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Abstract: In this paper, a new activation function for the multi-valued neuron (MVN) is presented. The MVN is a 
neuron with complex-valued weights and inputs/output, which are located on the unit circle. Although the 
MVN has a greater functionality than a sigmoidal or radial basis function neurons, it has a limited capability 
of learning highly nonlinear functions. A periodic activation function, which is introduced in this paper, 
makes it possible to learn nonlinearly separable problems and non-threshold multiple-valued functions using 
a single multi-valued neuron. The MVN’s functionality becomes higher and the MVN becomes more 
efficient in solving various classification problems. A learning algorithm based on the error-correction rule 
for an MVN with the introduced activation function is also presented.  

1 INTRODUCTION 

The discrete multi-valued neuron (MVN) was 
introduced by Aizenberg N. and Aizenberg I. 
(1992). This neuron operates with complex-valued 
weights. Its inputs and output are located on the unit 
circle, and for a discrete MVN they are exactly kth 
roots of unity (where k is a positive integer). 
Therefore the MVN's activation function, which was 
proposed by Aizenberg N., Ivaskiv and Pospelov 
(1971), depends only on the argument (phase) of the 
weighted sum. In fact, the discrete MVN utilizes 
general principles of multiple-valued threshold logic 
over the field of complex numbers. These principles 
were introduced by Aizenberg N. and Ivaskiv (1977) 
and then developed and deeply considered by 
Aizenberg I., Aizenberg N. and Vandewalle (2000). 
The key point of this theory is that the values of k -
valued logic are encoded by the kth roots of unity. 
Therefore a function of k -valued logic maps a set of 
the kth roots of unity on itself. 

The discrete MVN has two learning algorithms 
that are presented in detail in (Aizenberg I. et al., 
2000). They are based on simple linear learning 
rules and are derivative-free, what makes them 
highly efficient. This property and the MVN's high 
functionality made this neuron attractive for the 
development of different applications. We have to 
mention among others several associative memories 

with a different topology: the cellular memory 
(Aizenberg N. and Aizenberg I., 1992), the 
Hopfield-like memories (Jankowski, Lozowski and 
Zurada, 1996), (Muezzinoglu, Guzelis and Zurada, 
2003), (Lee, 2001, 2004), the memories for storing 
medical images (Aoki and Kosugi, 2000), (Aoki, 
Watanabe, Nagata and Kosugi, 2001), and the 
memory with random connections (Aizenberg I. et 
al., 2000). The MVN was also used as a basic 
neuron in a cellular neural network (Aizenberg I. 
and Butakoff C., 2002). 

In (Aizenberg I., Moraga and Paliy, 2005), a 
continuos MVN was proposed. In the same paper, it 
was suggested to use the MVN as a basic neuron in a 
feedforward neural network. This network, which 
can consist of both continuous and discrete MVNs, 
and its derivative-free backpropagation learning 
algorithm were explicitly presented in (Aizenberg I. 
and Moraga, 2007). Aizenberg I., Paliy, Zurada and 
Astola (2008) have generalized this learning 
algorithm for a network with an arbitrary amount of 
output neurons. Since a single MVN is more flexible 
and has a higher fucntionality than, for example, 
sigmoidal or radial-basis function neurons, the 
MVN-based feedforward neural network also has a 
much higher functionality, learns faster, and 
generalizes better than a traditional feedforward 
network and kernel-based networks when solving 
both benchmark and real world problems (Aizenberg 
I. and Moraga, 2007), (Aizenberg I. et al., 2008). 
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However, it is still very attractive to increase the 
functionality of a single neuron, which in turn will 
make it possible to solve highly nonlinear problems 
of pattern recognition and modeling using simpler 
networks.  

In this paper, we consider a multi-valued neuron 
with a modified discrete activation function, which 
is k-periodic. As it was mentioned above, the 
discrete MVN can learn the k-valued threshold 
functions or the threshold functions of k-valued logic 
(Aizenberg N. and Ivaskiv, 1977), (Aizenberg I. et 
al., 2000). However, it is clear that the k-valued 
threshold functions form just a small subset of the k-
valued functions. This means that those functions 
that are not threshold can not be learned using a 
single MVN. The question is: if some k-valued 
function f is not a k-valued threshold function, can it 
be a partially defined m-valued threshold function 
for some m>k? If so, it is possible to learn this 
function using a single MVN, but with an m-valued 
activation function instead of a k-valued activation 
function. 

We will show here one of the possible ways of 
finding such m>k that a k-valued function, which is 
not a k-valued threshold function, will become an m-
valued threshold function. Therefore, while this 
function can not be learned using a single k-valued 
MVN, it will be possible to learn it using a single m-
valued MVN. 

The idea behind our approach is similar to the 
idea, on which a universal binary neuron (UBN) is 
based. The UBN was introduced in (Aizenberg I., 
1991) and then developed in (Aizenberg I. et al., 
2000) and (Aizenberg I., 2008). It is a neuron with 
complex-valued weights and an activation function, 
which separates the complex plane into m equal 
sectors determining the output by the alternating 
sequence of 1,-1,1,-1,… depending on the parity of 
the sector’s number. When m=2, the functionality of 
the UBN coincides with the functionality of a 
classical neuron with a threshold activation function 
(Aizenberg I. et al., 2000). However, if m>2, the 
functionality of the UBN is always higher than that 
of a classical threshold neuron. Thus, when m>2, the 
UBN can learn non-threshold (nonlinearly 
separable) Boolean functions. In fact, such a 
definition of the UBN activation function may be 
considered as an l-multiple duplication of the 
sequence {1,-1} and of the sectors into which the 
complex plane is divided, respectively. Hence 

2m l=  is the total number of sectors in the UBN 
activation function. If 2l >  then the single UBN 
may learn nonlinearly separable Boolean functions. 

In this paper, we suggest to use a similar 
approach to increase an MVN’s functionality. If 
there is some function ( )1,..., nf x x  of k-valued 
logic, but this function is not a threshold function of 
k-valued logic and therefore it can not be learned 
using a single discrete MVN with a regular k-valued 
activation function, we suggest to consider the initial 
function in m-valued logic, where m kl= . By 
analogy with the UBN, the complex plane will be 
devided onto m kl=  sectors and the MVN’s 
activation function in this case becomes l-multiple 
and k-periodic. We will define it below. Then we 
will consider a learning algorithm for the MVN with 
this activation function. Finally, we will demonstrate 
how a modified single MVN may learn problems 
which can not be learned using a traditional single 
MVN. This may dramaticly simplify solving many 
different classification problems. For the readrer’s 
convenience we will start from a brief reminder 
about the MVN, UBN, and their learning algorithms. 

2 MULTI-VALUED AND 
UNIVERSAL BINARY 
NEURONS 

2.1 Multi-Valued Neuron 

The discrete multi-valued neuron (MVN) was 
proposed in (Aizenberg N. and Aizenberg I., 1992) 
as a neural element based on the principles of 
multiple-valued threshold logic over the field of 
complex numbers. These principles have been 
formulated in (Aizenberg N. and Ivaskiv, 1977) and 
then developed and deeply considered in (Aizenberg 
I. et al., 2000). A discrete-valued MVN performs a 
mapping between n inputs and a single output. This 
mapping is described by a multiple-valued (k-
valued) function of n variables )( 1 nx ..., ,xf  and it 
can be represented using n+1 complex-valued 
weights as follows: 

)()( 1101 nnn xw...xwwPx ..., ,xf +++= , (1)

where nx ..., ,x1  are the variables, on which the 

performed function depends, and n  , ...,w,ww 10  
are the weights. The values of the function and of 
the variables are complex. They are the kth roots of 
unity: )2exp(  j/kij π=ε , {0 1,..., 1}j , k -∈ , i is 
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an imaginary unity. P is the activation function of 
the neuron: 

( ) exp( 2 )  
if 2 arg  2 ( 1) ,
P z = i j / k , 

  j / k z  j+ / k
π

π π≤ <
 (2)

where j=0, 1, ..., k-1 are values of the k-valued logic, 

nn xw...xwwz +++= 110  is the weighted sum , 

arg z is the argument of the complex number z.  

 
( )( ) exp 2 /P z j i kπ= ⋅  

Figure 1: Geometrical interpretation of the discrete-valued 
MVN activation function. 

Equation (2) is illustrated in Figure 1 Function (2) 
divides the complex plane into k equal sectors and 
maps the whole complex plane onto a subset of 
points belonging to the unit circle. This subset is 
exactly a set of the kth roots of unity. 

The MVN learning is reduced to the movement 
along the unit circle. It is derivative-free. The 
shortest way of this movement is completely 
determined by the error, which is a difference 
between the desired and actual outputs. The error-
correction learning rule and the corresponding 
learning algorithm for the discrete-valued MVN 
were described in detail in (Aizenberg I. et al., 2000) 
and recently modified by Aizenberg I and Moraga, 
(2007): 

( ) ( )1

1
r r q sr

r

CW W X
n z

ε ε+ = + −
+

(3)

where X  is the input vector with the components 
complex-conjugated, n is the number of neuron 
inputs, qε  is the desired output of the neuron, 

( )s P zε =  is the actual output of the neuron (see 
Figure 2), r is the number of the learning iteration, 

rW  is the current weighting vector (to be 
corrected), 1rW +  is the following weighting vector 
(after correction), Cr is the constant part of the 
learning rate (it may always be equal to 1), and rz  
is the absolute value of the weighted sum obtained 
on the rth iteration. A factor 1/ rz  is a variable part 
of the learning rate. The use of it can be important 
for learning highly nonlinear functions with a 
number of high irregular jumps. However, it should 
not be used for learning smooth, non-spiky 
functions. Rule (3) ensures such a correction of the 
weights that the weighted sum moves from sector s 
to sector q (see Figure 2). The direction of this 
movement is determined by the error q sδ ε ε= − . 
The convergence of this learning algorithm is proven 
in (Aizenberg I. et al., 2000). 

 
Figure 2. Geometrical interpretation of the MVN learning 
rule. 

2.2 Universal Binary Neuron 

The universal binary neuron (UBN) was introduced 
in (Aizenberg I., 1991) and then developed and 
considered in detail in (Aizenberg I. et al., 2000). In 
(Aizenberg I., 2008), a new learning algorithm was 
proposed for the UBN. 

A key idea behind the UBN is the use of 
complex-valued weights and an original activation 
function for learning nonlinearly separable Boolean 
functions. A classical threshold activation function 
(sign) separates a real domain into two parts 

( )
1,       0

sign
1,      0.

z
z

z
≥⎧

= ⎨− <⎩
 

If k=2 in (2) then activation function (2) 
separates the complex domain into two parts as well 
(the complex plain is separated into the top 
semiplane (“1”) and the bottom semiplane (“-1”):  

i 

0 

1 

k-2Z 

J-

J J+1 

k-1

sε
qε
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( )
1,   0 arg( )
1,  arg( ) 2 .

z
P z

z
π

π π
≤ <⎧

= ⎨− ≤ <⎩
 

However, this activation function does not 
increase the neuron’s functionality: although the 
weights are complex, the neuron still can only learn 
linearly separable functions. In (Aizenberg I., 1991), 
it was suggested to use an l-multiple activation 
function 

( ) ( 1)
if 2 arg( ) 2 ( 1)

2 ,

j
BP z = , 
  j / m z j + / m,  

m = l, l
π π

−
≤ <

∈N
(4)

where l is some positive integer, j is a non-negative 
integer mj <0 ≤ .  

 
Figure 3: Definition of the function (4). 

Activation function (4) is illustrated in Figure 3. 
Function (4) separates the complex plane into m =2l 
equal sectors. It determines the neuron’s output by 
the alternating sequence of 1, -1, 1, -1,… depending 
on the parity of the sector’s number. It equals to 1 
for the complex numbers from the even sectors 0, 2, 
4, ..., m-2 and to -1 for the numbers from the odd 
sectors 1, 3, 5, ..., m-1. 

As it was shown in (Aizenberg I., 1991) and, 
(Aizenberg I. et al., 2000), any non-threshold 
Boolean function (of course, including XOR and 
parity n) may be learned by a single UBN with 
activation function (4), and no network is needed to 
learn them.  

The question is: will a similar modification of 
activation function (2) lead to an increase in the 
MVN’s functionality? 

3 MULTIPLE L-REPETITIVE 
MVN’S DISCRETE 
ACTIVATION FUNCTION  

Let { }2 11, , ,..., k
k k k kE ε ε ε −=  (where 2 /i k

k e πε =  

is the primitive kth root of unity) be the set of the kth 
roots of unity. Let O be the continuous set of the 
points located on the unit circle. Let 

{ }0,1,..., 1K k= − be the set of the values of k-

valued logic. Let )( 1 nx ..., ,xf be a function and 

either : n
kf E K→  or : nf O K→ . Hence, the 

range of f is discrete, while its domain is either 
discrete or continuous. In general, its domain may be 
even hybrid. If some function 

1(   ), , , , , 1,...,n i j j j jf y , ..., y y a b a b j n⎡ ⎡∈ ∈ =⎣ ⎣ R  

is defined on the bounded subdomain n nD ⊂ R   
( : nf D K→ ), then it can be easily transformed to 

: nf O K→  by a simple linear transformation 
applied to each variable: 

[ [

,

2 0,2 , 1,2,..., ,

j j j

j j
j

j j

y a b

y a
j n

b a
ϕ π π

⎡ ⎡∈ ⇒⎣ ⎣
−

⇒ = ∈ =
−

 

and then , 1, 2,...,ji
jx e O j nϕ= ∈ =  is the 

complex number located on the unit circle. Hence, 
we obtain the function 1(   ) : n

nf x , ..., x O K→ . 

If this function )( 1 nx ..., ,xf  is not a k-valued 
threshold function, it can not be learned by a single 
MVN with the activation function (2). 

Let us “immerse” the k-valued function 
)( 1 nx ..., ,xf  into an m-valued logic, where m kl= , 

l is integer and 2l ≥ . To do this, let us define the 
following new discrete activation function for the 
MVN: 

( ) mod  
if 2 arg  2 ( 1) ,

0,1,..., 1; , 2.

lP z = j k, 
 j / m z  j+ / m

j m m kl l
π π≤ <

= − = ≥
 (5)

This definition is illustrated in Figure 4. Activation 
function (5) separates the complex plane onto m 
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equal sectors and t K∀ ∈  there are exactly l 
sectors, where (5) equals to t. 

 
Figure 4: Geometrical interpretation of the l-repeated 
multiple discrete-valued MVN activation function (5). 

This means that activation function (5) establishes 
mappings from kE  into { }2 11, , ,..., k

m m m mE ε ε ε −=  

and from K into 
{ }0,1,..., 1, , 1,..., 1M k k k m= − + − , respectively. 

Since m kl=  then each element from M and mE  

has exactly l prototypes in K and kE , respectively. 
In turn, this means that the MVN’s output, 
depending in which one of the m sectors (whose 
ordinal numbers are determined by the elements of 
the set M) the weighted sum is located, is equal to 

0 1 1

0,1,..., 1,0,1,..., 1,...,0,1,..., 1.
l

lk m

k k k
−

=

− − −
(6)

Hence the MVN’s activation function in this case 
becomes k-periodic and l-multiple.  

On the other hand, activation function (5) 
“immerses” a k-valued function )( 1 nx ..., ,xf  into 
m-valued logic. This immersing will have a great 
sense, if )( 1 nx ..., ,xf , being a non-threshold 
function in k-valued logic, will be a threshold 
function in m-valued logic and therefore it will be 
possible to learn it using a single MVN. It will be 
shown below that this is definitely the case. 

It is important to mention that if 1l =  in (5) then 
m=k and activation function (5) coincides with 
activation function (2) accurate within the 
interpretation of the neuron’s output (if the weighted 

sum is located in the jth sector then according to (2) 

the neuron’s output is equal to 2 /ij k j
ke Eπ ε= ∈ , 

which is the jth kth root of unity, while in (5) it is 
equal to j K∈ ). 

4 LEARNING ALGORITHM FOR 
THE MVN WITH MULTIPLE  
L-REPETITIVE ACTIVATION 
FUNCTION 

To make the approach proposed in Section 3 active, 
it is necessary to develop an efficient learning 
algorithm for the MVN with activation function (5). 
Such an algorithm will be presented here. 

As it was mentioned above (Section 2), one of 
the MVN learning algorithms is based on error-
correction learning rule (3). Let us adapt this 
algorithm to activation function (5).  

Let )( 1 nx ..., ,xf  be a function of k-valued logic 

and : n
kf E K→  or : nf O K→ . Let this function 

be non-learnable using a single MVN with activation 
function (2). Let us try to learn it in m-valued logic 
using a single MVN with activation function (5). 
Thus, the expected result of this learning process is 
the representation of )( 1 nx ..., ,xf  according to (1), 

where the activation function lP  determined by (5) 

substitutes for the activation function P determined 
by (2). 

This learning process may be based on the same 
learning rule (3), but applied to )( 1 nx ..., ,xf  as to 
the m-valued function. To use learning rule (3), it is 
necessary to determine a desired output. Unlike the 
case of the MVN with activation function (2), a 
desired output in terms of m-valued logic cannot be 
determined unambiguously for the MVN with 
activation function (5). According to (5), there are 
exactly l sectors on the complex plane out of m, 
where this activation function equals to the given 
desired output t K∈ . Therefore, there are exactly l 
mth roots of unity that can be used as the desired 
outputs in rule (3). Which one of them should we 
choose? We suggest using the same approach that 
was used in the error-correction learning algorithm 
for the UBN (Aizenberg I. et al., 2000). UBN’s 
activation function (4) determines an alterning 
sequence with respect to sectors on the complex 
plane. Hence, if the actual output of the UBN is not 
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correct, in order to make the correction, we can 
“move” the weighted sum into either of the sectors 
adjacent to the one where the current weighted sum 
is located. It was suggested to always move it to the 
sector, which is closest to the current weighted sum 
(in terms of the angular distance). The convergence 
of this learning algorithm was proven in (Aizenberg 
I. et al., 2000). 

Let us use the same approach here. Activation 
function (5) determines l-multiple and k-periodic 
sequence (6) with respect to sectors on the complex 
plane. Suppose that the current MVN’s output is not 
correct and the current weighted sum is located in 
the sector { }0,1,..., 1s M m∈ = − . Since 2l ≥  in 

(5), there are l  sectors on the complex plane, where 
function (5) takes the correct value. Two of these l 
sectors are the closest ones to sector s (from right 
and left sides, respectively). From these two sectors, 
we choose sector q whose border is closest to the 
current weighted sum z. Then learning rule (3) can 
be applied. Hence, the learning algorithm for the 
MVN with activation function (5) may be described 
as follows. Let us have N learning samples for the 
function )( 1 nx ..., ,xf  to be learned and 

{ }1,...,j N∈ be the number of the current learning 

sample (initially, 1j = ). One iteration of the 
learning process consists of the following steps: 

1) Check (1) with activation 
function (5) for the learning sample j. 

2) If (1) holds then set 1j j= + .  

3) If j N≤  then go to step 1, 
otherwise go to step 7. 

3) Let z be the current value of the 

weighted sum and ( ) ,sP z s Mε= ∈ . Find 

1q M∈ , which determines the closest 

sector to the sth one, where the output 
is correct, from the right, and find 

2q M∈ , which determines the closest 

sector to the sth one, where the output 
is correct, from the left. 

4) If
( )( )

( )( )
1

2

( 1)2 /

2 /

arg arg mod 2

arg arg mod 2

i q m

iq m

z e

e z

π

π

π

π

+− ≤

≤ −
 

then 1q q=  else 2q q= . 

5) Apply learning rule (3) to adjust 
the weights. 

6) Set 1j j= +  and return to step 1. 
7) End. 

Since according to this learning algorithm the 
learning of a k-valued function is reduced to the 
learning of a partially defined m-valued function, the 
convergence of the learning algorithm may be 
proven in the same manner as the convergence of the 
learning algorithm based on rule (3) and of the UBN 
learning algorithm were proven in (Aizenberg I. et 
al., 2000).  

5 SIMULATIONS 

To confirm the efficiency of the proposed activation 
function and learning algorithm, they were checked 
for the following three problems using a software 
simulator written in Borland Delphi 5.0 running on a 
PC with the Intel® Core™2 Duo CPU.  

5.1 Wisconsin Breast Cancer 
(Diagnostic) 

This famous benchmark database was downloaded 
from the UC Irvine Machine Learning Repository 
(Asuncion and Newman, 2007). It contains 569 
samples that are described by 30 real-valued 
features. There are two classes (“malignant” and 
“benign”) to which these samples belong. 

A single MVN with activation function (2) with 
2k =  fails to learn the entire data set even after 

1,000,000 iterations. However, a single MVN with 
activation function (5) with 2, 2, 4k l m= = =  
learns the problem with no errors. Ten runs of the 
learning process started from different random 
weights resulted in convergence after 649-1300 
iterations, which took a few seconds. 

We have also tested the ability of a single MVN 
to solve classification problem. 10-fold cross 
validation was used as it is recommended in 
(Asuncion and Newman, 2007). Every time the data 
set was divided into a learning set (400 samples) and 
a testing set (169) samples. After the learning set 
was learned completely with no errors, the 
classification of the testing set samples was 
performed. A classification rate of 96.5%-97.5% 
was achieved. This is comparative to the best known 
result (97.5%) (Asuncion and Newman, 2007). 
However, it is important to note that our method 
solves the problem using just a single neuron, while 
in the previous works either different networks or 
linear programming methods were used. 
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5.2 Sonar 

This famous benchmark database was also 
downloaded from the UC Irvine Machine Learning 
Repository (Asuncion and Newman, 2007). It 
contains 208 samples that are described by 60 real-
valued features. There are two classes (“mine” and 
“rock”) to which these samples belong. 

A single MVN with activation function (2) with 
2k =  fails to learn the entire data set even after 

1,000,000 iterations. However, the single MVN with 
activation function (5) with 2, 2, 4k l m= = =  
learns the problem with no errors. Ten runs of the 
learning process started from different random 
weights resulted in convergence after 65-180 
iterations, which took a few seconds. 

We have also tested the ability of a single MVN 
to solve the classification problem. This set is 
initially divided by its creators into learning (104 
samples) and testing (104 samples) subsets. After 
the learning set was learned completely with no 
errors, the classification of the testing set samples 
was performed. The classification rate of 88.1%-
91.5% was achieved. This is comparative to the best 
known results reported in (Chen J.-H. and Chen C.-
S., 2002) – 94% (Fuzzy Kernel Perceptron), 89.5% 
(SVM), and in (Aizenberg I. and Moraga, 2007) - 
88%-93% (MLMVN). However, here the problem 
was solved using just a single neuron, while in the 
previous works different neural and kernel-based 
networks were used. 

5.3 k-Valued Non-threshold Function 

Let us consider the following fully defined function 
of 3 variables of 4-valued logic 
( ) ( )1 2 3 1 2 3, , mod 4f x x x x x x= + +  (see the first 

four columns of Table 1). This function, which is the 
analogue of parity 3 function in the Boolean logic, is 
non-threshold in 4-valued logic and can not be 
learned using a single MVN with activation function 
(2) with 4k = . However, this function can be 
learned by a single MVN with activation function 
(5) with 4, 8, 16k l m= = =  (see columns 5-6 of 
Table 1). The learning process converges after 584-
43875 iterations (ten independent runs). 
It is interesting that every time the learning process 
has converged to different weighting vectors, but to 
the same type of a resulting monotonic m-valued 
function (see the 5th column of the Table 1). This 
confirms that the learning of a non-threshold k-
valued function may be reduced to the learning of a 
partially defined m-valued threshold function. 

Table 1: Non-threshold function of 3 variables of 4-valued 
logic and the results of its learning. 

1x 2x 3x ( )1 2 3, ,f x x x
4-valued  

j M∈ , 
{ }0,1,...,15M =  mod 4

lP
j
=

=
0 0 0 0 8 0 
0 0 1 1 9 1 
0 0 2 2 10 2 
0 0 3 3 11 3 
0 1 0 1 9 1 
0 1 1 2 10 2 
0 1 2 3 11 3 
0 1 3 0 12 0 
0 2 0 2 10 2 
0 2 1 3 11 3 
0 2 2 0 12 0 
0 2 3 1 13 1 
0 3 0 3 11 3 
0 3 1 0 12 0 
0 3 2 1 13 1 
0 3 3 2 14 2 
1 0 0 1 9 1 
1 0 1 2 10 2 
1 0 2 3 11 3 
1 0 3 0 12 0 
1 1 0 2 10 2 
1 1 1 3 11 3 
1 1 2 0 12 0 
1 1 3 1 13 1 
1 2 0 3 11 3 
1 2 1 0 12 0 
1 2 2 1 13 1 
1 2 3 2 14 2 
1 3 0 0 12 0 
1 3 1 1 13 1 
1 3 2 2 14 2 
1 3 3 3 15 3 
2 0 0 2 10 2 
2 0 1 3 11 3 
2 0 2 0 12 0 
2 0 3 1 13 1 
2 1 0 3 11 3 
2 1 1 0 12 0 
2 1 2 1 13 1 
2 1 3 2 14 2 
2 2 0 0 12 0 
2 2 1 1 13 1 
2 2 2 2 14 2 
2 2 3 3 15 3 
2 3 0 1 13 1 
2 3 1 2 14 2 
2 3 2 3 15 3 
2 3 3 0 16 0 
3 0 0 3 11 3 
3 0 1 0 12 0 
3 0 2 1 13 1 
3 0 3 2 14 2 
3 1 0 0 12 0 
3 1 1 1 13 1 
3 1 2 2 14 2 
3 1 3 3 15 3 
3 2 0 1 13 1 
3 2 1 2 14 2 
3 2 2 3 15 3 
3 2 3 0 16 0 
3 3 0 2 14 2 
3 3 1 3 15 3 
3 3 2 0 16 0 
3 3 3 1 17 1 

A MULTI-VALUED NEURON WITH A PERIODIC ACTIVATION FUNCTION

353



 

6 CONCLUSIONS 

We have presented here a new activation function 
for a multi-valued neuron. This l- multiple activation 
function makes it possible to learn nonlinearly 
separable problems and non-threshold multiple-
valued functions using a single multi-valued neuron. 
This significantly increases the MVN’s functionality 
and makes the MVN more efficient in applications. 
The learning algorithm for the MVN with the l- 
multiple activation function was also presented. 
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