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Abstract: This paper presents learning algorithms with neighboring inputs in self-organizing maps for image restoration.
Novel approaches are described that neighboring pixels as well as a notice pixel are prepared as an input, and
a degraded image is restored according to an algorithm of self-organizing maps. The algorithm creates a
map containing one unit for each pixel. Utilizing pixel values as input, image inference is conducted by self-
organizing maps. An updating function with threshold according to the difference between input value and
inferred value is introduced, so as not to respond to noisy input sensitively. The inference of an original image
proceeds appropriately since any pixel is influenced by neighboring pixels corresponding to the neighboring
setting. Experimental results are presented in order to show that our approaches are effective in quality for
image restoration.

1 INTRODUCTION

Self-organizing neural networks realize the network
utilizing the mechanism of the lateral inhibition
among neurons with the local and topological or-
dering. The neighboring neurons would always re-
spond for neighboring inputs (Grossberg, 1976; Will-
shaw and Malsburg, 1976). For the localized inputs
obviously, the outputs react locally. Huge amounts
of information are locally represented and their ex-
pressions form a configuration with topological or-
dering. As an application of self-organizing neural
networks, there are the combinatorial optimization
problem, pattern recognition, vector quantization, and
clustering (Hertz et al., 1991). These are useful when
there exists redundancy among input data. If there
is no redundancy, it is difficult to find specific pat-
terns or features in the data. Although a number
of self-organizing models exist, they differ with re-
spect to the field of application. For self-organizing
neural networks, the ordering and the convergence
of weight vectors have been mainly argued (Koho-
nen, 1995). The former is a topic on the formation
of topology preserving map, and outputs are con-

structed in proportion to input characteristics (Vill-
mann et al., 1997; Maeda et al., 2007). For instance,
there is the traveling salesman problem as an applica-
tion of feature maps, which is possible to obtain fine
results by adopting the elastic-ring method with many
weights compared to inputs (Durbin and Willshaw,
1987; Angéniol et al., 1988). The latter is an issue on
the approximation of pattern vectors, and the model
expresses enormous information of inputs to a few
weights. It is especially an important problem for the
convergence of weight vectors, and asymptotic dis-
tributions and quantitative properties for weight vec-
tors have been mainly discussed when self-organizing
neural networks are applied to vector quantization
(Ritter and Schulten, 1986; Ritter and Schulten, 1988;
Maeda and Miyajima, 1999; Maeda et al., 2005). For
image restoration, the smoothing methods, such as the
moving average filter and the median filter, have been
well known as a plain and useful approach (Gonzalez
and Woods, 2002). From the standpoint of distinct
ground, the inference of original image has been con-
ducted by the model of Markov random field formu-
lated statistically, based on the concept that any pixel
is affected by neighboring pixels (Geman and Geman,
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Figure 1: Structure for self-organizing maps.

1984; Maeda and Miyajima, 2004). However their al-
gorithm require a large number of iterations since they
employ the stochastic model for statistical physics.

Learning algorithms with neighboring inputs in
self-organizing maps for image restoration are pre-
sented in this study. Novel approaches are described
that neighboring pixels as well as a notice pixel are
prepared as an input, and a degraded image is restored
according to an algorithm of self-organizing maps.
Our model forms a map in which one element cor-
responds to each pixel. Image inference is conducted
by self-organizing maps using pixel values as input.
A renewal function with threshold is introduced in
proportion to the difference between input value and
inferred value. According to this function, our ap-
proach is irresponsive to input including noise over-
sensitively. As any pixel is influenced by neighboring
pixels corresponding to neighboring setting, the infer-
ence of an original image is appropriately promoted.
Experimental results are presented in order to show
that our approaches are effective in quality for image
restoration.

2 SELF-ORGANIZING MAPS

Self-organizing maps realize the network with the lo-
cal and topological ordering by utilizing the mecha-
nism of the lateral inhibition among neurons. Neigh-
boring neurons usually respond to the neighboring in-
puts. Huge amounts of information are locally repre-
sented and their expressions form a configuration with
the topological ordering. For self-organizing maps,
Kohonen’s algorithm exists and is known as a pop-
ular and utility learning. In this algorithm, the up-
dating of weights is modified to involve neighboring
relations in the output array. The algorithm is applied
to the structure as shown in Fig. 1. In the vector space
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Figure 2: Correspondence between degraded image and in-
ferred image.

Rn, an inputx, which is generated on the probability
density functionp(x) is defined. The inputx has the
componentsx1 to xn. An output unityi is generally ar-
ranged in an array of one- or two-dimensional maps,
and is completely connected to inputs viawi j .

Letx(t) be an input vector at stept and letwi(0) be
weight vectors at initial values inRn space. For given
input vectorx(t), we calculate the distance between
x(t) andwi(t), and select the weight vector as winner
c minimizing the distance. The process is written as
follows:

c = argmin
i
{‖x−wi‖}, (1)

where arg(·) gives the indexc of the winner.
With the use of the winnerc, the weight vector

wi(t) is updated as follows:

∆wi =

{

α(t)(x−wi) (i ∈ Nc(t)),
0 (otherwise), (2)

whereα(t) is the learning rate and is a decreasing
function of time (0< α(t) < 1). Nc(t) has a set of
indexes of topological neighborhoods for winnerc at
stept.

3 IMAGE RESTORATION

When self-organizing maps are adapted to the trav-
eling salesman problem, many weights compared to
inputs are used. By disposing an array of one-
dimensional map for output units, fine solutions on
the basis of the position of weights after learning have
been obtained approximately. In the meantime, when
self-organizing maps apply to vector quantization, a
few weights compared to inputs are utilized for the
purpose of representing huge amounts of informa-
tion, and a number of discussions have been made
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Figure 3: Distribution of topological neighborhoods.

on asymptotic distributions and quantitative proper-
ties for weight vectors.

In this section, a learning algorithm of self-
organizing maps for image restoration is presented
with the same number both of inputs and weights in
order to infer an original image from a degraded im-
age provided beforehand (Maeda, 2003; Maeda et al.,
2008). The purpose is to infer the original image
from the degraded image containing random-valued
impulse noise. Here, inputχ as the degraded image
and weightr i as the inferred image are defined. A
map forms that one element reacts for each pixel, and
image inference is executed by self-organizing maps
using pixel values as input.

To begin with, the value ofr i is randomly dis-
tributed near the central value of gray scale as initial
value. Next, degraded image withl ×m size is given.
Inputχ as pixel value is arbitrarily selected in the de-
graded image, and letrc be a winner of the inferred
image corresponding toχ. As shown in Fig. 2, both
of the positionsχ andrc agree under the degraded im-
age and the inferred image. Therefore, inferred image
r i is updated as follows:

∆r i =

{

α(t)Θ(χ− r i) (i ∈ Nc(t)),
0 (otherwise), (3)

whereΘ(a) is a function in which the value changes
with thresholdθ(t) presented as follows:

Θ(a) =

{

a (|a| ≤ θ(t)),
0 (otherwise). (4)

θ(t) is the difference between inputχ and inferred
imager i in timet and the decreasing function of time,
asθ(t) = θ0−⌊θ0t/Tmax⌋, whereTmax is a maximum
iteration andθ0 is an initial threshold determined by
trial and error as shown in numerical experiments.
In the case of learning according to self-organizing
maps, weights tend to react sensitively for noisy in-
puts. In order to avoid the tendency, Eq. (3) is

adopted, instead of Eq. (2). By applying the func-
tion, the value which obviously differs from neighbor-
ing pixels would be disregarded. Using the functions,
weights are updated until the termination condition is
met. Image inference is appropriately promoted as
given in the next section.

Figure 3 shows an example of the arrangement of
topological neighborhoods. The circle signifies the
weight and the line which connects the circles de-
notes the topological neighborhood. In this figure,
the black circle expresses the weight of winnerc. As
the set of topological neighborhoods changesNc(t1),
Nc(t2), andNc(t3) when the time variest1, t2, andt3,
respectively, it is shown that the number of topologi-
cal neighborhoods decreases with time. By obtaining
information of the neighboring pixels, it is possible
to complement lost information about pixels based on
the updating function.

Image restoration by self-organizing maps (IRS)
algorithm is presented as follows.

[IRS algorithm]

Step 1 Initialization:
Give initial weights{r1(0), r2(0), · · · , r lm(0)}
and maximum iterationTmax. t← 0.

Step 2 Learning:
(2.1) Choose inputχ at random among{χ1,
χ2, · · · , χlm}.
(2.2) Selectrc corresponding to inputχ.
(2.3) Updaterc and its neighborhoods
according to Eq. (3).
(2.4) t ← t +1.

Step 3 Condition:
If t = Tmax, then terminate, otherwise go to
Step 2.

In this study, a peak signal to noise ratio (PSNR)P
is used as the quality measure after learning for image
restoration. PSNRP is presented as follows (Gersho
and Gray, 1992):

P = 10log10(σ/E) [dB] (5)

whereσ andE are the square of gray-scale length, i.e.,
σ = (Q−1)2 as a gray scaleQ, and mean square error
between the original image and the inferred image,
respectively.

In conventional approach, one pixel of the de-
graded image is given as an input. In this section,
novel approaches are presented that neighboring pix-
els as well as a notice pixel are prepared as inputs,
and the degraded image is restored according to self-
organizing maps. We use the following equation.

∆r i =

{

α(t)Θ(γ(χ)− r i) (i ∈ Nc(t)),
0 (otherwise), (6)
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Table 1: Variant models.

Model Input
I Average of five pixels
II Average of nine pixels
III Median of five pixels
IV Median of nine pixels

(a) Five pixels (b) Nine pixels

Figure 4: Five pixels and nine pixels used in models I, II,
III, and IV.

whereγ(χ) is a function influenced by neighboring
pixels.

With respect toγ(χ), four models are considered
as the input. Table 1 summarizes models I, II, III,
and IV according to the standards of average of five
pixels, average of nine pixels, median of five pixels,
and median of nine pixels as the input, respectively.

In models I and III, five pixels are prepared as in-
puts as shown in Fig. 4 (a). Models II and IV have
nine pixels as inputs (See Fig. 4 (b)). According to
four models, the inputs are changed for image restora-
tion. By altering the inputs like these, the restored im-
ages which differ in quality for the image processing
are constructed as shown in the next section.

4 NUMERICAL EXPERIMENTS

In the numerical experiments, image restoration is
performed to infer the original image with the size
512× 512 and gray scale 256. The degraded im-
age contains 30% noise in comparison with the orig-
inal image, random-valued impulse noise, as shown
in Fig. 5 (a). That is to say, the noise is included
30% pixels which are randomly chosen among the
512× 512 pixels, and chosen pixels are given val-
ues from 0 to 255 at random. Initial weights are
randomly distributed near the central value of gray
scaleQ. Parameters are chosen as follows:l = 512,
m= 512,Q = 256,M = 100,Tmax= 100· lm, N(t) =
N0−⌊N0t/Tmax⌋, andθ(t) = θ0−⌊θ0t/Tmax⌋.

For image restoration, Fig. 5 (b), (c), (d), (e), and
(f) show results of conventional model (IRS), Model
I, Model II, Model III, and Model IV, respectively.
The initial neighborhood and the initial threshold are
N0 = 3 andθ0 = 95 for IRS,N0 = 6 andθ0 = 69 for

Model I, N0 = 7 andθ0 = 73 for Model II, N0 = 3
andθ0 = 96 for Model III, andN0 = 2 andθ0 = 98
for Model IV. According to the technique given in this
study, the degraded image is restorable. Model III and
Model IV are better than the existing approaches.

Figure 6 shows the effect of the initial threshold
θ0 on accuracy in PSNRP for each of initial neigh-
borhoodN0 = 1,2,3,4,5 for Model III and Model
IV. In this case,P yields the maximum whenN0 = 3
andθ0 = 96 for Model III andP yields the maximum
whenN0 = 2 andθ0 = 98 for Model IV. Figure 5 (e)
and (f) were restored by these values.

As an example of another image, Fig. 7 (a) shows
the degraded image. As well as the above-mentioned
image, the degraded image contains the uniform noise
of 30% compared to the original image. The con-
dition of the computation is equal to that of the ear-
lier description. According to the present algorithm,
results of IRS, Model III, and Model IV are shown
in Fig. 7 (b), (c), and (d), respectively. The initial
neighborhood and the initial threshold areN0 = 3 and
θ0 = 118 for IRS,N0 = 7 andθ0 = 86 for Model I,
N0 = 7 andθ0 = 85 for Model II,N0 = 2 andθ0 = 119
for Model III, andN0 = 2 andθ0 = 121 for Model IV.
It is proven that the degraded image can be also re-
stored in this case. Model III and Model IV are also
greater than the existing approaches.

Figure 8 presents the effect of the initial threshold
θ0 on accuracy in PSNRP for each of initial neigh-
borhoodN0 = 1,2,3,4,5 for Model III and Model IV.
In this case,P yields the maximum whenN0 = 2 and
θ0 = 119 for Model III andP yields the maximum
whenN0 = 2 andθ0 = 121 for Model IV. Figure 7 (c)
and (d) were restored by these values.

Table 2: PSNR for results of MAF, MF, IRS, Model I,
Model II, Model III, and Model IV. (Unit: dB).

Image i Image ii
MAF 22.23 21.65
MF 29.70 28.36
IRS 30.77 28.08

Model I 24.81 23.92
Model II 24.03 23.29
Model III 31.04 29.42
Model IV 31.00 29.40

Table 2 summarizes PSNR for results of Model I,
Model II, Model III, and Model IV compared to the
moving average filter (MAF), the median filter (MF),
and image restoration by self-organizing maps (IRS).
The size of the filter mask is 3×3. It is proven that
Model III and Model IV excel MAF, MF, IRS, Model
I, and Model II for both images i and ii.

For Model III and Model IV, learning proceeds by
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(a) Degraded image i (b) IRS

(c) Model I (d) Model II

(e) Model III (f) Model IV

Figure 5: Degraded image i with 512×512 size and 256 gray-scale, and results of IRS, Model I, Model II, Model III, and
Model IV.
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(a) Model III
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(b) Model IV

Figure 6: PSNR and initial threshold for image i.

receiving input features since neighboring pixels as
well as a notice pixel are utilized. In the computa-
tional effect, Model III is faster than Model IV be-
cause object pixels of computation are four and nine
for Model III and Model IV, respectively.

5 CONCLUSIONS

In this study, learning algorithms with neighboring
inputs in self-organizing maps for image restoration
have been presented and their validity has been shown
through numerical experiments. Novel approaches
were described that neighboring pixels as well as a
notice pixel are prepared as an input, and a degraded

image was restored according to an algorithm of self-
organizing maps. Our model formed a map in which
one element corresponds to each pixel. Image in-
ference was conducted by self-organizing maps us-
ing pixel values as input. A renewal function with
threshold was introduced in proportion to the differ-
ence between input value and inferred value. Accord-
ing to this function, our approach was irresponsive to
input including noise oversensitively. As any pixel
was influenced by neighboring pixels corresponding
to neighboring setting, the inference of an original
image was appropriately promoted. Finally, for the
future works, we will study more effective techniques
of our algorithms.
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(a) Degraded image ii (b) IRS

(c) Model III (d) Model IV

Figure 7: Degraded image ii with 512×512 size and 256 gray-scale, and results of IRS, Model III, and Model IV.
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Figure 8: PSNR and initial threshold for image ii.
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