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Abstract: The performance of SVMs and ANNs as identifiers of time systems is compared with the purpose of 
analyzing the Cerebral blood flow Autoregulation System, one of the main systems in the field of cerebral 
hemodynamics. The main variables of this system are Arterial Blood Pressure (ABP) variations and changes 
in End-tidal pCO2 (EtCO2). In this work we show that models that have ABP and EtCO2 as input, trained 
with the SVM, are superior to ANN models in terms of the fit of an unknown set, and they are also more 
adequate for measuring the influence of EtCO2 on Cerebral Blood Flow Velocity. 

1 INTRODUCTION 

Since the introduction of SVMs in the early 1990s, 
they have been applied to a large number of 
classification or regression problems, but little work 
has been done on their use as predictors of temporal 
series or for identifying systems over time. Among 
the work that has centered on their application over 
time, the proposals of J. Suykens’ group stand out 
(Suykens et al., 2000; Espinoza et al., 2007) in the 
development of LS-SVM, and that of A. Martínez 
and J.L. Rojo (Rojo-Alvarez et al., 2004; Martínez-
Ramón et al., 2006). But these works are centered 
mainly on forecasting known chaotic series that are 
used as “benchmarks” of the proposed methods.  

In the field of biological signals the use of SVMs 
has been focused on applications in which the 
signals’ characteristics are extracted from the signals 
to use them as static classifiers (Acir and Guzelis, 
2004).  

In this paper we apply SVMs (as multivariate 
identifiers of systems over time) to one of the main 
problems of cerebral hemodynamics: identification 
of the Cerebral Blood Flow Autoregulation System 
(CAS). This method is also compared with the 
performance of Artificial Neural Networks (ANNs). 

The main mechanisms that affect the CAS are 
autorregulation of Arterial Blood Presure (ABP) and 

the reactivity of cerebral blood vessels to arterial 
CO2 pressure (EtCO2) (Widder et al, 1986).  

The most common technique for determining 
reactivity of a subject’s blood vessels to CO2 is to 
measure the change that occurs in CBF as a 
consequence of breathing a mixture of air and 5% 
CO2 (Panerai et al., 2000), using the measurements 
made with the Transcranial Doppler Ultrason to 
estimate CBF Velocity (CBFV). 

The works of Panerai and Simpson (Panerai et 
al., 2000; Simpson et al., 2000) has modeled both 
the EtCO2 signal and Median Arterial Blood 
Pressure (MABP) to predict CBFV, using linear 
models such as cross-correlation analysis over 
frequency and auto-regressive models over time. 
These models have shown that under baseline 
conditions (spontaneous fluctuations) CO2 accounts 
for part of the variability of CBFV, and when 
changes in CO2 are introduced it is possible to 
represent the relation with CBFV by means of a 
linear model. 

The only report on the use of a data-based 
nonlinear model to study the MABP and EtCO2 
variables is that of Mitsis et al. (2004), who use a 
special Laguerre-Volterra network to analyze the 
baseline MABP and EtCO2 signals of ten subjects. 
The conclusions show that the relation between 
EtCO2 and CBFV are highly nonlinear at low 
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frequencies and the time varying system. That paper 
is centered mainly on the analysis of frequency, it 
uses a network based on polynomials that 
approximate efficiently only up to the third order, 
and the CO2 signal considers only the baseline state. 

In the present paper we use more general tools 
(SVM and ANN), that allow modeling MABP and 
CO2 as input, with CBFV as output for the baseline 
case and for induced 5% CO2 changes. With these 
elements we will evaluate the nonlinear behavior of 
the SVM and its comparison with ANNs from the 
standpoint of numerical precision, to predict a 
previously unknown CBFV signal, and we will 
subject the models to CO2 changes to evaluate their 
ability as a clinical method for obtaining reactivity 
to CO2.  

2 METHOD AND MATERIALS 

2.1 Subjects and Measurements 

The data used in this work were obtained from 16 
voluntary subjects (aged between 25 and 51 years) 
who had no history of vascular diseases or 
neurological problems.  

The study was approved by the ethics committee 
of the Royal Infirmary of Leicester, UK. 

CBFV was measured in cm/s in the medial 
cerebral artery by means of a Scimed QVL-120 
Doppler Transcranial system with a 2 MHz 
transducer. MABP was measured in mmHg on the 
patient’s finger with a noninvasive Finapres 2300 
Ohmeda monitor. EtCO2 levels were recorded on a 
Datex Normocap 200 infrared capnograph connected 
to the subject through a nasal mask.  

The three signals were filtered with an order 8 
low pass Butterworth filter with a 20-Hz cutoff 
frequency. The signals were then interpolated 
linearly and normalized between 1 and -1. 

The most common technique for carrying out the 
test of reactivity to CO2 (standard reactivity) is to 
breathe a mixture of air and CO2 and determine the 
changes that it causes in the CBFV. In this work 
each subject was first allowed to breathe a sample of 
ambient air for 5 minutes and was then made to 
breathe a mixture of air and 5% CO2 for 
approximately 3 minutes. 

2.2 Support Vector Machine 

The SVM algorithm adopted was the ν-SVM, 
introduced by Schölkopf et al. (1998). It is based on 
the statistical theory of learning which introduced 

regression as the fitting of a tube of radius ε to the 
data. The decision boundary for determining the 
radius of the tube is given by a small subset of 
training examples called Support Vectors (SV). 

Assuming x  represents the input data vector, the 
output value )(xf  is given by the SVM regression 
using a weight vector w . 

bxwxf += • )()( , , ,, RR ∈∈ bxw N  (1) 

where b is a constant obtained from w . 
The variation of the ν-SVM introduced by 

Schölkopf et al. (1998) consists in adding ε to the 
minimization problem, weighted by a variable ν that 
adjusts the contribution of ε between 0 and 1. 
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In the above equation, l represents the total 
dimension of the data (number of cases), C is a 
model parameter determining the trade-off between 
the complexity of the model, expressed by w , and 
the points that remain outside the tube. Slack 
variables ξ depend on the distance of the data points 
from the regression line. 

We used ε-insensitive loss function. 
The solution of this minimization problem for 

obtaining the weight vectors w  is found by the 
standard optimization procedure for a problem with 
inequality restrictions when applying the conditions 
of Kuhn-Tuker to the dual problem. The main 
advantage of introducing parameter ν ∈ [0-1] is to 
make it possible to control the error fraction and the 
number (or fraction) of SVs with only one 
normalized parameter. 

To solve a nonlinear regression problem it is 
sufficient to substitute the inner product between 
two independent original variables ji xx •  (Eq. 1) by 
a kernel function gaussian radial base function 
(RBF),  

))2/(exp(),( 22
σjiji xxxxk −−=  (3) 

2.3 Artificial Neural Networks 

Use was made of static neural networks with 
external recurrence, which correspond to the 
structure of a multilayer perceptron that can be 
trained using the classic Backpropagation algorithm.  

Different learning algorithms were evaluated, 
such as One Step Secant, Delta Bar Delta, 

COMPARISON BETWEEN SVM AND ANN FOR MODELING THE CEREBRAL AUTOREGULATION BLOOD
FLOW SYSTEM

523



 

Backpropagation through time, and Levenberg 
Marquardt, with the latter delivering the best results. 
This mixed algorithm combines a descending 
gradient with one of quasi-Newton type. Eq. 4 
shows how the algorithm updates the weight at each 
iteration. 
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where 1+kω  is the weight vector in iteration k+1, 

kω  is the weight vector in iteration k, J is the first 
derivatives Jacobian matrix, and e corresponds to the 
network error vector. Factor μ is reduced at each 
successful step, controlling the trade off between a 
descending gradient and a quasi-Newton method.  

Early Stopping was used to get a good 
generalization in the set of tests (Demuth and Beale, 
2001). 

To implement recurrence in both the SVMs and 
the ANNs we used external feedback of the delayed 
outputs (v(t)=CBFV), and current inputs 
(p(t)=MABP, c(t)=EtCO2) and past time instants are 
considered. Training is carried out estimating a 
forward step, as shown in Eq. 5 . 
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The prediction is obtained using the estimated 
values, as shown in Eq. 6. 
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2.4 Evaluation and Statistics 

To evaluate the learning of the models (training and 
evaluation) use is made of the correlation between 
the model’s response ( v̂ ) and the real output signal 
(v).  

To analyze the physiological behavior the 
responses to an MABP step and an EtCO2 step are 
examined in terms of their dynamics. To evaluate 
the clinical potential of the models the reactivity 
index is obtained, extracted from the models after 
applying to them a CO2 step, and it is compared with 
the calculation of the standard reactivity test, which 
is obtained when the subject inhales 5% CO2.  

The statistical significance was evaluated using 
Wilcoxon’s paired test considering that there are 
differences if p<0.05. 

3 RESULTS 

Figure 1 shows the three signals after pre-processing 
them. 
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Figure 1: Representative time-series of MABP, EtCO2, 
and CBFV showing spontaneous fluctuations during 
baseline (left) and breathing of 5% CO2 in air (right). 

The averages and modes of the best parameters 
for the 16 SVM models are shown in Table 1. 

Table 1: Model parameters for SVM structures tested. 

Parameters Baseline 5% CO2 
np 4 [4-8] 5 [3-6] 
nv 3 [1-3] 1 [1-3] 
nc 3 [2-4] 2 [2-4] 
C 395.0±404.4 343.1±416.6 
ν 0.32 ± 0.28 0.43 ± 0.30 
σ 3.72 ± 4.98 19.75 ± 13.24

The modes of the parameters for the ANNs are 
equal for the baseline and the 5% CO2 cases, with 
np=nc=nv=2 and 8 neurons in the hidden layer.  

Table 2: Correlations of the models for the set of tests.  

SVM ANN 
Baseline 5% CO2 Baseline 5% CO2 
0.76 ±0.1 0.95±0.03 0.77±0.16 0.82±0.11 

The results of the correlations in the set of tests 
appear in Table 2. In the baseline case it is seen that 
there are no significant differences between SVM 
and ANN (p=0.71), but when compared with the 
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changes in CO2, the test shows that the SVMs are 
significantly better than the ANNs (p=0.0004). 

The reactivity curves for both types of models 
show an acceptable physiological response, with 
those obtained from training with changes in 5% 
CO2 always better. 

The average results of the standard reactivity test 
of the 16 subjects was 4.05±1.38%/mmHg, 
(average±SD).  

Entering a normalized step response between [0-
1] into the EtCO2 input it is possible to measure each 
subject’s reactivity. The average values of each 
model are shown in Table 3.  

Table 3: Reactivity of the models (%/mmHg). 

SVM ANN 
Baseline 5% CO2 Baseline 5% CO2 
4.32 ±4.2 4.44 ±1.9 2.22 ±3.0 3.13±1.4 

When conducting a hypothesis test between the 
standard reactivity test and the reactivities obtained 
by the models, it is seen that there are no differences 
with the reactivities extracted from the SVMs in 
both cases. Compared to ANNs, the test is 
significantly different in the baseline case (p=0.002) 
and has values very close to the limit for CO2 
changes (p=0.07) 

4 CONCLUSIONS 

The results not only show the superiority of SVMs 
in terms of precision and calculation of reactivity, 
but it is also seen that they show a smaller variance, 
particularly in the case of CO2 changes.  

The baseline mean square error of the SVM 
model is 3%, which is much better than the 20% 
reached in the work of Mitsis et al. (2004).  

We believe that both the global optimization and 
the slack-variable properties of SVMs are 
responsible for the better results in comparison with 
the Artificial Neural Networks. 

The main future challenges involve new studies 
in the field of biomedical signals that may allow the 
evaluation of the other properties of the SVM, such 
as the ability to represent time varying phenomena. 
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