
ARABELLA
A Directed Web Crawler

Pedro Lopes, Davide Pinto, David Campos and José Luís Oliveira
IEETA, Universidade de Aveiro, Campus Universitário de Santiago, 3810 – 193 Aveiro, Portugal

Keywords: Information retrieval, Web crawling, Crawler, Text processing, Multithread, Directed crawling.

Abstract: The Internet is becoming the primary source of knowledge. However, its disorganized evolution brought
about an exponential increase in the amount of distributed, heterogeneous information. Web crawling
engines were the first answer to ease the task of finding the desired information. Nevertheless, when one is
searching for quality information related to a certain scientific domain, typical search engines like Google
are not enough. This is the problem that directed crawlers try to solve. Arabella is a directed web crawler
that navigates through a predefined set of domains searching for specific information. It includes text-
processing capabilities that increase the system’s flexibility and the number of documents that can be
crawled: any structured document or REST web service can be processed. These complex processes do not
harm overall system performance due to the multithreaded engine that was implemented, resulting in an
efficient and scalable web crawler.

1 INTRODUCTION

Searching for knowledge and the desire to learn are
ideals as old as mankind. With the advent of the
World Wide Web, access to knowledge has become
easier. The Internet is now one of the primary media
regarding knowledge sharing. Online information is
available everywhere, at any time and can be
accessed by the entire world.

However, the ever growing amount of online
information arises several issues. Some of the major
problems are finding the desired information and
sorting online content according to our needs. To
overcome these problems we need some kind of
information crawler that searches through web links
and indexes the gathered information, allowing
faster access to content. Web crawling history starts
in 1994 with RBSE (Eichmann, 1994) and
Pinkerton’s work (Pinkerton, 1994) in the first two
conferences on the World Wide Web. However, the
most successful case of web crawling is, without a
doubt, Google (Brin and Page, 1998): innovative
page rankings algorithms and high performance
crawling architecture turned Google into one of the
most important companies on the World Wide Web.

However, 25 percent of web hyperlinks change
weekly (Ntoulas et al., 2005) and web applications
hide their content in dynamically generated
addresses making crawling task more difficult and

leveraging the need for novel web crawling
techniques. Research areas include semantic
developments (Berners-Lee et al., 2001), web
ontology rules inclusion (Mukhopadhyay et al.,
2007, Srinivasamurthy, 2004), text mining features
(Lin et al., 2008) or directing crawling to specific
content or domains (Menczer et al., 2001).

Our purpose with Arabella was to create a
directed crawler that only navigates on a specific
subset of hyperlinks, searching for information
based on an initial subset of validation rules. The set
of rules defines which links contain relevant and
correct information and which therefore should be
added to the final results. The rules also define a
mechanism for creating dynamic URLs in real-time,
according to information gathered in previously
crawled pages, extending traditional web crawling
operability. Arabella combines typical HTTP
crawling features with a fast, easily extensible text
processing engine that is capable of extracting nearly
any structured information. This means that our tool
is able to extract information from HTML pages,
REST web services, CSV sheets or Excel books
among others.

This paper is organized in 5 distinct sections.
The following section provides a general overview
of the web crawling subject and other relevant work
done in the directed web crawling area. The third
section presents the system architecture and we

270
Lopes P., Pinto D., Campos D. and Luís Oliveira J. (2009).
ARABELLA - A Directed Web Crawler.
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, pages 270-273
DOI: 10.5220/0002291602700273
Copyright c© SciTePress

Figure 1: Comparison of traditional crawlers and Arabella.

include a usage scenario in section 4 where we
improve DiseaseCard (Oliveira et al., 2004). Finally,
there are conclusions and discussion about future
developments.

2 WEB CRAWLING

Despite the fact that Google is, and will be, the king
of search engines, web crawling has still evolved
considerably in the last few years. The basic
operation of a web crawler consists of a repeated
cycle of solving website address using a DNS,
connecting to the destination server and requesting
the pages, receiving and processing the server
response, advancing to the next link. DNS and web
server requests are essential components and do not
vary too much. Improvements are usually done on
the page processing modules where several features
can be added to extend the architecture.

Semantic web developments, brought by W3C,
are one of the hottest research trends that web
crawler developers have invested in. Structured and
described content may ease the crawler tasks and
will require changes in the basic crawler
architectures. Swoogle (Ding et al., 2004) is a good
example of research advances in this area.

Data mining is the subject of several information
retrieval projects. Web crawling and the scope of
data it can cover is the perfect ally to text mining
tools. Whether research is focused on knowledge
discovery (Chakrabarti, 2003) or on redesigning web
crawling architectures to improve text mining results
(Tripathy and Patra, 2008), the results show that this
combination is successful.

The last mentionable topics are directed or
oriented crawlers. These web crawlers (Miller and
Bharat, 1998, Mukhopadhyay et al., 2007, Tsay et
al., 2005) are related to a specific domain or research
trend and are focused on result quality instead of
result quantity. From Menczer’s work (Menczer et

al., 2001) we can conclude that this area can be
enhanced and that there is space for further
improvements. To solve the directed web crawler
problem we need a tool to collect arbitrary text data
from different websites, organized in a coherent
structure. This tool should be easily configurable,
fairly fast (Suel and Shkapenyuk, 2002) and should
be presented in the form of a library, so that it can be
easily integrated in any existing system. The
problem with collecting arbitrary text data is that the
same text can vary widely from site to site in terms
of structure. Thus there was also a need for the tool
to have basic text processing capabilities such as
searching for regular expressions, cutting and
splitting text, which could provide the necessary
flexibility.

3 ARABELLA

Considering the features and flexibility we needed,
we stated that none of the existing tools would
satisfy our requirements. Despite their capabilities,
these tools have the major drawback of being
focused on a single task. Arabella closely integrates
web crawling and text processing in a single Java
library that allows full control over downloaded
pages, saved content and the generation of new
dynamic content. This feature enhances information
retrieval tasks, improving the final result set and the
overall quality of the application – Figure 1.

3.1 Motivation

With Arabella, we want to access content hidden in
the deep web (Peisu et al., 2008), not limiting the
crawlable space to web page referenced links. The
majority of quality data is available online but is not
directly referenced. To access this valuable
information it is necessary to search specific
databases, usually resorting to strict conditional

ARABELLA - A Directed Web Crawler

271

inputs. The URL to this information is dynamically
generated in real-time, obstructing web crawlers’
work – traditional web crawlers will not reach them
- and increasing the complexity of the web crawling
algorithms.

In the majority of situations, these dynamic
URLs can be parameterized with sets of keys whose
domains are either well known or easily generated.
To achieve this important goal, we take advantage of
Arabella’s text processing capabilities. Using the
Arabella engine we are able to define sets of keys
that will be searched inside the crawled pages,
enabling the conversion of these keys to other
similar keys, and using them to generate new
addresses, in real time, that will be added to the
crawlable URL list – Figure 1-B. This is the
opposite of traditional web crawler architectures -
Figure 1-A – where the crawler reads a
configuration file containing the URLs that will be
processed and where new URLs will be found and
added to the processing list.

3.2 Execution

Initially, the spider parses the configuration file and
builds an internal data structure representing the web
map. Task dependency is calculated - if task B
depends on content produced by task A, B should
not be executed until A finishes – and a thread
manager is created that will ensure execution takes
place as planned.

When the Spider starts, the thread manager
initially launches all tasks that do not depend on any
of the other tasks. When each task finishes, it signals
termination to the thread manager, and the thread
manager is then responsible for launching any ready-
to-run tasks (those whose dependencies are already
met). Each task is divided in two steps, retrieving the
raw text, and processing the raw text. Text retrieval
can be done in several distinct ways. Textual URLs
are simple HTTP URL that can contain a
placeholder for previously obtained keys – stored in
a named container. Collected links are entire strings
stored previously in a named container and will be
added to the crawling cycle. Collected content is
simple text that is gathered according to the rules
defined in the configuration file and will also be
stored in a named container.

When retrieving text from the web, requests to
web servers are made asynchronously, in order to
achieve a higher speed. However, crawling at high
speeds can be considered impolite, so we have added
customized control over interval between requests.

Each stop has only one location but may have
more than one parallel action. This is extremely
useful when categorizing information, since there

can be more than one processing flow acting over
the same piece of text, thus, collecting different
pieces of information.

4 LOVD INTEGRATION

In order to provide an overview of the actual system
functionality, we describe a real-world usage
scenario involving the integration of several locus
specific databases. This can be a cumbersome task in
the field of bioinformatics due to the heterogeneity
of adopted formats and the existence of a large
number of distinct databases. The Leiden Open
(source) Variation Database – LOVD (Fokkema et
al., 2005) – is a successful attempt at creating a
standard platform that can be easily deployed and
customized by any research lab.

DiseaseCard’s main objective is to offer
centralized access to a vast amount of information
sources focusing on rare diseases. With the main
goal of improving DiseaseCard’s quality, we have
decided to increase its range by including access to
several LOVD installations distributed through
several distinct web locations.

Arabella comes into play as the tool that
discovers which LOVD installation contains
information regarding the genes that are associated
with a given rare disease. We use it to select the
index entries that contain the wanted gene, discard
irrelevant information, and expand the URLs with
the gene name in order to form the URLs for the
variation pages.

We will use the PEX10 (human peroxisome
biogenesis factor 10) gene for this example. We
instantiate the Spider with the appropriate
configuration file, put the gene name in the gene
container and start the crawl. After the crawl we
print the contents of the containers on the screen.

Container 'databaseRowsContainingGene':

"2009-04-14" "2.0-16" "13" "870" "868"
 "268" "dbPEX, PEX Gene Database"
"http://www.medgen.mcgill.ca/dbpex/""P
EX1,PEX10,PEX12,PEX13,PEX14,PEX16,PEX1
9,PEX2,PEX26,PEX3,PEX5,PEX6,PEX7"

"2009-04-01" "1.1.0-11" "13" "804"
 "226" "dbPEX, PEX Gene Database"
 "http://www.dbpex.org/"
 "PEX1,PEX2,PEX3,PEX5,PEX6,PEX7,PEX10,PEX
12,PEX13,PEX14,PEX16,PEX19,PEX26"

5 CONCLUSIONS

Knowledge discovery and information retrieval are
scientific areas greatly promoted by the evolution of

KDIR 2009 - International Conference on Knowledge Discovery and Information Retrieval

272

the Internet. With this evolution, online content
quantity and quality has increased exponentially.
Along with it, so has the difficulty in gathering the
most suitable information related to a certain
subject. Web crawling engines provide the basis for
indexing information that can be accessed with a
search engine. However, this approach is generic –
the goal is to find content in the entire web. This
means that finding valid information with certified
quality for a certain topic can be a complex task.

To overcome this problem, there is a new wave
of web crawling engines that are directed to a
specific scientific domain and can reach content
hidden in the deep web. Arabella is a directed web
crawler that focuses on scalability, extensibility and
flexibility. Considering that the crawling engine is
based on an XML-defined navigational map, the
engine is scalable as the map can contain any
number of stops and rules. Rule and stop
dependencies can be added, as well as multiple rules
for the same address. Arabella is a multithreaded
environment that is prepared to deal with these
situations. Extensibility is also a key feature of this
application. Its modular approach and small code
base allow the quick addition of new features or the
reconfiguration of existing ones.

However, the most important feature is
flexibility. Interleaving web requests with text
processing allows the execution of a set of important
functionalities. Arabella is a web crawler that allows
dynamic generation of new URL addresses in real
time and storage of gathered information for further
use in the execution cycle. With proper
configuration, Arabella can also crawl through any
type of online accessible document whether is
HTML, CSV, XML, REST web service, tab
delimited or simple text.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under
grant agreement nº 200754 - the GEN2PHEN
project.

REFERENCES

Berners-Lee, T., Hendler, J. & Lassila, O. (2001) The
 Semantic Web. Sci Am, 284, 34-43.
Brin, S. & Page, L. (1998) The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and ISDN Systems, 30, 107-117.

Chakrabarti, S. (2003) Mining the Web: Discovering
Knowledge from Hypertext Data, Morgan Kauffman.

Ding, L., Finin, T., et al. (2004) Swoogle: A Search and
Metadata Engine for the Semantic Web. Language,
652-659.

Eichmann, D. (1994) The RBSE Spider -Balancing
Effective Search Against Web Load. Proceedings of
the First International World Wide Web Conference.
Geneva, Switzerland.

Fokkema, I. F., Den Dunnen, J. T. & Taschner, P. E.
(2005) LOVD: easy creation of a locus-specific
sequence variation database using an "LSDB-in-a-
box" approach. Human Mutation, 26, 63-68.

Lin, S., Li, Y.-M. & Li, Q.-C. (2008) Information Mining
System Design and Implementation Based on Web
Crawler. Science, 1-5.

Menczer, F., Pant, G., et al. (2001) Evaluating Topic-
Driven Web Crawlers. Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York,
NY, USA, ACM.

Miller, R. C. & Bharat, K. (1998) SPHINX: a framework
for creating personal, site-specific Web crawlers.
Computer Networks and ISDN Systems, 30, 119-130.

Mukhopadhyay, D., Biswas, A. & Sinha, S. (2007) A new
approach to design domain specific ontology based
web crawler. 10th International Conference on
Information Technology (ICIT 2007), 289-291.

Ntoulas, A., Zerfos, P. & Cho, J. (2005) Downloading
textual hidden web content through keyword queries.
JCDL '05: Proceedings of the 5th ACM/IEEE-CS joint
conference on Digital libraries. New York, NY, USA.

Oliveira, J. L., Dias, G. M. S., et al. (2004) DiseaseCard:
A Web-based Tool for the Collaborative Integration of
Genetic and Medical Information. Proceedings of the
5th International Symposium on Biological and
Medical Data Analysis, ISBMDA 2004. Barcelona,
Spain, Springer.

Peisu, X., Ke, T. & Qinzhen, H. (2008) A Framework of
Deep Web Crawler. 27th Chinese Control Conference.
China, IEEE.

Pinkerton, B. (1994) Finding what people want:
Experiences with the WebCrawler. Proceedings of the
Second International World Wide Web Conference.

Srinivasamurthy, K. (2004) Ontology-based Web Crawler.
Computing, 4-8.

Suel, T. & Shkapenyuk, V. (2002) Design and
Implementation of a High-Performance Distributed
Web Crawler. World Wide Web Internet And Web
Information Systems.

Tripathy, A. & Patra, P. K. (2008) A web mining
architectural model of distributed crawler for internet
searches using PageRank algorithm. 2008 IEEE Asia-
Pacific Services Computing Conference, 513-518.

Tsay, J.-J., Shih, C.-Y. & Wu, B.-L. (2005) AuToCrawler:
An Integrated System for Automatic Topical Crawler.

Machine Learning.

ARABELLA - A Directed Web Crawler

273

