>id-3</...>

an analogous information being added to the spec-
ification of id-3. This step is also performed by
applying anXSLT program.

5. Using a configuration file as a data base, we can
ask for information about components, including
non-functional properties. As a simple example,
the following fragment, written in theXQuery lan-
guage (W3C, 2007b), yields all the paths of the
components such that the non-functional proper-
ties classified asnfp:performance are ‘good’,
the result being anXML text.

<answers>{
for $component in

(doc("...")/tacos:components/
tacos:component-specifications/*)
return
if (some $nf-property in

$component/
tacos:nonfunctional-properties/
tacos:nf-property satisfies
$nf-property/@as eq
"nfp:performance" and
check-good($nf-property/@value))
then <a>{$component/@path}</a>
else ()

}
</answers>

We can also assembly components in order to
build complete software, using selection criteria
based on non-functional properties. If this opera-
tion succeeds, aversion nameis chosen and con-
cerned components’ metadata are updated:

<dcterms:isVersionOf>version-0</...>

7eXtensibleStylesheetLanguageTransformations.

this step being performed by anXSLT program.

6. We should be able to derive files usable bymake—
or Makefile.in files, used by theconfigure
program (Vaughn et al., 2000)—orAnt.

4 CRITICISM

This approach has been put into action as part of the
TACOS8 project, proposing a component-based ap-
proach suitable for land transportation systems. These
systems, which are both distributed and embedded,
require to express functional properties, as well as
non-functional ones. As a good example of our
method, there are several versions and variants of
the localisation component of a vehicle. These ver-
sions use the same basic components but the com-
posite components grouping them are organised dif-
ferently. There are much debate within the working
group about these versions. Our approach allows us to
make easier these comparisons, in particular regard-
ing non-functional properties. More precisely, Steps 1
to 5 have been implemented using theSaxon program
(Kay, 2008), providing anXQuery andXSLT proces-
sor; Step 6 is almost finished.

A close approach exists within theSCA framework
(Service Component Architecture, 2007), that pro-
vides a programming model for building applications
based on a service-oriented architecture.SCA also
uses files written usingXML -like syntax, and similar
notions exist: interfaces, simple and composite com-
ponents. But this approach is more restrictive: inter-
faces can beJava or WSDL9 interfaces. Likewise,SCA

allows a limited choice among several implementa-
tion types for a component’s implementation. The
most used isJava, but other languages, such asC++ or
C, are also allowed. That is, we are not wholly inde-
pendent of the language chosen, even if a wide variety
is available. Properties can be specified, and may be
deduced from programs’ texts, e.g., implementations
written in Java can use annotations. The main differ-
ence with our approach is that anSCA text describes
only one assembly; there is no way to specify alterna-
tives inSCA, no possible replacement of a component
by another. Some elements used withinSCA can be
viewed as metadata, but they are defined in anad hoc
way. Likewise,UniFrame (Raje et al., 2001) creates a
comprehensive framework that enables the discovery,
interoperability and collaboration of components via

8Trustworthy Assembling ofComponents: frOm re-
quirements toSpecification. See this project home page
http://tacos.loria.fr for more details.

9WebServicesDefinition Language (W3C, 2007a).

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

462



software generative techniques. Non-functional prop-
erties are handled asquality-of-service parameters,
SQL requests are used to query such a frame about
QoS parameters. The selection of alternative com-
ponenents is possible, too. Nevertheless, our notion
of composite component is more powerful, and the re-
lationships among components we model by means of
Dublin Core elements are more refined. In addition,
as far as we know,UniFrame does not provide tools to
perform the merge of several hierarchies sharing com-
mon components. On the contrary, we do not provide
the automatic generation of glues and wrappers, as
UniFrame does, but as part of theTACOS project, that
can be done by means ofFractal, a modular and ex-
tensible component model that can be used with var-
ious programming languages to design, implement,
deploy and reconfigure various systems and applica-
tions (Bruneton et al., 2004).

5 FURTHER WORK

Many tools are used withinTACOS project, e.g.,Frac-
tal. It does not consider non-functional properties,
but handlesXML configuration files. We succeeded
in getting suchXML files, transforming them, and
adding specification of non-functional properties. So
we can reuse the conception done by aFractal user.
An advantage of using elements originating from
Dublin Core: we plan to use some tools related to
the Semantic Web. This idea is promising: as part
of studying services, this connection with the Seman-
tic Web has already been proposed in (Gerede et al.,
2008). Such metadata are also used within theWeb
Services Semantics(W3C, 2005; WSMO, 2006).

6 CONCLUSIONS

We have wanted to show that we follow a rigorous ap-
proach, with the advantages and drawbacks of a gen-
eral one, without any hypothesis about languages and
paradigms used. Such an approach requires the de-
velopment of many additional tools, in particular, to
deal with non-functional properties. But the applica-
tion fields of such a framework is potentially high. Of
course, we need more case studies to experiment our
approach, but we are optimist because of the first re-
sults we got fromFractal configuration files.

REFERENCES

Bruneton, É., Coupaye, Th., and Stefani, J.-
B. (2004). The Fractal Component Model.
http://fractal.objectweb.org/specification/index.html.

cmake (2009).CMake. http://www.cmake.org/.

Dublin Core Metadata Initiative (2008).Dublin Core Meta-
data Initiative. http://dublincore.org.

Gerede, C. E., Ibarra, O. H., Ravikumar, B., and Su, J.
(2008). Minimum-cost delegation in service composi-
tion. Theoretical Computer Science, 409(3):417–431.

Glinz, M. (2007). On non-functional requirements. InProc.
RE 07, New-Delhi, India.

Kay, M. H. (2008). Saxon. TheXSLT andXQuery Proces-
sor. http://saxon.sourceforge.net.

Network Working Group (2002). Uniform Resource
Identifiers (URIs), URNs, and Uniform Resource
Names (URNs): Clarifications and Recommenda-
tions. http://www.ietf.org/rfc/rfc3305.txt. Edited by
M. Mealling and R. Denenberg.

Oram, A. and Talbott, S. (1991).Managing Projects with
make. O’Reilly & Associates, Inc., 2 edition.

Raje, R., Bryant, B., Auguston, M., Olson, A., and Burt,
C. (2001). A unified approach for integration of dis-
tributed heterogeneous software components. InProc.
of the 2001 Monterey Workshop Engineering Automa-
tion for Software Intensive System Integration, pages
109–119.

Service Component Architecture (2007). Assembly
Model Speficiation. http://www.osoa.org/download/
attachments/35/SCAAssemblyModelV100.pdf?ver-
sion=1.

Sommerville, I. (2006).Software Engineering. Addison-
Wesley, 8 edition.

Tilly, J. and Burke, E. M. (2002). Ant: the Definitive
Guide. O’Reilly & Associates, Inc.

Vaughn, G. V., Ellison, B., Tromey, T., and Taylor, I. L.
(2000).GNU Autoconf, Automake, and Libtool. Sams.

W3C (2005). HyperText Markup Language Home Page.
http://www.w3.org/MarkUp/.

W3C (2007a). Web Services Description Working Group.
http://www.w3.org/2002/ws/desc/.

W3C (2007b). XQuery 1.0: an XML Query Language.
http://www.w3.org/TR/xquery. W3C Recommenda-
tion. Edited by Scott Boag, Don Chamberlin, Mary
F. Fernández, Daniela Florescu, Jonathan Robie and
Jérôme Siméon.

W3C (2007c). XSL Transformations (XSLT). Ver-
sion 2.0. http://www.w3.org/TR/2007/WD-xslt20-
20070123. W3C Recommendation. Edited by
Michael H. Kay.

W3C (2008). XML Schema. http://www.w3.org/XML/
Schema.

WSMO (2006). Web Service Modelling Ontology.
http://www.wsmo.org/TR/d2/v1.3/. Edited by Du-
mitru Roman, Holger Lausen, and Uwe Keller.

A FRAMEWORK FOR MANAGING COMPONENTS USING NON-FUNCTIONAL PROPERTIES

463


