
WHAT IS AN ASPECT IN REQUIREMENTS ENGINEERING?

Hermann Kaindl
Institute of Computer Technology, Vienna University of Technology, Gusshausstr. 27-29, Vienna, Austria

Keywords: Crosscutting concerns, Aspects, Requirements.

Abstract: Addressing the issue of crosscutting concerns within a software system, the notion of an aspect has been
introduced, first for so-called Aspect-Oriented Programming (AOP) and then, more generally, for Aspect-
Oriented Software Development (AOSD). Unfortunately, this notion is used with two different meanings:
one as a synonym for “crosscutting concern”, and the other as a means to deal with a crosscutting concern
within the software. Later, this notion has been carried over to so-called Aspect-Oriented Requirements En-
gineering (AORE). This raises questions about the meaning(s) of an aspect in this context, and about the
relationship of this notion in AORE and the same notion in AOP. We try to answer these questions and ar-
gue to define an aspect as a means to deal with crosscutting concerns, and not as a synonym of “crosscutting
concern”. Most importantly, an aspect in AORE is not necessarily related to an aspect within the software.

1 INTRODUCTION

Decomposing a software system according to some
given approach leads to a modular decomposition,
where the resulting modules encapsulate certain
concerns. Other concerns, however, are usually not
encapsulated in such modules and they “end up
being scattered across many modules and tangled
with one another” (Elrad et al., 2001). Such concerns
are known as crosscutting concerns.

This was the motivation for developing Aspect-
Oriented Programming (AOP) first, and later
generalizing the approach to Aspect-Oriented
Software Development (AOSD). More recently,
Aspect-Oriented Requirements Engineering (AORE)
received some attention.

However, the term “aspect” as used in AOSD
does not always match well the intuitive and usual
meaning of “aspect” in natural language, and it is
not uniformly defined even in the context of
programming. And is it simply possible to carry the
concepts and techniques over to the realm of
requirements?

We try to pinpoint open issues and to clarify the
notion of an aspect. In particular, we investigate its
meaning in AORE and distinguish crosscutting
concerns in a requirements representation from
crosscutting concerns within the software.

The remainder of this paper is organized in the
following manner. First, we provide some necessary
background on AOSD for making this paper self-

contained. Then we present a critical view of AORE
approaches, focusing on how the notion of an aspect
is defined and used. We also highlight that cross-
cutting concerns in AORE are not necessarily the
same as crosscutting concerns within the software.

2 BACKGROUND ON AOSD

Since we try to answer the question what an aspect
is in AORE, we review first how this term is defined
in AOP and AOSD. As it turns out, there are two
different views, a problem view and a solution view.
In contrast, the term aspect means in natural
language a particular way in which something ap-
pears or may be regarded. So, it is synonymous to,
e.g., appearance, look, or facet.

2.1 Problem View

The first paper on AOP that we are aware of is
(Kiczales et al., 1997). It provides the following
definition (dots are inserted by us):

“With respect to a system and its implementation
using a GP-based language, a property that must
be implemented is:
…

An Aspect, if it can not be Cleanly
Encapsulated in a Generalized Procedure.
Aspects tend not to be units of the system’s
functional decomposition, but rather to be

353
Kaindl H. (2009).
WHAT IS AN ASPECT IN REQUIREMENTS ENGINEERING?.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 354-357
DOI: 10.5220/0002280603540357
Copyright c© SciTePress

properties that affect the performance or
semantics of the components in systemic ways.
…”

We do not think that this text makes it really
clear what an aspect would be, but it seems as
though this term means here the problem of cross-
cutting concerns rather than a means to deal with it.

The following definition from the AOSD Wiki in
the Web pages of the Aspect-Oriented Software
Development community is much more explicit in
this regard:

http://www.aosd.net/wiki/index.php?title=Glossa
ry#aspect

“Aspects are one kind of concern in software
development. With respect to a primary or
dominant decomposition aspects are concerns that
crosscut that decomposition.”

While it is useful to explicitly take crosscutting
concerns into account, what is the point of calling
them “aspects”? In particular, this does not even
match the usual meaning of this notion in natural
language.

2.2 Solution View

Interestingly, the very same Web pages contain a
different definition of “aspect” in the context of the
definition of “concern”, which shows a different
view (dots are inserted by us):

http://www.aosd.net/wiki/index.php?title=Glossa
ry#concern

“… There are many formulations used to capture
concerns as well-identified separate units, aspects
are one such mechanism, that are tuned to
capturing crosscutting concerns.”

We consider this a solution view, since it is about a
“mechanism” to deal with crosscutting concerns,
rather than crosscutting concerns themselves.

Also in the literature of Aspect-Oriented Pro-
gramming (AOP) an aspect is defined, e.g., in (Elrad
et al., 2001) as

 “… a mechanism beyond subroutines and
inheritance for localizing the expression of a
crosscutting concern.”
In AOSD, the term aspect is used, e.g., in

(Katara and Katz, 2003)
 “for a module that is potentially able to
encapsulate software or design artifacts treating
an otherwise crosscutting concern”.
In the same spirit, we transferred this aspect ap-

proach to architectures of general systems involving
mechanical, electronic and software parts
(Arnautovic and Kaindl, 2004). The key point is to
bundle the part of the architectural design that deals

with the crosscutting concern in an extra modular
unit, even though it may crosscut mechanical, elec-
tronic and software parts.

In all three cases, an aspect is clearly something
within the software system, more generally as a
mechanism or more specifically as a module. We
argue that it makes more sense to use the notion of
an aspect for such a means to deal with crosscutting
concerns rather than as a synonym of “crosscutting
concern”. While this use of the notion does also not
match its usual meaning in natural language, it
makes sense as a technical term for a technical solu-
tion.

2.3 “Early Aspects”

More recently, there was a trend to deal with aspects
“earlier” in the life cycle, see, e.g., (Baniassad et al.,
2006):

“Early aspects are concerns that crosscut an
artifact’s dominant decomposition, or base
modules derived from the dominant separation-
of-concerns criterion, in the early stages of the
software life cycle. “Early” signifies occurring
before implementation in any development
iteration.”

Here, requirements and software design are simply
treated together, as opposed to implementation in
AOP.

Also in (Baniassad et al., 2006), a straight-
forward distinction between requirements and ar-
chitecture can be found as follows:

“An aspect in requirements is a concern that
crosscuts requirements artifacts; an aspect in
architecture is a concern that crosscuts
architectural artifacts.”
Still, how do crosscutting concerns of require-

ments artifacts relate to those of architectural arti-
facts? Can the mechanisms to capture them be the
same? What is an aspect in the context of require-
ments?

3 A CRITICAL VIEW OF AORE

Let us have a closer look into the literature of
AORE, where aspects have been carried over to re-
quirements engineering. Also in AORE, some ap-
proaches use this notion as a synonym of “cross-
cutting concern”, while others propose mechanisms
for dealing with such concerns. Both do not make
clear, however, that crosscutting concerns in the
context of requirements are not necessarily the same
as crosscutting concerns inside the software. In this

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

354

spirit, we provide a critical view of AORE.

3.1 Claim of Usefulness for Design and
Implementation

Generally, AORE approaches claim that dealing
with aspects (in either meaning) is useful for soft-
ware development. See e.g., (Baniassad et al., 2006):

“Identifying and managing early aspects helps to
improve modularity in the requirements and
architecture design and to detect conflicting
concerns early, when trade-offs can be resolved
more economically.”

This is, in effect, mixing requirements and software
design, since modularity in the requirements and in
the architecture design are not necessarily the same.

In (Elrad et al., 2001), even a direct link is made
from certain requirements to the implementation
with respect to crosscutting concerns:

“Aspectual requirements are concerns that (for
common structural decompositions) introduce
crosscutting in the implementation.”

3.2 Hidden Assumption

The part of this quote “for common structural de-
compositions” may even indicate an otherwise well-
hidden assumption. Most AORE approaches seem to
tacitly assume that there is the same (or at least
similar) dominant decomposition of the require-
ments (from outside the software) and of the soft-
ware system itself!

Only under such an assumption, the same con-
cerns might crosscut the requirements and the soft-
ware design and implementation. So, is it usually
fulfilled?

The requirements are often decomposed into
functional and non-functional ones. The functional
requirements are often grouped according to a func-
tional decomposition of the overall functionality
needed. Use cases are related to each other in use
case diagrams. Such diagrams may be viewed as
representing a functional decomposition according
to use. With respect to such a dominant decomposi-
tion, at least some of the non-functional require-
ments usually crosscut the functional requirements
and/or use cases.

Is the software internally always decomposed ac-
cording to these same principles? This is not nec-
essarily the case, since certain architectural styles
such as layers, distributed architecture, repository
style etc. impose other decompositions, at least in
addition. Ironically, the non-functional requirements
are the ones that may indicate a certain software
architecture following a different decomposition,

e.g., security requirements may indicate a layered
architecture.

3.3 Mix of Requirements and Software
Design

So, there is a similar confusion of requirements and
software design in AOSD as previously in object-
oriented development methods (Kaindl, 1999).
Much as the wide-spread confusion of “analysis”
and “design” especially in the object-oriented com-
munity, this confusion may create issues both in
theory and in practical applications.

3.4 AORE Approaches based on this
Assumption

The following AORE approaches seem to be based
on the hidden assumption to have the same de-
compositions for requirements and within the soft-
ware:
 In (Rashid et al., 2002), a systematic way of

identifying crosscutting concerns using and with
respect to viewpoints is presented. It leads to
understanding crosscutting concerns in a
representation of requirements that is organized
according to viewpoints. We could not find there
any indication about consequences for possible
aspects within the software, however. Whether or
not the same crosscutting concerns will exist in-
side the software will largely depend on the
dominant decomposition of this software.

 In (Yu et al., 2004), a systematic way of identi-
fying crosscutting concerns from goal models is
presented (including “functional goals” and
“soft-goals”). The dominant decomposition
appears to be a functional decomposition. Also
here we could not find any indication about
consequences for possible aspects within the
software. Whether or not the same crosscutting
concerns will exist inside the software, will also
here largely depend on the dominant
decomposition of this software.

 In (Baniassad and Clarke, 2004), a systematic
way of identifying crosscutting concerns is
presented, and modeling them in a software
design language using their Theme approach.
This seems to bridge requirements and design
explicitly regarding crosscutting concerns.

3.5 AORE Approaches using Aspects
as a Solution Concept

The following AORE approaches use the aspect no

WHAT IS AN ASPECT IN REQUIREMENTS ENGINEERING?

355

tion as a solution concept for dealing with cross-
cutting concerns:
 In (Katz and Rashid, 2004), aspects are basic

“modules” of requirements specifications, repre-
sented using XML tagging. Such an aspect
groups crosscutting requirements. This is in the
spirit of the aspect definition of (Katara and
Katz, 2003), but the hidden assumption of the
same dominant decomposition of the re-
quirements and of the software system itself
seems to be behind this approach as well.

 In (Xu et al., 2006), a very appealing application
of the aspects idea from programming in use
cases is proposed. The program code of the
former corresponds to the action sequences of
the latter, both being behavior specifications.
The former behavior is inside the software,
while the latter is behavior in the composite
system (including the software system and the
user). While this approach leads to untangling
of the scenarios of these use cases, it is not clear
what the consequences are for untangling of
code in the implementation.

4 CONCLUSIONS

The very notion of an aspect in software develop-
ment is a misnomer somehow, since it barely
matches the intuitive and usual meaning of “aspect”
in natural language. Even worse, it is ambiguously
defined in AOP.

Therefore, we tried to clarify the different
meanings of “aspect”, with a focus on AORE. We
argue to define it as a means to deal with cross-
cutting concerns, and not as a synonym of “cross-
cutting concern”.

From a research point of view, it is important to
have a conceptually clean view of these issues and
concepts. Otherwise, there may be confusion in
practical applications. In particular, the hidden as-
sumption of the same dominant decomposition of
the requirements and the software itself is danger-
ous. Whenever it is not fulfilled, a crosscutting con-
cern identified in a requirements representation is
not necessarily a crosscutting concern inside the
software, i.e., in design and implementation.

Still, AORE is useful in its spirit of dealing with
crosscutting concerns “early” and also in the context
of requirements. This may lead to a better under-
standing of the requirements and of some of the is-
sues involved in developing the system. However, it
is necessary to consider the decompositions used in
the requirements representation and in the software

itself. An aspect identified in aspect-oriented re-
quirements engineering is not necessarily related to
an aspect within the software.

ACKNOWLEDGEMENTS

Edin Arnautovic provided useful comments to an
earlier version of this paper.

REFERENCES

Arnautovic, E., Kaindl, H., 2004. Aspects for crosscutting
concerns in systems architectures?, In Proc. of the
Second Annual Conference on Systems Engineering
Research (CSER-04), pp. 1–10.

Baniassad, E., Clarke, S., 2004. Theme: An Approach for
Aspect-Oriented Analysis and Design. In Proc. of the
26th International Conference on Software Engineer-
ing (ICSE’04), pp. 158–167.

Baniassad; E., Clements, P.C., Araujo, J., Moreira, A.,
Rashid, A., Tekinerdogan, B., 2006. Discovering early
aspects, IEEE Software, 23(1): 61–70.

Elrad, T., Filman, E.R., Bader, A., 2001. Aspect-oriented
programming: Introduction. Communications of the
ACM, 44(10):29–32.

Kaindl, H., 1999. Difficulties in the Transition from OO
Analysis to Design, IEEE Software, 16(5):94–102.

Katara, M., Katz, S., 2003. Architectural Views of
Aspects. In Proc. of the Second International Confer-
ence on Aspect-Oriented Software Development
(AOSD 2003), ACM Press, pp. 1–10.

Katz, S., Rashid, A., 2004. From aspectual requirements to
proof obligations for aspect-oriented systems. In Proc.
of the 12th IEEE International Requirements Engi-
neering Conference (RE’04), pp. 48–57.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., Irwin, J., 1997. Aspect-
Oriented Programming. In Proc. ECOOP '97, LNCS
1241, Springer-Verlag, pp. 220–242.

Rashid, A., Sawyer, P., Moreira, A., Araujo, J., 2002.
Early aspects: a model for aspect-oriented require-
ments engineering. In Proc. of the IEEE Joint Inter-
national Conference on Requirements Engineering
(RE’02), pp. 199–202.

Xu, D., Vivek G., Nygard, K., 2006. An Aspect-Oriented
Approach to Security Requirements Analysis. In Proc.
of the 30th Annual International Computer Software
and Applications Conference (COMPSAC'06), pp. 79–
82.

Yu, Y., Leite, J.C.S.P., Mylopoulos, J., 2004. From goals
to aspects: discovering aspects from requirements goal
models. In Proc. of the 12th IEEE International
Requirements Engineering Conference (RE’04), pp.
38–47.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

356

