
LEVERAGING LIGHT-WEIGHT FORMAL METHODS WITH
FUNCTIONAL PROGRAMMING APPROACH ON CLOUD

Shigeru Kusakabe, Yoichi Ohmori and Keijiro Araki
Graduate School of Information Science and Electrical Engineering, Kyushu University

744, Motooka, Nishi-ku, Fukuoka city, 819-0395, Japan

Keywords: Light-weight formal methods, Testing, Cloud computing, Parallel processing, Functional programming,
MapReduce programming.

Abstract: We discuss the features of functional programming related to formal methods and an emerging paradigm,
Cloud Computing. Formal methods are useful in developing highly reliable mission-critical software. How-
ever, in light-weight formal methods, we do not rely on very rigorous means, such as theorem proofs. Instead,
we use adequately less rigorous means, such as evaluation of pre/post conditions and testing specifications,
to increase confidence in our specifications. Millions of tests may be conducted in developing highly reliable
mission-critical software in a light-weight formal approach. We consider an approach to leveraging light-
weight formal methods by using ”Cloud.” Given a formal specification language which has the features of
functional programming, such as referential transparency, we can expect advantages of parallel processing.
One of the basic foundations of VDM specification languages is Set Theory. The pre/post conditions and
proof-obligations may be expressed in terms of set expressions. We can evaluate this kind of expression in
a data-parallel style by using MapReduce framework for a huge set of test cases over cloud computing en-
vironments. Thus, we expect we can greatly reduce the cost of testing specifications in light-weight formal
methods.

1 INTRODUCTION

Functional programming has many advantages in-
cluding features useful to create short, fast, and safe
software(Hughes, 1989). In this paper, we focus
on the features serving as a glue between light-
weight formal methods and a new programming
model MapReduce on emerging Cloud Computing
paradigm.

While formal methods are useful in developing
highly reliable mission-critical software, we do not
rely on very rigorous means, such as theorem proofs,
in light-weight formal methods. Instead, in or-
der to increase confidence in our specifications, we
use adequately less rigorous means, such as eval-
uation of pre/post conditions and testing specifica-
tions. While the specific level of rigor depends on
the aim of the project, millions of tests may be con-
ducted in developing highly reliable mission-critical
software in a light-weight formal approach. For
example, in an industrial project using VDM++, a
model-oriented formal specification language(Larsen
et al., 1998), they developed formal specifications

of about 100,000 steps including test cases (about
60,000 steps) and comments written in the natural lan-
guage(Kurita et al., 2008). They carried out about
7,000 black-box tests and 100 million random tests.
We believe Cloud Computing is useful in performing
this kind of activity.

The Cloud Computing paradigm seems to bring a
lot of changes in many IT fields. We believe it also
has impact on the field of software engineering and
consider an approach to leveraging light-weight for-
mal methods by using Cloud. Given a formal speci-
fication language, such as VDM-SL, which supports
functional programming style(Fitzgerald and Larsen,
1998), we can exploit the features suitable for paral-
lel processing such as referential transparency. One
of the basic foundations of VDM specification lan-
guages is Set Theory. The pre/post conditions and
proof-obligations may be expressed in terms of set
expressions. We can evaluate this kind of expression
in a data-parallel style by using MapReduce frame-
work for a huge set of test cases over cloud computing
environments(Dean and Ghemawat, 2008). By using
MapReduce framework, we expect we can greatly re-

264
Kusakabe S., Ohmori Y. and Araki K. (2009).
LEVERAGING LIGHT-WEIGHT FORMAL METHODS WITH FUNCTIONAL PROGRAMMING APPROACH ON CLOUD.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 263-268
DOI: 10.5220/0002281802630268
Copyright c© SciTePress

duce the cost of testing specifications in light-weight
formal methods. MapReduce framework provides an
abstract view of computing platforms, and is suit-
able for Cloud Computing which has the following
aspects(Armbrust et al., 2009):

1. The illusion of infinite computing resources avail-
able on demand, thereby eliminating the need for
Cloud Computing users to plan far ahead for pro-
visioning;

2. The elimination of an up-front commitment by
Cloud users, thereby allowing organizations to
start small and increase hardware resources only
when there is an increase in their needs; and

3. The ability to pay for use of computing resources
on a short-term basis as needed and release them
as needed, thereby rewarding conservation by let-
ting machines and storage go when they are no
longer useful.

2 LIGHT-WEIGHT FORMAL
METHODS

Formal methods are useful in developing highly reli-
able mission-critical software, and can be used at dif-
ferent levels:

Level 0: In this light-weight formal methods level,
we develop a formal specification and then a pro-
gram from the specification informally. This may
be the most cost-effective approach in many cases.

Level 1: We may adopt formal development and for-
mal verification in a more formal manner to pro-
duce software. For example, proofs of proper-
ties or refinement from the specification to an im-
plementation may be conducted. This may be
most appropriate in high-integrity systems involv-
ing safety or security.

Level 2: Theorem provers may be used to perform
fully formal machine-checked proofs. This kind
of activity may be very expensive and is only
practically worthwhile if the cost of defects is ex-
tremely expensive.

In light-weight formal methods, we do not rely on
very rigorous means, such as theorem proofs. Instead,
we use adequately less rigorous means, such as evalu-
ation of pre/post conditions and testing specifications,
to increase confidence in specifications, while the spe-
cific level of rigor depends on the goal of the project.

One of the formal methods is to use a model-
oriented formal specification language, such as
VDM-SL and VDM++, to write, verify, and validate
specifications of the products. VDM languages have a

tool with functionalities of syntax check, type check,
interpreter, and generation of proof-obligations. We
can use the interpreter to evaluate pre/post condi-
tions in the specifications and test the specifications.
In addition to explicit-style executable specifications,
implicit-style non-executable specifications can be
checked through the evaluation of pre/post conditions,
and proof-obligations by using interpreter.

One of the basic foundations of the VDM speci-
fication language is Set Theory. The pre/post condi-
tions and proof-obligations are expressed in terms of
set expressions, so that we expect these expressions
can be evaluated by using MapReduce framework. In
addition to evaluating different test scenarios in par-
allel, we can exploit data-parallelism in fine-grained
boolean expressions over huge sets of values. We gen-
erate test cases and easily unfold their evaluation over
cloud computing environments.

3 LIGHT-WEIGHT FORMAL
APPROACH WITH VDM ON
CLOUD

Figure 1 shows the outline of our light-weight formal
approach. In our light-weight formal approach, we
first develop a formal model in VDM languages. Exe-
cutable specification in VDM languages can be evalu-
ated with interpreter. We can also translate a large part
of VDM models into models in a functional program-
ming language as VDM languages share several fea-
tures with functional programming languages. There
have been works focusing on their relations(Borba
and Meira, 1993)(Visser et al., 2005). Both types
of model may be evaluated using MapReduce frame-
work on Cloud, while functional programming lan-
guages seem to have more integrated evaluation envi-
ronment.

3.1 Modelling in VDM

We have following components in formal specifica-
tion models in VDM.

• Data types are built from basic types (int,
real, char, bool etc.), and built by using type
constructors (sets, sequences, mappings,
records). Newly constructed types can be
named and used throughout the model.

• A data type invariant is a Boolean expression used
to restrict a data type to contain only those values
that satisfy the expression.

• Functions define the functionality of the system.
Functions are referentially transparent with no

LEVERAGING LIGHT-WEIGHT FORMAL METHODS WITH FUNCTIONAL PROGRAMMING APPROACH ON
CLOUD

265

(fine grain)

boolean expression
– pre/post condition

– invariant

+ collection of possible values

(coarse grain)

+ random test sequences

specification in VDM
! specification in functional language

Cloud
with

MapReduce

Figure 1: Outline of our approach using Cloud.

side-effects and no global variables. A different
modelling style, operational style, is used in cases
where it is intuitive to have states.

• A pre-condition is a Boolean expression over the
input variables. This expression is used to record
restrictions assumed to hold on the inputs.

• A post-condition is a Boolean expressions relating
inputs and outputs. Function abstraction is pro-
vided by implicit specification when appropriate.
Post-conditions are used when we do not wish to
explicitly define which output is to be returned,
or where the explicit definition would be too con-
crete at the time of modelling.

As an approach of validation to check whether the
model of the target system behaves as desired, we can
test the specification model. In order to efficiently
check the specification on cloud, we discuss inherent
parallelism in evaluating VDM specifications.

3.2 Specification over Collection

There are type constructors to define a finite collec-
tion of values. Conditions using values of such types
may be evaluated over a collection of values in a data-
parallel manner.

set of _ Finite sets
seq of _ Finite sequences
map _ to _ Finite mappings

We discuss set as an example of source of parallelism
in this section. Theset of is a finite set type construc-
tor and there are three ways of defining sets: enumer-
ation, subrange, and comprehension. Comprehension
is a powerful way to define a set. The form of a set
comprehension is:

{value-expression | binding & predicate}

The bindings binds one or more variables to a type
or set. Thepredicate is a logical expression using

the bound variables. While thevalue-expression
is an expression using the bound variables, the
value-expression defines elements of the set being
constructed.

Evaluation of a set comprehension generates all
the values of the expression for each possible assign-
ment of range values to the bound variables for which
the predicate is true. We often use sets in the speci-
fication model in VDM languages. We may have to
handle a huge number of values even in a single eval-
uation of a specification.

We can gain confidence through tests on the for-
mal model. Systematic testing is possible, in which
we define a collection of test cases, execute each test
case on the formal model, and compare with expec-
tation. Test cases can be generated by hand or auto-
matically. Automatic generation can produce a vast
number of individual test cases.

VDM languages share many features with func-
tional programming languages. We expect we can
exploit MapReduce framework in evaluating VDM
specifications. Techniques for test generation in func-
tional programs can carry over to formal models es-
pecially when written in the functional style(Claessen
and Hughes, 2000).

3.3 Using MapReduce

MapReduce programming model is useful in process-
ing and generating large data sets on a cluster of ma-
chines. Programs are written in a functional style,
in which we specify a map function that processes
a key/value pair to generate a set of intermediate
key/value pairs, and a reduce function that merges all
intermediate values associated with the same interme-
diate key.

Its implementation allows programmers to eas-
ily utilize the resources of a large distributed system

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

266

without expert skills for parallel and distributed sys-
tems. MapReduce programs are automatically paral-
lelized and executed on a large cluster of machines.
The run-time system takes care of the details of par-
titioning the input data, scheduling the program’s ex-
ecution across a set of machines, handling machine
failures, and managing the required inter-machine
communication.

3.4 Hadoop Streaming

Hadoop, open source software written in Java, is a
software framework implementing MapReduce pro-
gramming model(Hadoop,). While we write map-
per and reducer functions in Java by default in this
Hadoop framework, Hadoop distribution contains a
utility, Hadoop streaming. The utility allows us to
create and run Map/Reduce jobs with any executable
or script as the mapper and/or the reducer. The util-
ity will create a Map/Reduce job, submit the job to an
appropriate cluster, and monitor the progress of the
job until it completes. When an executable is spec-
ified for mappers, each mapper task will launch the
executable as a separate process when the mapper is
initialized. When an executable is specified for reduc-
ers, each reducer task will launch the executable as a
separate process then the reducer is initialized.

This Hadoop streaming is useful in invoking in-
terpreter of VDM languages and executing functional
programs with MapReduce framework.

4 PRELIMINARY EVALUATION

We consider the impact of Cloud with MapReduce
framework on leveraging light-weight formal meth-
ods. We focus on the productivity in preparing the
platform and the scalability of the platform in increas-
ing its size.

4.1 Platform

According to (Armbrust et al., 2009), Cloud Comput-
ing is the sum of SaaS and Utility Computing, but
does not normally include Private Clouds, which is
the term to refer to internal datacenters of a business
or other organization that are not made available to
the public. However, we use a private cloud comput-
ing platform, which is a small version of IBM Blue
Cloud, for our preliminary evaluation. Figure 2 shows
the outline of our cloud. In our Cloud platform, we
can dynamically add or delete servers which com-
pose the Cloud if the machines are x86 architecture
and able to run Xen. We can add a new server as

the resource of Cloud by automatically installing and
setting up Domain 0 (Dom0) through network boot.
When a user requests a computing platform from the
Web page of Cloud portal, the user can specify the vir-
tual OS image (Domain U (DomU) of Xen in our plat-
form) and applications from registered ones as well as
the number of virtual CPUs (VCPUs), the amount of
memory and storage within the resource of Cloud. In
our Cloud, the number of VCPUs is limited within
the number of physical CPUs to guarantee the perfor-
mance of DomU. When the request is admitted, the
requested computing platform is automatically pro-
vided.

Our Cloud supports an automatic set up of Hadoop
programming environment in provisioning requested
platforms. We need the following steps to set up
Hadoop environment:

1. Installing base machines into nodes

2. Installing Java

3. Mapping IP address and hostname of each ma-
chine

4. Permitting non-password login from the master
machine to all the slave machines

5. Configuring Hadoop on the master machine

6. Copying the configured Hadoop environment to
all slave machines from the master machine

Setting up Hadoop Platform (Step 2 - 6). Our
Cloud is able to perform the step 2, 3, 5, and 6 au-
tomatically to set up the Hadoop environment by se-
lecting Hadoop as the application in provisioning the
platform.

Addition of Base Machine. For the step 1, we only
have to set the machine network bootable in the BIOS
configuration when adding the machine to our Cloud.

4.2 Scalability in Cloud Platform

We evaluate the scalability of our approach when in-
creasing the number of the slave machine nodes of in
running Hadoop streaming on our Cloud. We mea-
sure the elapsed time of simple program with the data
of 1GB and 5GB. We change the number of the slave
machines from 2 to 9. All the slave machines have
1GB of memory and 20GB of storage. Users cannot
control the allocation of the master and the slave ma-
chines on the physical machines in our Cloud.

We show the result in Figure 3. As we see in Fig-
ure 3, the increase of the number of nodes does not
always reduce the elapsed time in both data size. For
example, the elapsed time increases when we increase
the number of DomUs from 2 to 3 with the data of
1GB and from 4 to 5 with the data of 5GB.

LEVERAGING LIGHT-WEIGHT FORMAL METHODS WITH FUNCTIONAL PROGRAMMING APPROACH ON
CLOUD

267

Cloud Manager User

Cloud

Portal VM VM VM VM

Hadoop
Provisioning

Provisioning

Server

LDAP Server

NFS Server

Resources CPU servers / storage servers

Administration

Server

NFS Server

Server
Server Administrator

Figure 2: Overview of our private Cloud.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

number of machines

1 GB

5 GB

Figure 3: Scalability of a small program in increasing the
number of nodes of Hadoop.

Thus, the performance of Hadoop did not always
scale according to the number of the slave machines
provisioned in our Cloud. Users are not aware of
the hierarchy of the locality between each physical
machine such as machines, chassis, and racks. The
group of nodes provisioned over different hierarchies
can degrade the performance caused by the cost of
communication. However, we can expect some scal-
ability, while it is easy to set up platform and scale
up/down the size of platform.

5 CONCLUDING REMARKS

We discussed our idea to leverage light-weight for-
mal methods, which use specification languages with
functional style, such as a model oriented forma spec-
ification language VDM-SL, and a functional pro-
gramming languages, such as Haskell, on Cloud. By
applying MapReduce framework, we can expect scal-

able speed-up without caring the details of paral-
lel and distributed processing. Although preliminary
evaluation shows some problems and we have a lot of
feature works, we believe our approach is promising.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., Stoica, I., and Zaharia, M. (2009). Above the
clouds: A berkeley view of cloud computing. Tech-
nical report, UCB/EECS-2009-28, Reliable Adaptive
Distributed Systems Laboratory.

Borba, P. and Meira, S. (1993). From vdm specifications to
functional prototypes.J. Syst. Softw., 21(3):267–278.

Claessen, K. and Hughes, J. (2000). Quickcheck: a
lightweight tool for random testing of haskell pro-
grams.ACM SIGPLAN Notices, 35(9):268–279.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters.Commun. ACM,
51(1):107–113.

Fitzgerald, J. and Larsen, P. G. (1998).Modelling Systems:
Practical Tools and Techniques in Software Develop-
ment. Cambridge University Press.

Hadoop. As of Jun.1, 09. http://hadoop.apache.org/core/.

Hughes, J. (1989). Why functional programming matters.
Computer Journal, 32(2):98–107.

Kurita, T., Chiba, M., and Nakatsugawa, Y. (2008). Ap-
plication of a formal specification language in the de-
velopment of the ”mobile felica” ic chip firmware for
embedding in mobile phone. InFM, pages 425–429.

Larsen, P. G., Mukherjee, P., Plat, N., Verhoef, M., and
Fitzgerald, J. (1998).Validated Designs For Object-
oriented Systems. Springer Verlag.

Visser, J., Oliveira, J. N., Barbosa, L. S., Ferreira, J. a. F.,
and Mendes, A. S. (2005). Camila revival: Vdm meets
haskell. InFirst Overture Workshop.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

268

