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Abstract: In order to combine multiple data partitions into a more robust data partition, several approaches to produce
the cluster ensemble and various consensus functions have been proposed. This range of possibilities in the
multiple data partitions combination raises a new problem: which of the existing approaches, to produce the
cluster ensembles’ data partitions and to combine these partitions, best fits a given data set. In this paper, we
address the cluster ensemble selection problem. We proposed a new measure to select the best consensus data
partition, among a variety of consensus partitions, based on a notion of average cluster consistency between
each data partition that belongs to the cluster ensemble and a given consensus partition. We compared the
proposed measure with other measures for cluster ensemble selection, using 9 different data sets, and the
experimental results shown that the consensus partitions selected by our approach usually were of better quality
in comparison with the consensus partitions selected by other measures used in our experiments.

1 INTRODUCTION

Data clustering goal consists of partitioning a data set
into clusters, based on a concept of similarity between
data, so that, similar data patterns are grouped to-
gether and unlike patterns are separated into different
clusters. Several clustering algorithms have been pro-
posed in the literature but none can discover all kinds
of cluster structures and shapes.

In order to improve data clustering robustness and
quality (Fred, 2001), reuse clustering solutions (Strehl
and Ghosh, 2003) and cluster data in a distributed
way, various cluster ensemble approaches have been
proposed based on the idea of combining multiple
data clustering results into a more robust and better
quality consensus partition. The principal proposals
to solve the cluster ensemble problem are based on:
co-associations between pairs of patterns (Fred and
Jain, 2005; Duarte et al., 2006), mapping the cluster
ensemble into graph (Fern and Brodley, 2004), hyper-
graph (Strehl and Ghosh, 2003) or mixture model
(Topchy et al., 2004b) formulations, and searching for
a median partition that summarizes the cluster ensem-
ble (Jouve and Nicoloyannis, 2003).

A cluster ensemble can be built by using different
clustering algorithms (Duarte et al., 2006), using dis-
tinct parameters and/or initializations to the same al-
gorithm (Fred and Jain, 2005), sampling the original
data set (Topchy et al., 2004a) and using different fea-
ture sets to produce each individual partition (Topchy
et al., 2003).

One can also apply different consensus functions
to the same cluster ensemble. These variations in the
cluster ensemble problem leads to a question: “Which
cluster ensemble construction method and which con-
sensus function should one select for a given data
set?”. This paper addresses the implicit problem in
the previous question by selecting the best consensus
partition based on the concept of average cluster con-
sistency between the consensus partition and the re-
spective cluster ensemble.

The rest of this paper is organized as follows. In
section 2, the cluster ensemble problem formulation
(subsection 2.1), background work about cluster en-
semble selection (subsection 2.2) and the clustering
combination methods used in our experiments (sub-
section 2.3) are presented. Section 3 presents a new
approach for cluster ensemble selection, based on the

85
Jorge F. Duarte F., M. M. Duarte J., Fátima C. Rodrigues M. and L. N. Fred A. (2009).
CLUSTER ENSEMBLE SELECTION - Using Average Cluster Consistency.
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, pages 85-95
DOI: 10.5220/0002308500850095
Copyright c© SciTePress



notion of average cluster consistency. The experi-
mental setup used to assess the performance of our
proposal is described in section 4 and the respective
results are presented in section 5. Finally, the conclu-
sions appear in section 6.

2 BACKGROUND

2.1 Cluster Ensemble Formulation

Let X = {x1, · · · ,xn} be a set of n data patterns and let
P = {C1, · · · ,CK} be a partition of X into K clusters.
A cluster ensemble P is defined as a set of N data
partitions Pl of X :

P = {P1, · · · ,PN},Pl = {Cl
1, · · · ,Cl

Kl}, (1)

where Cl
k is the kth cluster in data partition Pl ,

which contains Kl clusters, and ∑
Kl

k=1 |Cl
k| = n,

∀l ∈ {1, · · · ,N}.
There are two fundamental phases in combin-

ing multiple data partitions: the partition generation
mechanism and the consensus function, that is, the
method that combines the N data partitions in P . As
introduced before, there are several ways to generate
a cluster ensemble P , such as, producing partitions of
X using different clustering algorithms, changing pa-
rameters and/or initializations for the same clustering
algorithm, using different subsets of data features or
patterns, projecting X to subspaces and combinations
of these. A consensus function f maps a cluster en-
semble P into a consensus partition P∗, f : P → P∗,
such that P∗ should be robust and consistent with P ,
i.e., the consensus partition should not change (signif-
icantly) when small variations are introduced in the
cluster ensemble and the consensus partition should
reveal the underlying structure of P .

2.2 Cluster Ensemble Selection

As previously referred, the combination of multiple
data partitions can be carried out in various ways,
which may lead to very different consensus partitions.
This diversity causes the problem of picking the best
consensus data partition from all the produced ones.

In (Hadjitodorov et al., 2006) work, a study was
conducted on the diversity of the cluster ensemble and
its relation to the consensus partition quality. Four
measures were defined in order to assess the diver-
sity of a cluster ensemble, by comparing each data
partition Pl ∈ P with the final data partition P∗. The
adjusted Rand index (Hubert and Arabie, 1985) was
used to assess the agreement between pairs of data

clusterings (Rand(Pl ,P∗) ∈ [0,1]). Values close to 1
means that the clusterings are similar.

The first measure, Div1(P∗,P ), is defined as the
average diversity between each clustering Pl ∈ P and
the consensus partition P∗. The diversity between Pl

and P∗ is defined as 1−Rand(Pl ,P∗). Formally, the
average diversity between P∗ and P is defined as:

Div1(P∗,P ) =
1
N

N

∑
l=1

1−Rand(Pl ,P∗). (2)

Previous work (Kuncheva and Hadjitodorov, 2004)
showed that the cluster ensembles that exhibit higher
individual variation of diversity generally obtained
better consensus partitions.

The second measure, Div2(P∗,P ), is based in this
idea and is defined as the standard deviation of cluster
ensemble individual diversity:

Div2(P∗,P ) =

√√√√ 1
N−1

N

∑
l=1

(
1−Rand

(
Pl ,P∗

)
−Div1

)2
,

(3)
where Div1 is Div1(P∗,P ).

The third diversity measure, Div3(P∗,P ) is based
on the intuition that the consensus partition, P∗, is
similar to the real structure of the data set. So, if the
clusterings Pl ∈ P are similar to P∗, i.e., 1−Div1 is
close to 1, P∗ is expected to be a high quality con-
sensus partition. Nevertheless, as it is assumed that
cluster ensembles with high individual diversity vari-
ance are likely to produce good consensus partitions,
the third measure also includes a component associ-
ated to Div2(P∗,P ). It is formally defined as:

Div3(P∗,P ) =
1
2
(1−Div1 +Div2), (4)

where Div2 corresponds to Div2(P∗,P ).
The forth measure, Div4(P∗,P ), simply consists

of a ratio between the standard deviation of the clus-
ter ensemble individual diversity and the average di-
versity between P∗ and P , as shown in equation 5.

Div4(P∗,P ) =
Div2(P∗,P )
Div1(P∗,P )

(5)

The four previously referred measures were com-
pared in (Hadjitodorov et al., 2006) and the au-
thors concluded that only Div1(P∗,P ) and, specially,
Div3(P∗,P ) measures shown some correlation with
the quality of the consensus partition. Despite that,
in some data sets the quality of the final data parti-
tions increased as Div1(P∗,P ) and Div3(P∗,P ) also
increased, in several other data sets it did not oc-
curred. The authors recommended that one should
select the cluster ensembles with the median values
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of Div1(P∗,P ) or Div3(P∗,P ) to choose a good con-
sensus partition.

In other work (Strehl and Ghosh, 2003), the best
consensus partition PB is thought as the consen-
sus partition P∗ that maximizes the Normalized Mu-
tual Information (NMI) between each data partition
Pl ∈ P and P∗, i.e., PB = argmaxP∗∑

N
l NMI(P∗,Pl).

NMI(P∗,Pl) is defined as:

NMI(P∗,Pl) =
MI(P∗,Pl)√
H(P∗)H(Pl))

, (6)

where MI(P∗,Pl) is the mutual information between
P∗ and Pl (eq. 7) and H(P) is the entropy of P (eq. 8).
The mutual information between two data partitions,
P∗ and Pl , is defined as:

MI(P∗,Pl) =
K∗

∑
i

Kl

∑
j

Prob(i, j)
Prob(i)Prob( j)

, (7)

with Prob(k) = nk
n , where nk is the number of patterns

in the kth cluster of P, and Prob(i, j) = 1
n |C
∗
i ∩Cl

j|.
The entropy of a data partition P is given by:

H(P) =−
K

∑
k=1

Prob(k) logProb(k). (8)

Therefore, the Average Normalized Mutual Infor-
mation (ANMI(P∗,P )) between the cluster ensemble
and a consensus partition, defined in eq. 9, can be
used to select the best consensus partition. Higher
values of ANMI(P∗,P ) suggest better quality consen-
sus partitions.

ANMI(P∗,P ) =
1
N

N

∑
l=1

NMI(P∗,Pl). (9)

2.3 WEACS

The Weighted Evidence Accumulation Clustering us-
ing Subsampling (WEACS) (Duarte et al., 2006) ap-
proach is an extension to Evidence Accumulation
Clustering (EAC) (Fred, 2001). EAC considers each
data partition Pl ∈ P as an independent evidence
of data organization. The underlying assumption of
EAC is that two patterns belonging to the same nat-
ural cluster will be frequently grouped together. A
vote is given to a pair of patterns every time they co-
occur in the same cluster. Pairwise votes are stored in
a n× n co-association matrix and are normalized by
the total number of combining data partitions:

co associ j =
∑

N
l=1 votel

i j

N
, (10)

where votel
i j = 1 if xi and x j belong to the same clus-

ter Cl
k in the data partition Pl , otherwise votel

i j = 0. In

order to produce the consensus partition, one can ap-
ply any clustering algorithm over the co-association
matrix co assoc.

WEACS extends EAC by weighting each pattern
pairwise vote based on the quality of each data par-
tition Pl and by using subsampling in the construc-
tion of the cluster ensemble. The idea consists of per-
turbing the data set and assigning higher relevance to
better data partitions in order to produce better com-
bination results. To weight each votel

i j in a weighted
co-association matrix, w co assoc, one or several in-
ternal clustering validity indices are used to measure
the quality of each data partition Pl , and the corre-
sponding normalized index value, IV l , corresponds to
the weight factor. Note that the internal validity in-
dices assess the clustering results in terms of quan-
tities that involve only the features of the data set,
so no a priori information is provided. Formally,
w co assoc is defined as

w co associ j =
∑

N
l=1 IV l× votel

i j

Si j
, (11)

where S is a n×n matrix with Si j equal to the number
of data partitions where both xi and x j are simultane-
ously selected to belong to the same data subsample.

There are two versions of WEACS that corre-
spond to two different ways for computing the weight
factor IV l . The first one, Single WEACS (SWEACS),
uses the result of only one clustering validity index to
assess the quality of Pl , i.e., IV l = norm validity(Pl),
where norm validity(·) corresponds to a normalized
validity index function that returns a value in the
interval [0,1]. Higher values correspond to bet-
ter data partitions. In the second version, Joint
WEACS (JWEACS), IV l is defined as the average of
the output values of NumInd normalized validity in-
dex functions, norm validitym(·), applied to Pl , i.e.,
IV l = ∑

NumInd
m=1 norm validitym(Pl).

We used the following 10 internal clustering valid-
ity indices: Normalized Hubert Statistic (NormHub)
(Hubert and Schultz, 1975), Dunn index (Dunn,
1974), Davies-Bouldin index (DB) (Davies and
Bouldin, 1979), SD validity index (Halkidi et al.,
2001), the S Dbw validity index (Halkidi et al., 2001),
Caliski & Harabasz cluster validity index (Calin-
ski, 1974), Silhouette statistic (S) (Kaufman and
Roussesseeuw, 1990), index I (Maulik and Bandy-
opadhyay, 2002), XB cluster validity index (Xie and
Beni, 1991), and the Point-Symmetry index (PS)
(Chou et al., 2004).

NormHub and S indices are intrinsically normal-
ized in the interval [−1,1] but only index values be-
tween 0 and 1 are considered to weight data pairwise
votes. In our experiments, for these two indices, we
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set all negative index values to 0. For some of the re-
maining indices, higher values implies better data par-
titions while for the others lower values corresponds
to the better data partitions. For this reason, for the
indices of the first type, the normalized index value is
defined as

norm validity(Pl) =
index(Pl)

max1≤m≤N index(Pm)
, (12)

where index(Pm) is the index value for a partition in
the cluster ensemble Pm ∈ P and index(Pm) is always
non-negative. For the indices of the second type, the
normalized index value is obtained by

norm validity(Pl) =
min1≤m≤N index(Pm)

index(Pl)
. (13)

In the WEACS approach, one can use differ-
ent cluster ensemble construction methods, different
clustering algorithms to obtain the consensus par-
tition, and, particularly in the SWEACS version,
one can even use different cluster validity indices
to weight pattern pairwise votes. These constitute
variations of the approach, taking each of the pos-
sible modifications as a configuration parameter of
the method. As shown in section 4, although the
WEACS leads in general to good results, no individ-
ual tested configuration led consistently to the best re-
sult in all data sets. We used a complementary step to
the WEACS approach which consists of combining
all the final data partitions obtained in the WEACS ap-
proach within a cluster ensemble construction method
using EAC. The interested reader is encouraged to
read (Duarte et al., 2006) for a detailed description
of WEACS.

3 AVERAGE CLUSTER
CONSISTENCY (ACC)

The idea behind Average Cluster Consistency (ACC)
measure is that if the similarity between the multiple
data partitions in the cluster ensemble and the consen-
sus partition is high, the quality of the consensus par-
tition will also be high. Some clustering combination
methods, such as the EAC and WEACS methods pre-
sented in subsection 2.3, usually produce better qual-
ity consensus data partitions when combining data
partitions with more clusters than the expected real
number of clusters K0. This difference in the number
of clusters usually leads to low similarity scores when
comparing two data partitions. For this reason, a new
concept for comparing data partitions was defined. In
this new similarity measure between two data parti-
tions, Pl and P0 with Kl >> K0, if each of the Kl

clusters Cl
k ∈ Pl is a subset of a cluster C0

m ∈ P0, i.e.
Cl

k j C0
m,then the partitions Pl and P0 have the max-

imum degree of similarity. If the data patterns be-
longing to each cluster in Pl are split into different
clusters in P0, the data partitions Pl and P0 are dis-
similar. Figure 1 shows an example of the previously
described situations. The figure includes two consen-
sus partitions (one in figure 1 (a) and another in fig-
ure 1 (b)) each with K0 = 2 clusters (shaded areas).
Inside each consensus partition’s clusters, there are
several patterns represented by numbers, which indi-
cate the cluster labels assigned to the data patterns in
a partition Pl belonging to the cluster ensemble. Note
that the number of clusters of the partition Pl is higher
than the number of clusters of the consensus partition
P0 (Kl >> K0). On the left figure, a perfect similar-
ity between P0 and Pl is presented as all data patters
of each cluster Cl

k belong to the same cluster in P0.
On the right figure, two dissimilar partitions are pre-
sented as the data patterns belonging to clusters 1, 5
and 7 in Pl are divided in the two clusters of P0.

(a) similar partitions (b) dissimilar partitions

Figure 1: Example of Average Cluster Consistency motiva-
tion.

Our similarity measure between two partitions, P∗

and Pl , is then defined as

sim(P∗,Pl) =
∑

Kl

m=1 max
1≤k≤K∗

|Interskm|(1−
|C∗k |

n )

n
,

(14)
where Kl ≥ K∗, |Interskm| is the cardinality of the
set of patterns common to the kth and mth clusters
of P∗ and Pl , respectively (Interskm = {xa|xa ∈ C∗k∧
xa ∈Cl

m). Note that in Eq. 14, |Interskm| is weighted
by (1− |C

∗
k |

n ) in order to prevent cases where P∗ has
clusters with almost all data patterns and would ob-
tain a high value of similarity.

The Average Cluster Consistency measures the
average similarity between each data partition in the
cluster ensemble (Pl ∈ P ) and a target consensus par-
tition P∗, using the previously explained notion of
similarity. It is formally defined by

ACC(P∗,P ) = ∑
N
i=1 sim(Pi,P∗)

N
. (15)
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From a set of possible choices, the best consensus par-
tition is the one that achieves the highest ACC(P∗,P )
value. Note that by the fact of using subsampling, the
ACC measure only uses the data patterns of the con-
sensus partition P∗ that appear in the combining data
partition Pl ∈ P .

At the first glance, this measure may seem to con-
tradict the observations by (Hadjitodorov et al., 2006)
and (Kuncheva and Hadjitodorov, 2004) which point
out that the clustering quality is improved with the in-
crease of diversity in the cluster ensemble. However,
imagine that each data partition belonging to a cluster
ensemble is obtained by random guess. The resulting
cluster ensemble is very diverse but does not provide
useful information about the structure of the data set,
so, it is expected to produce a low quality consensus
partition. For this reason, one should distinguish the
“good” diversity from the “bad” diversity. Our defi-
nition of similarity between data partitions (Eq. 14)
considers that two apparently different data partitions
(for instance, partitions with different number of clus-
ters) may be similar if they have a common structure,
as shown in the figure 1 (a) example, and the outcome
is the selection of cluster ensembles with “good” di-
versity rather than the ones with “bad” diversity.

4 EXPERIMENTAL SETUP

We used 4 synthetic and 5 real data sets to assess the
quality of the cluster ensemble methods on a wide va-
riety of situations, such as data sets with different car-
dinality and dimensionality, arbitrary shaped clusters,
well separated and touching clusters and distinct clus-
ter densities. A brief description for each data set is
given below.

(a) Bars (b) Cigar (c) Spiral (d) Half Rings

Figure 2: Synthetic data sets.

Synthetic Data Sets. Fig. 2 presents the 2-
dimensional synthetic data sets used in our experi-
ments. Bars data set is composed by two clusters very
close together, each with 200 patterns, with increas-
ingly density from left to right. Cigar data set con-
sists of four clusters, two of them having 100 patterns
each and the other two groups 25 patterns each. Spiral
data set contains two spiral shaped clusters with 100
data patterns each. Half Rings data set is composed
by three clusters, two of them have 150 patterns and
the third one 200.

Real Data Sets. The 5 real data sets used in
our experiments are available at UCI repository
(http://mlearn.ics.uci.edu/MLRepository.html). The
first one is Iris and consists of 50 patterns from each
of three species of Iris flowers (setosa, virginica and
versicolor) characterized by four features. One of the
clusters is well separated from the other two overlap-
ping clusters. Breast Cancer data set is composed
of 683 data patterns characterized by nine features
and divided into two clusters: benign and malignant.
Yeast Cell data set consists of 384 patterns described
by 17 attributes, split into five clusters concerning five
phases of the cell cycle. There are two versions of
this dataset, the first one is called Log Yeast and uses
the logarithm of the expression level and the other is
called Std Yeast and is a “standardized” version of
the same data set, with mean 0 and variance 1. Fi-
nally, Optdigits is a subset of Handwritten Digits data
set containing only the first 100 objects of each digit,
from a total of 3823 data patterns characterized by 64
attributes.

In order to produce the cluster ensembles, we
applied the Single-Link (SL) (Sneath and Sokal,
1973), Average-Link (AL) (Sneath and Sokal, 1973),
Complete-Link (CL) (King, 1973), K-means (KM)
(Macqueen, 1967), CLARANS (CLR) (Ng and Han,
2002), Chameleon (CHM) (Karypis et al., 1999),
CLIQUE (Agrawal et al., 1998), CURE (Guha et al.,
1998), DBSCAN (Ester et al., 1996) and STING
(Wang et al., 1997) clustering algorithms to each data
set to generate 50 cluster ensembles for each cluster-
ing algorithm. Each cluster ensemble has 100 data
partitions with the number of clusters, K, randomly
chosen in the set K ∈ {10, · · · ,30}.

After all cluster ensembles have been produced,
we applied the EAC, SWEACS and JWEACS ap-
proaches using the KM, SL, AL and Ward-Link (WR)
(Ward, 1963) clustering algorithms to produce the
consensus partitions. The number of clusters of the
combined data partitions were set to be the real num-
ber of clusters of each data set. We also defined other
two cluster ensembles: ALL5 and ALL10. The clus-
ter ensemble referred as ALL5 is composed by the
data partitions of SL, AL, CL, KM and CLR algo-
rithms (N = 500) and the cluster ensemble ALL10 is
composed by the data partitions produced by all data
clustering algorithms (N = 1000).

To evaluate the quality of the consensus partitions
we used the Consistency index (Ci) (Fred, 2001).
Ci measures the fraction of shared data patterns in
matching clusters of the consensus partition (P∗) and
of the real data partition (P0). Formally, the Consis-
tency index is defined as
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Ci(P∗,P0) =
1
n

min{K∗,K0}

∑
k=1

|C∗k ∩C0
k | (16)

where |C∗k ∩C0
k | is the cardinality of the P∗ and P0 kth

matching clusters data patterns intersection.
As an example, table 1 shows the results of the

cluster combination approaches for the Optdigits data
set, averaged over the 50 runs. In this table, rows
are grouped by cluster ensemble construction method.
Inside each cluster ensemble construction method ap-
pears the 4 clustering algorithms used to extract the fi-
nal data partition (KM, SL, CL and WR). The last col-
umn (C. Step) shows the results of the complementary
step of WEACS. As it can be seen, the results vary
from a very poor result obtained by SWEACS, com-
bining data partitions produced by SL algorithm and
using the K-means algorithm to extract the consensus
partitions (10% of accuracy), to good results obtained
by all clustering combination approaches, when com-
bining data partitions produced by CHM and using
the WR algorithm to extract the consensus partition.
For this configuration, EAC achieved 87.54% of ac-
curacy, JWEAC 87.74%, SWEAC 87.91% using PS
validity index to weight each vote in w co assoc, and
88.03% using the complementary step. Due to space
restrictions and by the fact that not being the main
topic of this paper, we do not present the results for
the others data sets used in our experiments.

Table 2 shows the average and best Ci(P∗,P0) per-
centage values obtained by each clustering combina-
tion method for each data set. We present this table
to remark that the average quality of the consensus
partitions produced by each clustering combination
method is substantially different from the best ones.
As an example, SWEACS approach achieved 90.89%
as the best result for Std Yeast data set while the aver-
age accuracy was only of 54.00%.

The results presented in the tables 1 and 2 show
that different cluster ensemble construction methods
and consensus functions can produce consensus par-
titions with very different quality. This reason em-
phasizes the importance of selecting the best consen-
sus partition from a variety of possible consensus data
partitions.

5 RESULTS

In order to assess the quality of Average Cluster Con-
sistency (ACC) measure (Eq. 15), we compared its
performance against three others measures: the Av-
erage Normalized Mutual Information (ANMI) mea-
sure (Eq. 9), the Div1 measure (Eq. 2) and the Div3
measure (Eq. 4). For each data set, the four measures

were calculated for each consensus clustering pro-
duced by the clustering combination methods. These
values were ploted (figures 3-11) against the respec-
tive clustering quality values of each consensus par-
tition (Ci(P∗,P0)). Dots represent the consensus par-
titions, their positions in the horizontal axis represent
the obtained values for the cluster ensemble selection
measures and the corresponding positions in the ver-
tical axis indicate the Ci values. The lines shown in
the plots were obtained by polynomial interpolation
of degree 2.

Figure 3 present the results obtained by the cluster
ensemble selection measures for Bars data set. Div1
values decrease with the increment of the quality of
the consensus partitions, while the values of Div3 in-
crease as the quality of the consensus partitions is
improved. However, the correlations between Div1
with Ci and Div3 with Ci are not clearly evident. In
the ANMI and ACC plots, one can easily see that as
the values of this measures increase the quality of the
consensus partitions are improved.

The results achieved for Breast Cancer data set are
shown in figure 4. It can be seen that Div1 and Div3
measures are not correlated with the quality (Ci val-
ues) of the consensus partitions. However, in ANMI
and ACC cluster ensemble selection measures there
is a tendency of quality improvement as the values of
these measures augment.

In the results obtained for Cigar data set, all the
four measures shown some correlation with the Con-
sistency index values (figure 5). For Div1 measure,
the quality of the consensus partitions are improved as
Div1 values decreases. For the remaining measures,
the increasing of their values are followed by the im-
provement of the consensus partitions. Note that the
dispersion of the points in Div1 and Div3 plots are
clearly higher than the dispersion presented in ANMI
and ACC plots, showing that the correlations with Ci
of the latter two measures are much stronger.

Figures 6 and 7 present the plots obtained for
the selection of the best consensus partition for Half
Rings and Iris data sets. The behavior of the measures
are similar in both data sets and they are all correlated
with the quality of the consensus partition. Again, one
can see that as the values of Div3, ANMI and ACC
measures increase, the quality of the consensus par-
tition is improved, while there is an inverse tendency
for Div1 measure. In both data sets, the ACC measure
is the one that better correlates its values with Ci as it
is the one with the lowest dispersion of the points in
the plot.

The results for the Log Yeast data set are presented
in figure 8. The Div1 and Div3 measures show no cor-
relations with the quality of the consensus partitions.
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Table 1: Average Ci(P∗,P0) percentage values obtained by EAC, JWEACS and SWEACS for Optdigits data set.
CE Ext. Alg. EAC JWEAC HubN Dunn S Dbw CH S I XB DB SD PS C. Step

SL

KM 39.75 34.47 36.89 36.66 38.14 35.29 10.00 39.16 38.03 33.84 42.09 33.55 34.19
SL 10.60 10.60 10.60 10.60 10.60 10.60 10.10 10.60 10.60 10.60 10.60 10.60 11.19
AL 10.60 10.60 10.60 10.60 10.60 10.60 10.10 10.60 10.60 10.60 10.60 10.60 20.21
WR 40.31 40.31 40.53 40.30 40.40 40.31 10.10 40.30 40.31 40.40 40.49 40.31 44.28

AL

KM 70.33 69.84 71.09 68.83 70.40 71.47 70.42 72.19 69.59 67.68 69.49 68.83 73.93
SL 60.14 60.21 60.14 60.14 51.48 60.37 60.14 60.37 60.14 60.14 60.14 60.14 67.65
AL 67.29 67.28 67.29 67.29 67.29 67.30 67.29 69.42 67.28 67.29 67.29 67.29 67.28
WR 82.10 82.06 82.10 82.10 83.57 84.31 82.10 84.31 82.10 82.10 82.10 82.09 84.32

CL

KM 62.77 62.39 64.20 63.05 62.28 64.97 64.82 66.30 62.97 63.78 68.95 62.92 64.25
SL 53.76 52.54 53.80 53.80 53.80 58.45 58.57 58.25 52.72 53.80 52.47 52.52 58.15
AL 69.28 70.97 70.94 70.94 69.28 70.89 71.21 63.50 69.28 70.94 70.94 70.94 70.53
WR 76.27 76.34 76.35 76.27 76.27 71.16 76.35 71.14 76.34 76.26 76.35 76.35 71.25

KM

KM 68.77 69.43 72.56 69.97 73.75 73.43 69.52 70.94 69.57 69.29 71.81 74.39 67.86
SL 30.59 30.60 30.21 30.60 30.78 30.21 30.78 30.69 30.78 30.60 30.60 30.60 59.50
AL 79.78 79.43 79.42 79.51 79.32 77.49 79.41 77.54 79.41 79.78 79.41 79.60 79.35
WR 79.51 79.67 79.49 79.85 79.71 77.11 78.85 77.00 78.74 78.97 78.87 79.75 78.05

CLARANS

KM 63.96 63.61 65.60 65.24 65.39 67.14 64.58 65.13 62.32 65.69 62.28 65.38 62.81
SL 20.31 20.11 20.31 20.51 20.51 19.81 20.31 19.81 20.40 20.31 20.31 20.31 42.67
AL 82.73 82.37 82.24 82.78 82.48 75.53 81.11 75.32 82.60 82.21 82.85 79.34 76.15
WR 78.85 78.66 79.27 79.25 77.54 78.58 79.37 78.81 79.06 78.86 77.12 79.27 77.37

ALL5

KM 71.49 69.85 69.52 69.93 69.43 71.31 69.67 70.70 75.98 70.57 69.11 67.77 64.77
SL 39.50 30.30 49.24 30.30 20.81 40.40 49.83 40.39 30.39 20.60 30.30 30.30 51.23
AL 65.57 65.22 73.21 51.24 30.50 71.14 80.44 65.62 60.11 30.41 30.60 30.79 65.32
WR 80.86 80.88 80.51 80.89 80.76 80.95 80.54 80.98 80.53 80.31 80.69 80.51 80.85

CHM

KM 71.97 72.12 73.11 71.40 73.74 72.17 72.69 72.77 73.20 70.48 72.26 73.10 68.74
SL 62.44 62.24 62.06 62.43 62.62 62.63 62.63 61.66 62.61 62.44 62.24 62.24 78.34
AL 87.14 86.88 86.53 87.28 86.46 87.28 87.31 86.76 86.26 86.75 86.82 86.50 84.78
WR 87.54 87.74 87.61 87.51 87.53 87.78 87.52 87.72 87.56 87.68 87.76 87.91 88.03

CLIQUE

KM 59.41 60.29 61.33 59.84 59.95 60.69 63.27 61.28 61.90 60.50 60.41 60.30 64.19
SL 10.50 10.47 10.50 10.48 10.48 10.50 10.47 10.49 10.50 10.48 10.48 10.50 18.76
AL 61.03 63.30 64.89 62.20 62.13 63.67 65.71 64.12 66.02 63.65 63.29 64.54 62.85
WR 67.00 68.23 69.11 67.65 67.68 68.77 73.19 71.02 71.36 69.30 68.67 69.03 70.69

CURE

KM 58.84 57.03 62.75 58.15 45.17 66.12 23.81 51.28 50.60 55.22 52.17 46.88 63.06
SL 10.63 10.63 10.63 10.63 10.62 10.62 16.61 10.64 10.63 10.63 10.63 10.63 11.00
AL 10.60 10.60 10.58 10.60 10.61 10.63 18.39 10.61 10.60 10.61 10.61 10.60 26.81
WR 67.09 67.04 75.55 68.00 62.29 77.48 26.16 71.46 63.41 65.81 63.82 63.56 71.25

DBSCAN

KM 68.81 69.61 70.18 67.85 66.97 69.71 68.68 68.51 69.42 69.04 69.51 70.00 71.10
SL 62.87 62.56 63.01 63.15 62.72 64.40 62.52 65.09 63.88 63.16 62.86 63.20 75.86
AL 77.21 77.16 77.07 77.11 76.76 76.90 77.16 77.25 76.69 77.20 76.85 76.88 77.32
WR 80.98 79.84 80.02 80.36 81.06 79.13 80.78 78.82 78.83 80.61 79.96 79.36 81.19

STING

KM 60.60 59.77 59.00 59.49 60.27 60.09 58.60 59.01 58.70 59.17 59.47 58.55 62.07
SL 22.03 22.03 22.17 22.05 21.99 22.59 19.59 23.71 22.50 22.01 22.01 22.02 34.97
AL 37.89 38.01 37.86 38.07 36.32 39.97 46.09 42.06 37.97 36.72 37.60 37.60 48.40
WR 57.65 57.74 57.90 57.60 57.66 57.69 66.12 57.77 57.72 57.64 57.70 57.63 58.35

ALL10

KM 72.36 72.05 72.50 72.64 72.04 71.40 72.33 72.36 72.62 73.39 72.96 73.67 66.39
SL 42.66 38.14 53.57 32.91 20.63 55.39 55.24 49.65 30.82 20.47 30.20 30.21 59.59
AL 74.22 70.63 74.95 61.66 22.04 76.03 83.09 75.23 62.20 30.59 30.23 31.40 73.58
WR 83.24 83.87 83.65 83.80 83.83 83.14 83.78 82.89 84.14 83.54 84.19 83.69 83.10

Table 2: Average and best Ci(P∗,P0) percentage values obtained by EAC, JWEACS and SWEACS for all data sets.

Approach Bars Breast Cigar Half Rings Iris Log Yeast Optical Std Yeast Spiral

EAC
Average 86.80 80.96 85.57 84.13 73.88 34.14 58.33 53.23 67.22

Best 99.50 97.07 100.00 100.00 97.37 40.93 87.54 88.50 100.00

SWEACS
Average 84.65 80.58 84.23 83.10 74.30 33.97 57.25 54.00 65.83

Best 99.50 97.08 100.00 100.00 97.19 41.57 87.74 90.89 100.00

JWEACS
Average 86.98 80.38 84.66 83.96 74.59 34.16 57.83 53.80 66.57

Best 99.50 97.20 100.00 100.00 97.29 41.58 87.91 92.64 100.00

Figure 3: Ci vs each cluster ensemble selection measures for Bars data set.
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Figure 4: Ci vs each cluster ensemble selection measures for Breast Cancer data set.

Figure 5: Ci vs each cluster ensemble selection measures for Cigar data set.

Figure 6: Ci vs each cluster ensemble selection measures for Half Rings data set.

Figure 7: Ci vs each cluster ensemble selection measures for Iris data set.

The ANMI and ACC measures also do not show a
clear correlation with Ci. However, in both plots, one
can see a cloud of points that indicates some correla-
tion between the measures and the Consistency index,
specially in the ACC plot.

In figure 9, the results of the cluster ensemble se-
lection methods for Std Yeast data set are presented.
Once again, there is no clear correlation between Div1
and Div3 measures and the Ci values. The ANMI and
ACC measures also do not present such correlation.
However, there is a weak tendency of clustering qual-
ity improvement as these measures values increase.

In the Optdigits data set, all measures are corre-
lated with the quality of the consensus partitions. This

correlation is stronger in ACC measure, as it can be
seen in figure 10. The values of Div1 decrease as
the clustering quality is improved while the quality
of the consensus partitions is improved as the values
of Div3, ANMI and ACC measures increase.

The plots for the last data set, Spiral, are presented
in figure 11. The Div1 and Div3 measures do not
present correlation with Ci values, while the ANMI
and ACC measures show weak tendencies of cluster-
ing improvement with the increasing of their values,
specially in ACC cluster ensemble selection measure.

Table 3 shows the correlation coefficients between
the Consistency index and the consensus partition se-
lection measures. Values close to 1 (-1) suggest that
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Figure 8: Ci vs each cluster ensemble selection measures for Log Yeast data set.

Figure 9: Ci vs each cluster ensemble selection measures for Std Yeast data set.

Figure 10: Ci vs each cluster ensemble selection measures for Optdigits data set.

Figure 11: Ci vs each cluster ensemble selection measure for Spiral data set.

Table 3: Correlation coefficients between the Consistency index (Ci) and the consensus partition selection measures (Div1,
Div3, ANMI and ACC measures) for each data set.

Measure Bars Breast C. Cigar Half Rings Iris Log Yeast Std Yeast Optdigits Spiral Average
Div1 -0.5712 -0.6006 -0.3855 -0.6444 -0.3010 0.2448 -0.5356 -0.7922 0.0044 -0.3979
Div3 0.6266 0.6487 0.4367 0.6838 0.2578 -0.2820 0.5450 0.7123 0.0450 0.4082

ANMI 0.8635 0.7979 0.6293 0.8480 0.6856 -0.0444 0.7141 0.7785 0.1095 0.5980
ACC 0.8480 0.8684 0.6154 0.9308 0.8785 -0.0897 0.8505 0.9149 0.4187 0.6928

there is a positive (negative) linear relationship be-
tween Ci and the selection measure, while values
close to 0 indicate that there is no such linear re-
lationship. In 6 out of the 9 data sets used in the
experiments, the ACC measure obtained the highest
linear relationship with the clustering quality (mea-

sured using the Consistency index). In the other 3
data sets, the highest linear relationships were ob-
tained by the ANMI measure in the Bars (0.8635
against 0.8480 achieved by ACC) and Cigar (0.6293
against 0.6154 achieved by ACC) data sets, and by
the Div3 measure in the Log Yeast data set which
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Table 4: Ci values for the consensus partition selected by Div1, Div3, ANMI and ACC measures, and the maximum Ci value
obtained, for each data set.

Measure Bars Breast C. Cigar Half Rings Iris Log Yeast Std Yeast Optdigits Spiral Average
Div1 95.47 95.11 97.93 99.90 87.35 26.96 57.97 58.55 51.68 74.54
Div3 99.50 95.38 100.0 100.0 85.12 29.92 67.66 30.60 51.94 73.35

ANMI 95.75 96.92 97.85 100.0 68.04 35.42 69.09 84.31 51.63 77.67
ACC 99.50 97.07 70.97 95.20 90.67 35.61 53.99 84.31 100.0 80.81

Max Ci 99.50 97.20 100.0 100.0 97.37 41.57 92.64 88.03 100.0 90.70

achieved −0.2820, a counterintuitive correlation co-
efficient when observing the positive coefficients ob-
tained by Div3 for all the other data sets. In aver-
age, the ACC measure presents the highest linear re-
lationship with Ci (0.6928), followed by the ANMI
(0.5980), Div3 (0.4082) and Div1 (-0.3979) measures.

Table 4 presents the Consistency index values
achieved by the consensus partitions selected by
the cluster ensemble selection measures (Div1, Div3,
ANMI and ACC) for each data set, the maximum Ci
value of all the produced consensus partitions and the
average Ci values for each best consensus partition se-
lection measure. The consensus partitions for Div1
and Div3 measures were selected choosing the con-
sensus partition corresponding to the median of their
values, as mentioned in (Hadjitodorov et al., 2006).
For the ANMI and ACC measures, the best consensus
partition was selected to be the one that maximizes the
respective measures.

The quality of the consensus partitions selected
by ACC measure was in 6 out of 9 data sets supe-
rior or equal to the quality of the consensus partitions
selected by the other measures, specifically, in Bars
(99.50%), Breast Cancer (97.07%), Iris (90.67%),
Log Yeast (35.61%), Optdigits (84.31%) and Spiral
(100%) data sets. In Cigar data set, the best consensus
partition was selected using Div3 measure (100%),
and the same happened in Half Rings data set to-
gether with ANMI. In Std Yeast data set, none of
the four measures selected a consensus partition with
similar quality to the best produced consensus parti-
tion (92.64%). The closed selected consensus parti-
tion was selected using ANMI (69.09%). Concern-
ing the average quality of the partitions chosen by the
four measures, the ACC measure stands out again,
achieving 80.81% of accuracy, followed by ANMI
with 77.67%. The Div3 and Div1 measures obtained
the worst performance with 74.54% and 73.35%, re-
spectively.

6 CONCLUSIONS

This paper adresses the problem of selecting the best
consensus partition from a set of consensus parti-

tions, that best fits a given data set. The motiva-
tion of this work is related to the variety of methods
that can be used to produce the multiple data parti-
tions in a cluster ensemble and to the different con-
sensus function that can be applied to combine them
and produce a more robust consensus data partition.
We used the Evidence Accumulation Clustering and
the Weighted Evidence Accumulation Clustering us-
ing Subsampling combination approaches to illustrate
the diversity in the quality of the resulting consensus
partitions, and thus, the need to select a good consen-
sus partition among all the produced consensus parti-
tions. We proposed the Average Cluster Consistency
(ACC) measure to select the best consensus partition
for a given data set, based on a new similarity notion
between each data partition belonging to the cluster
ensemble and a given consensus partition.

Experiments using 9 different data sets were car-
ried out in order to assess the performance of the pro-
posed cluster ensemble selection method. The exper-
imental results presented in this paper show that the
ACC measure is the best consensus partition selection
measure when compared to other three measures, and
thus a good option for selecting a high quality con-
sensus partition from a set of consensus partitions.

REFERENCES

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(1998). Automatic subspace clustering of high dimen-
sional data for data mining applications. SIGMOD
Rec., 27(2):94–105.

Calinski, R. (1974). A dendrite method for cluster analysis.
Communications in statistics, 3:1–27.

Chou, C., Su, M., and Lai, E. (2004). A new cluster valid-
ity measure and its application to image compression.
Pattern Analysis and Applications, 7:205–220.

Davies, D. and Bouldin, D. (1979). A cluster separation
measure. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 1(2).

Duarte, F. J., Fred, A. L. N., Rodrigues, M. F. C., and
Duarte, J. (2006). Weighted evidence accumulation
clustering using subsampling. In Sixth International
Workshop on Pattern Recognition in Information Sys-
tems.

KDIR 2009 - International Conference on Knowledge Discovery and Information Retrieval

94



Dunn, J. (1974). Well separated clusters and optimal fuzzy
partitions. J. Cybern, 4:95–104.

Ester, M., Kriegel, H.-P., Jörg, S., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise.

Fern, X. and Brodley, C. (2004). Solving cluster ensem-
ble problems by bipartite graph partitioning. In ICML
’04: Proceedings of the twenty-first international con-
ference on Machine learning, page 36, New York, NY,
USA. ACM.

Fred, A. L. N. (2001). Finding consistent clusters in data
partitions. In MCS ’01: Proceedings of the Second In-
ternational Workshop on Multiple Classifier Systems,
pages 309–318, London, UK. Springer-Verlag.

Fred, A. L. N. and Jain, A. K. (2005). Combining multiple
clusterings using evidence accumulation. IEEE Trans.
Pattern Anal. Mach. Intell., 27(6):835–850.

Guha, S., Rastogi, R., and Shim, K. (1998). Cure: an ef-
ficient clustering algorithm for large databases. In
SIGMOD ’98: Proceedings of the 1998 ACM SIG-
MOD international conference on Management of
data, pages 73–84, New York, NY, USA. ACM.

Hadjitodorov, S. T., Kuncheva, L. I., and Todorova, L. P.
(2006). Moderate diversity for better cluster ensem-
bles. Inf. Fusion, 7(3):264–275.

Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001).
Clustering algorithms and validity measures. In Tu-
torial paper in the proceedings of the SSDBM 2001
Conference.

Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification.

Hubert, L. and Schultz, J. (1975). Quadratic assignment
as a general data-analysis strategy. British Journal
of Mathematical and Statistical Psychology, 29:190–
241.

Jouve, P. and Nicoloyannis, N. (2003). A new method
for combining partitions, applications for distributed
clustering. In International Workshop on Paralell
and Distributed Machine Learning and Data Mining
(ECML/PKDD03), pages 35–46.

Karypis, G., Eui, and News, V. K. (1999). Chameleon: Hi-
erarchical clustering using dynamic modeling. Com-
puter, 32(8):68–75.

Kaufman, L. and Roussesseeuw, P. (1990). Finding groups
in data: an introduction to cluster analysis. Wiley.

King, B. (1973). Step-wise clustering procedures. Journal
of the American Statistical Association, (69):86–101.

Kuncheva, L. and Hadjitodorov, S. (2004). Using diver-
sity in cluster ensembles. volume 2, pages 1214–1219
vol.2.

Macqueen, J. B. (1967). Some methods of classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley Symposium on Mathemtical
Statistics and Probability, pages 281–297.

Maulik, U. and Bandyopadhyay, S. (2002). Performance
evaluation of some clustering algorithms and validity
indices. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(12):1650–1654.

Ng, R. T. and Han, J. (2002). Clarans: A method for clus-
tering objects for spatial data mining. IEEE Trans. on
Knowl. and Data Eng., 14(5):1003–1016.

Sneath, P. and Sokal, R. (1973). Numerical taxonomy. Free-
man, London, UK.

Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a
knowledge reuse framework for combining multiple
partitions. J. Mach. Learn. Res., 3:583–617.

Topchy, A., Jain, A. K., and Punch, W. (2003). Combining
multiple weak clusterings. pages 331–338.

Topchy, A., Minaei-Bidgoli, B., Jain, A. K., and Punch,
W. F. (2004a). Adaptive clustering ensembles. In
ICPR ’04: Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04) Volume
1, pages 272–275, Washington, DC, USA. IEEE Com-
puter Society.

Topchy, A. P., Jain, A. K., and Punch, W. F. (2004b). A mix-
ture model for clustering ensembles. In Berry, M. W.,
Dayal, U., Kamath, C., and Skillicorn, D. B., editors,
SDM. SIAM.

Wang, W., Yang, J., and Muntz, R. R. (1997). Sting: A sta-
tistical information grid approach to spatial data min-
ing. In VLDB ’97: Proceedings of the 23rd Interna-
tional Conference on Very Large Data Bases, pages
186–195, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Ward, J. H. (1963). Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244.

Xie, X. and Beni, G. (1991). A validity measure for fuzzy
clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13:841–847.

CLUSTER ENSEMBLE SELECTION - Using Average Cluster Consistency

95


