AN ONTOLOGY DRIVEN APPROACH TO SOFTWARE SYSTEMS
COMPOSITION

Hlomani Hlomani and Deborah Stacey
Computing and Information Science, University of Guelph, Guelph, Ontario, Canada

Keywords:

Abstract:

Ontologies, Software systems composition, Semantic web.

This paper discusses a proof of concept prototype system driven by knowledge embodied in a set of Ontolo-

gies; an algorithm Ontology and an execution timeline Ontology. The main idea behind Ontology Driven
Compositional System (ODCS) is allowing domain experts to compose a system by choosing the system com-
ponents and the desired interactions between these components in a way suitable to their problem. This differs
from systems that ship with predefined data sets and algorithms that are preset for a specific purpose which
may not be suitable for certain dynamic domains that require highly adaptive, and easily modifiable systems.

1 INTRODUCTION

Ontologies, have been gaining interest and accep-
tance in computational audiences: formal Ontologies
are a form of software, thus software development
methodologies can be adapted to serve Ontology de-
velopment.! As well, Ontology development can be
adapted to serve software development methodolo-
gies.

The premise of this paper is that no single solution
exists for all problems at hand as some domains are
faced with very dynamic problems dictated by many
parameters and environmental settings. This implies
the need for systems that can be rapidly developed and
changed to fit a given task. The changes may be in al-
tering the constituent components (e.g. algorithms) or
in altering the performance and functionality of these
algorithms. The problem though is that with cur-
rent system development approaches, modifying the
system would require a substantial amount of tech-
nical proficiency and time while in most disciplines
(e.g. syndromic surveillance, also know as disease de-
tection, monitoring, and real-time situational aware-
ness) it may be desirable to have the very users of
the system (e.g. epidemiologists) dictate, among other
things, the algorithms suitable for a problem, the ap-
propriate data sources, and the arrangement and flow
of data between the constituent algorithms. These
users may be technically naive and, therefore, it may

'International Conference on Knowledge En-
gineering and Ontology Development website:
http://www.keod.ic3k.org/.

254

Hlomani H. and Stacey D. (2009).

be desirable for these users (domain experts) to not
concern themselves with the programming aspect of
composing the system. We therefore propose a proto-
type system that has at its core several Ontologies that
provide rich descriptions of the components of a sys-
tem thereby allowing for the autonomous creation and
modification of systems which are problem or mission
oriented by the very domain experts who need to use
them.

2 BACKGROUND

2.1 The Semantic Web and Ontologies

The semantic web is defined by Shadbolt, Hall and
Berners-Lee as a web of data as opposed to the cur-
rent web which is a web of documents (Shadbolt et al.,
2006). It is envisioned to extend the current web by
giving web content semantic meaning for the better-
ment of cooperation between computers and humans
(Dong, 2004). Central to the semantic web approach
is the use of Ontologies which play a pivotal role not
only in the advancement of the semantic web but in
knowledge sharing and management at large. These
are formal computer stored specifications of concepts
in a domain and the relationships that holds between
those concepts to provide for a common platform for
information exchange (Tjoa et al., 2005; Horridge
etal., 2007). Zhang (Zhang, 2007) asserts that an On-
tology is a rich expression of semantic relations.

AN ONTOLOGY DRIVEN APPROACH TO SOFTWARE SYSTEMS COMPOSITION.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 254-260

DOI: 10.5220/0002304502540260
Copyright © SciTePress

AN ONTOLOGY DRIVEN APPROACH TO SOFTWARE SYSTEMS COMPOSITION

2.1.1 General Software Development
Architecture

An Ontology driven approach to software systems de-
velopment is similar to other software development
paradigms in that there has to be a guiding archi-
tecture that specifies the components within the in-
tended systems and how these components relate to
each other. For the semantic web a fitting architec-
ture was presented by Knublauch (Knublauch, 2004).
He differentiates between two layers of a semantic
web application. First, there is a semantic web layer
that hard-codes knowledge about a particular domain
which is then used to model the behavior of the ap-
plication. Secondly there is an internal layer which
is composed of the reasoning mechanisms and the ap-
plication’s control logic that controls the application’s
functionality and interacts with the user via an inter-
face. The prototype system discussed in this paper
takes advantage of this general architecture but how-
ever provides extended definitions of certain concepts
particularly in the application logic. This approach
will be discussed in Section 3.

2.2 Other Approaches to Systems
Composition

2.2.1 Web Services

Web services are Service Oriented Computing (SOC)
implementations that provide a standardized way of
presenting some functionality in the form of inte-
grated web-based applications using XML, SOAP,
WSDL, UDDI and other internet protocols. They
are distributed applications which can be discovered,
bound to and interactively accessed in an autonomous
manner (Charfi and Mezini, 2007). They have also
been defined in the literature as networked capabil-
ities with openly accessible interfaces for other ma-
chines to discover and invoke in real time (Blake and
Nowlan, 2008; Milanovic and Malek, 2004). Web
Services are network, technology and platform inde-
pendent (Papazoglou, 2003) making them highly in-
teroperable. They are also loosely coupled making
the idea of reusability very attainable.

Web Services fit into this discussion of system
composition in that a functional system can be devel-
oped from putting together already existing web ser-
vices in what is termed as service composition. Ser-
vice composition is a cost effective approach which
allows a developer to build a fully fledged application
by using already existing components in the form of
web services. Although there may be some benefit
in invoking a single web service, combining several

already existing services and ordering them to best
suit your requirements may bring added value (Charfi
and Mezini, 2007; Milanovic and Malek, 2004). De-
velopers therefore use service composition to rapidly
develop applications that meet users needs, meet an
organization’s goal, or provide a new service function
(Milanovic and Malek, 2004; Feenstra et al., 2007).

While service composition has advantages in the-
ory, the adoption and use of discovery protocols and
the lack of development of libraries of freely avail-
able and discoverable services has left this approach
mostly unrealized. Since web services are by def-
inition distributed and thus require distributed re-
sources, this restricts their applicability in some do-
mains where privacy and security are critical. It also
necessitates that the user be constantly connected to
the Internet. While the compositional system being
proposed in this paper does not necessarily use web
services, the utilization of distributed programs and
resources is a logical extension of our system defini-
tions and thus our system is a superset of the domain
of all services/programs including web services.

3 ONTOLOGY DRIVEN
COMPOSITIONAL SYSTEM
(ODCS)

A prototype system called ODCS has been developed
that demonstrates the power and suitability of using
Ontologies as the main driver for a compositional sys-
tem both for its development and post development
functionality. By compositional system we mean a
system that allows its components to be put together
in a systematic manner to achieve a common goal or
to derive yet another functional application. This was
done by building on current research in the use of
semantic webs for application development. These
include design patterns/architectures, tools and tech-
nologies. As mentioned earlier the architecture dis-
cussed in (Knublauch, 2004) was adopted for the de-
velopment of this system (Figure 1).

]
>
©
o
% Ontologies
2 Interface
Lo T =
11 |
Access class Library{} I
: ExecutionOnto java Application Logic
> e
= Algorithm Model | | Execution Model
3 v i ;
£
8 | Protegs-OWL AP | Comaron -
h=
\ Reasoner(Dig Reasoner-FaCT-+) b

Figure 1: ODCS Architecture.

255

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

3.1 Ontologies

The use of Ontologies to provide domain specific
knowledge base in order to facilitate for communica-
tion and knowledge sharing between people and vari-
ous computer agents is arguably the pillar on which
the semantic web hinges. We however take it be-
yond just the facilitation of knowledge sharing. We
use this common knowledge to drive the development
of a compositional system by using the Ontologies to
provide an extensible description of the components
of a system and how they can be put together. To
achieve this we have created Ontologies to describe
algorithms that provide the needed functionality in-
cluding architectural elements and the order of exe-
cution to describe the order in which the composed
algorithms are going to be run. This section discusses
these Ontologies.

3.1.1 Algorithm Ontology

This Ontology was designed to provide an extensi-
ble standard description of algorithms in the context
of the elements or aspects of the algorithm that one
would need to know about the algorithm in order to
use the algorithm. The use of a common descrip-
tion of algorithms would allow for easier addition
and removal of algorithms from a system or applica-
tion as this will be done at the semantic level rather
than at the programming level therefore reducing de-
pendence on skilled personnel. The development of
an Ontology for algorithms, however, proved to be
more complex than initially perceived. This can be at-
tributed to the existence of diverse views and percep-
tions on classification of algorithms. Unlike in other
domains where agreed upon taxonomies and classifi-
cations already exist, the same cannot be said about
algorithms. Algorithms vary in terms of their pur-
pose, input and output requirements, and the param-
eters needed to modify their behavior. Algorithms
that use a similar problem solving approach can also
be group together to form a hierarchy. We cannot,
therefore claim absolute correctness as different lev-
els of abstractions and perceptions exists. However,
it seems more reasonable to classify algorithms ac-
cording to the reason they were designed (purpose).
The focus of this Ontology however is not to provide
a classification of algorithms but rather we focus on
providing a generic description of the algorithms in
order to facilitate automation of the algorithms’ us-
age and provide a plug and play kind of functionality.
Such elements as the algorithm’s operating environ-
ment, algorithm type, input, output, and how it is used
are described in the Ontology.

The classes in the Ontology describe what is

256

needed to run an instance of an algorithm defined by
the subclasses of the Algorithm class. In this On-
tology everything is a subclass of Thing including
Algorithm which can be seen as the overarching con-
cept. The algorithm concept is the very thing that all
the other classes in the Ontology describe and relate
to. We differentiate between two main classes of algo-
rithms: Computational Algorithms and Architectural
Elements. We perceive computational algorithms to
be the very algorithms that provide domain specific or
general purpose functionality. Architectural elements
are those pieces of code whose operation provide sup-
port to the computational elements and help in creat-
ing and maintaining the structure of the system.

An algorithm exists in some sort of file be it in
its source code form or as a ready to run executable
file. For this purpose we created a AlgorithmFile
class which aims at describing aspects relating to the
actual algorithm file. It defines such properties as the
file name, creation date, last updated date etc. It also
defines object properties that provide linkage to lo-
cation and operating environment classes. Each al-
gorithm executable or source code file has a specific
environment in which it can operate on. For this pur-
pose we have an OperationEnvironment class that
describes this environment. This include subclasses
to describe the operating system, drivers, and other
software needed to run the algorithm.

Subclasses specify specific types of algorithms
and define other properties that are relevant to that
specific type. Figure 2 depicts this kind of hi-
erarchical structure of the class. If the system
has to search for a statistical algorithm the re-
sults could be an instance of any of the subclasses
of the statistical algorithms e.g. an instance of an
EMAAlgorithm class since its instance is an instance
of StatisticalAlgorithm due to inheritance. This
inheritance structure allows the class to be extended
when a new algorithm type definition is needed.

Algorithm

Architectural

Computational
[cusumaigorithm | [MovingAverageAlgorithm [RLSAlgorithm |

]

SMAAIgorithm

Figure 2: Overview of the Algorithm class hierarchy.

EMAAIgorithm

Most algorithms take in some sort of input, there-
fore for every instance of an algorithm there must be

AN ONTOLOGY DRIVEN APPROACH TO SOFTWARE SYSTEMS COMPOSITION

an indication of whether it receives any input and a
precise definition of how the input is received. The
Input class provides these descriptions. Input to an
algorithm may be in the form of data files read by the
algorithm, command line parameters passed through
the input stream to the algorithm or read from config-
uration files. These are described by further defin-
ing subclasses of the Input class. For example, a
Parameters class is defined and its subclasses are
then defined to include the CommandLine class that
describes the parameters passed through the input
stream to the algorithm and ConfigurationFiles
class that describes parameters read from configura-
tion files. These subclasses can also be further sub-
classed to provide needed details. This is depicted by
Figure 3.

[Cnnf gu'atmnFlles] [

Figure 3: Overview of the Input class hierarchy.

DataFiles

l DatabaseFile

When composing a system by combining algorithms
together through their input streams and output stream
several incompatibilities may exist some of these in-
clude data type mismatches and data stream mis-
matches. The architectural elements class within the
algorithms Ontology therefore serves to provide a
generic description of these internal glue elements of
the system. Data type converters are components of
a compositional system that offers data conversion to
facilitate compatibility between algorithms. Convert-
ers are algorithms in that they are standalone pieces
of code that can be fed input and run to produce some
output. An example mismatch is that of different data
stream types feeding into and out of a pipe. One al-
gorithm may be printing output to the standard stream
while the algorithm it connects to expects input from
a file. Therefore rather than just declaring the connec-
tion to be impossible an architectural element would
be placed between these two algorithms to satisfy
both algorithms’ requirements. In this case the ele-
ment would be reading data from the standard stream
and writing it to a file so that the next algorithm can
read the file.

3.1.2 Execution Timeline Ontology

Ultimately the composed system will be run. To fa-
cilitate flexibility and extensibility we have developed

an Ontology that describes how the events within the
composed system will be run. Please refer to section
3.4 for a detailed discussion on the individual ele-
ments of a timeline. The basic functionality of this
Ontology is to describe the order in which the con-
nected algorithms will be executed. The Ontology de-
fines this order in the form of a Timeline class that
has a number of intervals. The Interval class has
a collection of start and end triggers and a number
of events. The Event class also has begin and end
triggers. Specific triggers are defined as subclasses
of the Trigger class. Triggers could for example be
performing the function of checking for preconditions
and postcondition of an event or an interval or speci-
fying what the next process (event or interval) to run
is. The Ontology also defines exit points within each
event, interval and timeline in the form of errors han-
dlers.

3.2 Class Libraries

The system discussed in this paper along with many
other semantic web enabled applications is driven by
a number of core Ontologies. Their functionality re-
lies on the querying of ontological instances and their
property values. This include the use of reasoning en-
gines (in this case FaCt++) to infer some knowledge
which was perhaps never explicitly asserted. Two al-
ternative approaches to achieving this knowledge ac-
quisition from Ontologies exists. Generic OWL pars-
ing APIs such as Jena and Protégé-OWL can be used
to directly interact with the Ontology. These provide
a model in which OWL instances and their proper-
ties are saved using generic Java classes (Knublauch,
2004). As the application grows these may be ren-
dered inconvenient since access to OWL objects is
done through specifying the objects’ names often as
strings. This is rather hard to maintain. Another ap-
proach which is deemed to be the better of the two
and adopted in this work is one in which in addi-
tion to using generic APIs, access to the ontological
facets is done through custom made Java classes that
resemble the structure of the Ontology. This does not
only allow seamless access to the Ontology but also
provide cleaner object oriented design patterns. This
class library consists of definitions of interfaces and
classes that implements these interfaces. The inter-
face is a normal Java interface that defines mandatory
properties and methods that should be implemented
by classes that commits to using this interface. The
power of interfaces will be discussed in Section 3.2.2
where such issues as multiple inheritance will be ex-
amined.

257

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

3.2.1 Generation of Class Libraries

The creation of custom Java classes that map to the
Ontology classes is not a trivial process but one can
manually create them. However, there exists code
generators that can be used to ease this rather intri-
cate process. This Java code generation capability
does exist within the Protégé-OWL editor and it was
used for the generation of the Access Class Libraries
used for the development of this system. Several other
code generators exist; examples include OWL2Java
and Jastor (Zimmermann, 2009; Szekely, 2009). The
primary reason for the use of a Java class code genera-
tor was to delegate this task to mechanisms that would
do it instantly and hence save considerable amounts
of time. However, the code was then manual ex-
amined to identify omissions and physically amend
faults. These code generators are designed to create
a set of Java interfaces and implementation classes
from OWL Ontologies such that an instance of a Java
class represents an instance of an OWL class within
the Ontology. As will be discussed in the section that
follows the code generators may not represent all the
classes and constraints within the Ontology solely be-
cause of the difference between Java and OWL. Man-
ual inspection of the generated code and writing of
the omitted concept may still have to be performed.

3.2.2 OWL to Java Mismatches and their Fixes

It would have been ideal to have a one-to-one map-
ping of the Java classes to the OWL Ontology
classes including their properties and asserted restric-
tions. However due to significant differences inherent
within these languages this may not be attainable and
therefore alternative ways need to be devised to min-
imize the impact of these differences. One of the ma-
jor omissions by the code generator in our case was
a some ValuesFrom restriction placed on several data
and object properties. The purpose of this restriction
was to constraint the creation of property values to
certain pre-listed classes and class instances. This im-
plies enumerated classes. Enumerated classes are ig-
nored by code generators since they are anonymous
classes. This has little impact on our system since our
primary focus is not on the creation of Ontology in-
stances but rather their use to drive the development
of a compositional system and in the cases where the
population of the Ontology is done through an On-
tology editor like Protégé this limitation would not
be applicable. It would however be quite important
for an application that alters the Ontology instances
to handle this variation.

We do however recognize solutions and mappings
provided in (Kalyanpur et al., 2004). The paper sug-

258

gests two rather simple solutions. The first solution
involves the definition of an enum, struct or a list ob-
ject that contains possible values for the property. The
method that creates the property value will then loop
through the enum checking to see if the new value is
one of the possible values contained in the enum. The
second solution is somewhat similar to the first one
but it instead makes use of listeners registered on the
restricted property which are invoked every time the
property is changed.

Java is a single inheritance object oriented lan-
guage while OWL is a very rich and highly expressive
description logic based language that supports multi-
ple inheritance. Java does not support what may be
referred to as multiple implementation inheritance. It
however allows a class to implement multiple inter-
faces. This is a feature that can be exploited to model
classes that have two or more super-classes. We have
however, managed to get away with not using multi-
ple inheritance in the implementation of our Ontolo-
gies so this remains a feature that can be explored
should the Ontology evolve and have classes that in-
herit from several other classes.

3.3 Data Flow

Our idea revolves around pulling already existing al-
gorithms and connecting them into a functional sys-
tem. We therefore developed a framework to facil-
itate this connectivity and the flow of data between
algorithms. This was achieved by developing a col-
lection of classes that defines a TaskGraph, Task,
Nodes and Connectors. A Task is a representation
of a unit that performs some function. For the pur-
pose of this prototype system this can be in the form
of an algorithm, a converter or any of the architectural
elements. A Task is created when the user chooses
an algorithm or when an architectural element is in-
voked to provide for compatibility of the algorithms.
A TaskGraph on the other hand is a collection of con-
nected tasks. Nodes represent the inputs and outputs
to an algorithm, converter or an element. They can
take the form of file input and output nodes, standard
input or output stream nodes, socket nodes and pa-
rameter nodes. We also define a Connector class that
describes methods needed to establish a connection
between algorithms. The possibility or absence of a
connection being established between selected algo-
rithms depends upon the compatibility of these out-
put and input nodes. The connectivity also depends
upon the availability of a glue component (either a
converter or element) that will be placed in between
the algorithms in case the algorithms nodes are in-
compatible.

AN ONTOLOGY DRIVEN APPROACH TO SOFTWARE SYSTEMS COMPOSITION

3.4 Execution Timeline

Once a TaskGraph has been established a walk
through the TaskGraph will be done to extract
and create events thereby creating an execution
Timeline. This creation and ordering of events is de-
pendent on the type of output and input of the send-
ing and receiving algorithms. To illustrate this con-
sider Figure 4. The figure depicts a TaskGraph that

Task B Input Task C Input

Task A Output =
(Standardin) (File)

(Stadardout)

‘ Task A \'+—.+'[Task B f+—.+'l Task C f+—.

Task B Output Task C Output
(File) (File)
| |
! Event 1 Event 2 !

Figure 4: An example TaskGraph and the extraction of
Events.

has three connected Tasks. Task A pipes its input
into Task B (this is possible since A prints to the
output stream and B reads from the input stream).
Task B then writes its output to a file. Algorithm
C then reads the file and produces output of its own.
This implies two Events: first Task A and B are
run concurrently piping A’ s output to B and the out-
put of B is written to a file; secondly Task C runs,
reads the file produced by B and produces output. In
this example scenario, the Timeline definition would
have one Interval. The Interval would have one
start Trigger that defines the next process to be run
(Event 1) and the two Events. Event 1 would have
an end Trigger that specifies Event 2 as the next
process to run. Event 2 on the other hand would have
a start Trigger that checks for the existence of the in-
put file before it could start otherwise the Event will
terminate with an appropriate error and ultimately the
Timeline will terminate too. The Interval will also
have an end Trigger that signals that the Interval
is the last within the given Timeline and therefore
providing an end point for the Timeline.

Figure 4 is an example of a pipes and filters archi-
tecture. This architectural style is a data flow archi-
tecture that concerns itself primarily with the move-
ment of data between data processing elements (Tay-
lor et al., 2008). To better define a pipes and filters ar-
chitecture we first define the components. Filters are
defined by (Taylor et al., 2008) as preexisting com-
ponents/programs that consume data from the input
stream and produce data through the output stream.
Their basic function is to perform arbitrary process-

ing of data that may include transformation of the data
and enrichment. Pipes are defined as connectors that
interconnect two filters by offering buffering func-
tionality and routing of the first filter’s output stream
to the input stream of the second filter. It goes without
saying then that a pipes and filters architecture is an
architectural style that defines several executable pro-
grams (filters) that are executed possibly concurrently
and employing pipes to route data streams between
the programs. This type of architecture allows for the
creation of applications even by people without prior
software development training. This architectural pat-
tern is trivial to construct from the ODSC Ontologies
and can itself be stored in an Ontology that describes
architectural design patterns.

4 DISCUSSION

An Ontology driven system offers several advantages.
The users of the system has overall control of the sys-
tem. They have control over what algorithms are in-
cluded and excluded from their system. They how-
ever need not have any technical/programming skills
to be able to add or remove an algorithm from their
system. They may however need to have an under-
standing of Ontologies since this will be where most
modifications will take place. The whole approach
itself allows for possibilities that may have other-
wise not been possible following other software de-
velopment methodologies. A fully functioning sys-
tem can be rapidly developed by a non-technical user
and changed on the fly without the aid of a techni-
cal professional. Technical personnel can devote their
time on developing algorithms that users may require
since new and already existing algorithms can be pub-
lished onto the Ontology thereby allowing them to be
ported and used in the system. The complexity or sim-
plicity of the system is dictated by the user as he/she
designs the system by selecting and connecting algo-
rithms into complex or simple combinations that are
suited for their purpose. The timeline Ontology and
framework also allows for several architectures to be
achieved depending on the needs of the application.
Events can be run concurrently and branching from
one set of events to another can also be achieved al-
lowing for flexibility in the functionality and structure
of the application.

The prototype ODCS described in this paper does
not yet include a user interface to allow for simple
manipulation of the Ontologies by a non-technical do-
main expert. The interface is by design left as a de-
tachable module since it should be custom designed
to fit the abilities, expectations and conceptual frame-

259

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

work of the user’s domain of expertise. While the
interface may change, the underlying algorithms and
architectures captured in the Ontologies are available
for use by multiple domains. This will allow many ap-
plication areas to share algorithms developed for dif-
ferent domains. For example, there are many pattern
recognition and datamining algorithms developed by
the machine intelligence community that are often
overlooked by users in domains such as epidemiol-
ogy, economics, etc. and thus their applications are
unnecessarily limited. A system such as ODCS could
make a world of specialist algorithms and techniques
available to a much wider range of domains and users
than is now possible.

S CONCLUSIONS

In this paper we highlighted the problems of conven-
tionally developed systems with predefined data sets
and algorithms that are preset for a particular purpose.
We highlighted that these systems may not be suitable
for dynamic domains whose environment, parame-
ters and needs change rapidly. We then explored how
an Ontology driven approach to software composition
can be used to drive the creation of adaptive systems.
We specifically discussed ODCS, a prototype system
that follows this approach. It is safe then to conclude
that an Ontology driven system offers many advan-
tages and is suited for dynamic domains that require
systems that can be changed with ease by their users.

REFERENCES

Blake, M. and Nowlan, M. (2008). Taming web services
from the wild. IEEE Internet Computing, 12(5):62—
69.

Charfi, A. and Mezini, M. (2007). Ao4dbpel: An
aspect-oriented extension to bpel. World Wide Web,
10(3):309-344.

Dong, J. (2004). Software modeling techniques and the se-
mantic web. In Proceedings of the 26th International
Conference on Software Engineering, pages 1160-
1163.

Feenstra, R., Janssen, M., and Wagenaar, R. (2007). Evalu-
ating web composition methods: The need for includ-
ing multi-actor elements. The Electronic Journal of
E-Government, 15(2):153-164.

Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens,
R., and Wroe, C. (2007). A practical guide
to building owl ontologies using the Protege-
OWL Plugin and CO-ODE Tools, 1.1 edition.
Retrieved June 25, 2009, from http://www.co-
ode.org/resources/tutorials/ProtegeOWLTutorial-
p4.0.pdf.

260

Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J.
(2004). Automatic mapping of owl ontologies into
java. In I6th International Conference on Software
Engineering and Knowledge Engineering, pages 98—
103.

Knublauch, H. (2004). Ontology-driven software develop-
ment in the context of the semantic web: An example
scenario with protege-owl. In International Workshop
on the Model-Driven Semantic Web.

Milanovic, N. and Malek, M. (2004). Current solutions for
web service composition. IEEE Internet Computing,
8(6):51-59.

Papazoglou, M. (2003). Service oriented computing: Con-
cepts, charecteristics and directions. In Fourth Inter-
national Conference on Web Information Systems En-
gineering, pages 3—12.

Shadbolt, N., Hall, W., and Berners-Lee, T. (2006). The
semantic web revised. [EEE Intelligent Systems,
21(3):96-101.

Szekely, B. (2009). Jastor: Typesafe, Ontology Driven RDF
Access from Java. Retrieved June 25, 2009, from
http://jastor.sourceforge.net/.

Taylor, R., Medvidovic, N., and Dashofy, E. (2008). Soft-
ware Architecture Foundations, Theory, and Practice.
John Wiley and Sons Inc.

Tjoa, A., Andjomshoaa, A., Shayeganfar, F., and Wagner,
R. (2005). Semantic web challenges and new require-
ments. In Proceedings of the 16th International Work-
shop on Databases and Expert Systems Applications,
pages 1160-1163.

Zhang, J. (2007). Ontology and the semantic web. In
Proceedings of the North American Symposium on
Knowledge Organization, pages 9-20.

Zimmermann, M. (2009). Owl2Java - A Java Code
Generator for OWL. Retrieved June 25, 2009, from
http://www.incunabulum.de/projects/it/owl2java/
owl2java-a-owl2java-generator.

