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Abstract: For the construction of support vector machines Mercer Kernels are of considerable importance. Since the 
conditions of Mercer’s theorem are hard to verify in general, a systematic (constructive) description of Mer-
cer kernels which are invariant under a transitive group action is provided. As an example kernels on 
Euclidean space invariant under the Euclidean motion group are treated. En passant a minor but confusing 
error in a seminal paper due to Gangolli is rectified. In addition an interesting relation to radial basis func-
tions is exhibited. 

1 INTRODUCTION 

In recent years support vector machines (SVMs), cf. 
e.g. (Cristianini et al., 2000; Vapnik, 1998), for the 
theoretical background and (Shashua and Levin, 
2002; Shashua and Levin, 2003; Vapnik, 1998) for 
practical applications, have received much attention. 
In this context Mercer kernels, cf. e.g. (Cristianini et 
al., 2000), p. 35 for Mercer’s theorem, which are 
important building blocks of such machines, have 
frequently been used. These kernels determine (im-
plicitly) the feature maps of SVMs and hence their 
separation capability, cf. (Cover, 1965). Thus it 
seems somewhat surprising that, apart from three 
basic types of kernels, cf. e.g. (Haykin, 1999), p. 
333, and some construction rules, cf. e.g. (Cristianini 
et al., 2000), pp. 42-44, (Shawe-Taylor and Cristi-
anini, 2004), p. 75-76, very little appears to be 
known about such kernels amongst Neural Network 
researchers. This is all the more surprising since the 
conditions of Mercer’s theorem are not easily verifi-
able in general. 

Hence it seems worthwhile to apply some 
mathematical results which have, in essence, been 
known for quite some time, to provide a complete 
description of all Mercer kernels which are invariant 
under a transitive group action. This is all the more 
the case since transitive group actions include the 
group of proper rigid motions in Euclidean space 
(this, of course, being of interest for practical appli-
cations, cf. (Schölkopf et al., 1999), p. 339 and p. 
349). As an interesting consequence the important 

role of radial basis functions is seen to result from 
the invariance property of the kernels. En passant a 
minor but confusing error in (Gangolli, 1967) is 
rectified. 

The basic mathematical results that are of inter-
est here mainly stem from the seminal works of 
(Gangolli, 1967) and (Parthasarathy and Schmidt, 
1972) and also from (Falkowski, 1986) (amongst the 
Neural Network community they seem to be little-
known; even Wahba in (Wahba, 1999) does not 
mention them).  

Being intimately connected to an abstract version 
of the Levy-Khinchine formula they have previously 
chiefly been employed to derive the structure of 
Mercer kernels that are described by infinitely di-
visible positive definite functions., cf. (Gangolli, 
1967; Falkowski, 2001; Falkowski, 2003). In this 
paper, however, the transitivity of the group action is 
essential. The reader is invited to consult Minsky’s 
corresponding results in (Minsky and Papert, 1990), 
(the group invariance theorem, p. 48 and theorem 
2.4. p. 53) where finite groups are considered.  

Note that only continuous kernels will be treated 
here. For details and further background information 
the reader is referred to (Bishop, 2006; Falkowski, 
1986; Gangolli, 1967; Parthasarathy and Schmidt, 
1972). For technical convenience all kernels consid-
ered here will be complex-valued in general since 
this greatly simplifies the technical problems con-
cerning unitary representations of the symmetry 
groups. 
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2 BASIC FACTS 

In order to be able to proceed with the relevant com-
putations some basic definitions are needed. 

2.1 Definition  

Given a topological space X and a continuous func-
tion K: X×X → C (the complex numbers), K is 
called a positive definite (p.d.) kernel on X×X if it 
satisfies 

a) K(x,y) = ܭሺݕ,   ሻതതതതതതതതത for arbitrary x, y ∈ Xݔ
b) Given x1, x2, …, xn ∈ X, K(xi,xj) is p.d. 

as a matrix 
Hence, by remark 3.7 in (Cristianini et al., 2000), p. 
35, a Mercer kernel is just a real-valued positive 
definite kernel.  

2.1.1 Example 

If X is a complex Hilbert space with inner product 
denoted by <.. , .>, then the kernel K defined by 

 K(x,y):= <x, y> for arbitrary x, y ∈ X  
is positive definite. Note though that in general the 
space X is not required to carry a vector space struc-
ture (although for many interesting examples it 
does). 

2.1.2 Example 

Suppose that a p.d. kernel K and a polynomial p 
with positive coefficients are given. Then p(K) is 
also a p.d. kernel. 
Proof (sketch): Linear combinations of p.d. kernels 
with positive coefficients are obviously p.d. It re-
mains to show that products of p.d. kernels are again 
p.d. This may be achieved by considering p.d. matri-
ces A:= [aij] and B:= [bij] as covariance matrices of 
two independent normally distributed random vari-
ables X:= [X1, X2, …, Xn] and Y:= [Y1, Y2, …, Yn] 
with mean vector zero. Then the matrix C:= [aij*bij] 
is the covariance matrix of Z:= [X1*Y1, X2*Y2, …, 
Xn*Yn] and hence p.d. Q.E.D. 

2.1.3 Example 

Suppose that f is the characteristic function (Fourier 
transform) of a probability measure on the real line, 
then the kernel K(t1,t2):= f(t2-t1) is well-known to be 
positive definite and f is called a positive definite 
function. 

For further examples and the explicit relation of 
kernels to feature maps the reader is referred to 
(Shawe-Taylor and Cristianini, 2004), pp. 47-84. 

Clearly, however, in this way no systematic descrip-
tion is obtained. 

With the aim to get more explicit information the 
invariance condition under a transitive group action 
is introduced. 

2.2 Definition 

Let G be a topological Group with identity e and X 
be a topological space, as before. G is said to act 
continuously on X if 

1. for every fixed g ∈ G, the map x → gx 
is a bijection.  

2. ex = x for all x ∈ X. 
3. g1(g2x) = (g1g2)x for all g1, g2 ∈ G , x ∈ 

X. 
4. (g, x) → gx is continuous. 
5. for every fixed g ∈ G, the map x → gx 

is a homeomorphism of X. 
The action is transitive if for every x, y ∈ X there 
exists a g ∈ G such that gx = y. 
A p.d. kernel K is said to be invariant under G if 

K(gx,gy) = K(x,y) for all g∈G. 
The following theorem describes G invariant 

kernels in the sense of definition 2.2 in terms of 
unitary representations of G. 

2.3 Theorem 

Let X be a topological space and let G be a group 
acting continuously on it. Suppose that K is a p.d. 
kernel on X×X invariant under G. 
Then there exists a complex Hilbert space H and a 
weakly continuous unitary representation g → U(g) 
of G in H (i.e. U(g1g2) = U(g1)U(g2) and the map g 
→ <U(g )v1,v2> is continuous for every v1, v2 ∈ H) 
and a continuous map v: X → H such that the vec-
tors v(x) span H and 

1. K(x,y) = <v(x),v(y)> 
2. v(gx) = U(g) v(x) 

Proof (rough sketch): This is essentially a conse-
quence of the Kolmogorov consistency theorem. A 
detailed proof is provided in (Parthasarathy and 
Schmidt, 1972), theorems 1.2 and 2.7 as well as 
remark 2.8 Q.E.D. 

3 INVARIANT KERNELS  

Suppose now that G acts transitively on X and 
choose a fixed x0∈ X. Further let  

G(x0):= {g ∈ G| gx0 = x0}  
be the stability subgroup of x0 in G. 
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3.1 Lemma 

The map gx0 → gG(x0) defines a bijection between 
X and the space of left cosets G/G(x0). 
Proof: Simple computation.  Q.E.D. 

In addition the G-action on X corresponds to the 
following G-action on G/G(x0) 

 g1(gG(x0)):= (g1g)G(x0). 
Thus an invariant kernel K on X may equally 

well be considered as an invariant kernel K’ on 
G/G(x0) if the G-action is transitive. Note also that 
any function on G/G(x0) may be considered as a 
function on G that is constant on left cosets (by 
simply assigning the value of a left coset to all the 
elements in that coset) and vice versa. Thus one 
obtains the following theorem. 

3.2 Theorem 

Suppose that f is a positive definite function on G 
(i.e. the kernel H(g1,g2):= f(g2

-1g1) is positive defi-
nite) that is bi-invariant under G(x0) (i.e. f(k1gk2) = 
f(g) for all k1,k2 ∈ G(x0)). Then the kernel K defined 
by  

K(g1x0,g2x0):= f(g2
-1g1) 

is positive definite and invariant under G. Moreover 
every positive definite kernel on X invariant under G 
is of this form. 
Proof: (⇒) 
(i) K is well defined 
Suppose g1x0 = g1’x0 and g2x0 = g2’x0. Then g2’ = 
g2k1 and g1’ = g1k2 for some k1, k2 ∈ G(x0). Hence 
f(g2’-1g1’) = f(k1

-1g2
-1g1k2) = f(g2

-1g1) by bi-
invariance of f under G(x0). 
(ii) The positive definiteness of K follows from the 
positive definiteness of f. 
(iii) The G- invariance of K is immediate from the 
definitions. 
(⇐) 
From theorem 2.3 the following holds  

K(x,y)  = K(g1x0,g2x0) for suitable g1, g2 
by transitivity 

 = <v(g1x0),v(g2x0)> 
 = <U(g2

-1g1)v(x0),v(x0)> 
 = f1(g2

-1g1) say. 
Now clearly f1 is a positive definite function on G 
which is bi-invariant under G(x0).  Q.E.D. 

Corollary to 3.2 

If G(x0) is a normal subgroup of G, then every G-
invariant p.d. kernel on X is given via a p.d. function 
on G/G(x0). 

Proof: Since G(x0) is normal G/G(x0) carries a group 
structure with multiplication ° given by 
 g1G(x0) ° g2G(x0) := g1g2G(x0) 
By lemma 3.1 X may be identified with the group 
G/G(x0) and under this correspondence x0 is mapped 
to the coset G(x0), i.e. the identity element of the 
group G/G(x0). So from the second part of 3.2 the 
following holds (denoting by π :G → G/G(x0) the 
natural projection). 
K(x,y)  = K’(g1G(x0),g2G(x0)) for suitable g1, g2 by  

transitivity 
 = <v(π(g1)),v(π(g2))> 
 = <U(π(g2

-1)π(g1))v(G(x0)),v(G(x0))> 
 = f2(π(g2)-1π(g1)) say. 

Note that in the above calculation the kernel cor-
responding to K after identifying X with G/G(x0) has 
been denoted by K’, and U describes a unitary repre-
sentation of G/G(x0). Moreover f2 may also be con-
sidered as a bi-invariant p.d. function on G by as-
signing constant values to the cosets (since left co-
sets are also right cosets in this case because G(x0) is 
assumed to be normal, there is no ambiguity). 

4 EXAMPLES 

In order to underline the importance of the above 
results some examples are provided below. 

4.1 Example (G Acting on Itself) 

(i) Suppose X = G and G acts on itself by left mul-
tiplication. Further let x0:= e, the identity element of 
G. Then G(x0) = {e} and every p.d. kernel on G is 
clearly of the form 
 K(g1,g2) = f(g2

-1g1)  
  = <U(g2

-1g1)v(e),v(e)> 
This is, of course, a classical result due to Gelfand 
and Raikov. 
(ii) Even more can be said if G is locally compact 
second countable and abelian. Then every unitary 
representation U of G is the direct sum of a direct 
integral (for the technical details see (Naimark, 
1960)) and the trivial representation. Hence there 
exist a measure space (Ω, S, μ) and a measurable 
map τ:Ω → G such that τ(ω) is a nontrivial character 
for every ω (homomorphism into the complex unit 
circle) and that 
 U = ∫ τ(ω) dμ(ω) ⊕ I 
(again, for the notation and technical details the 
reader is referred to (Naimark, 1960).) 
(iii) As a concrete version of (ii) above consider Ω 
= Rn (Euclidean n space) and let  
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 τ(ω)(x):= ei<x,ω>, 
 dμ(ω):= [1/(2π)n/2] exp[-||ω||2/2]dω 
 x0(ω):= 1, 
 x0:= ∫ x0(ω)dμ(ω) (as direct integral) 
 and U(x):= ∫ ei<x,ω> dμ(ω) (as direct integral).. 
Then 

 <U(x) x0, x0> = exp[-||x||2/2]. 
Thus from the above “abstract nonsense” the charac-
teristic function of the standard Gaussian distribu-
tion is obtained. 

4.2 Example (Euclidean Motion 
Group) 

Here the group G of all proper rigid motions of Euc-
lidean n space is considered. Thus let SO(n) denote 
the group of all proper rotations about the origin and 
T the group of all translations. Then obviously G 
acts transitively on Rn. Moreover it is well-known 
that every g ∈ G can uniquely be written as  
 g = tr  where r ∈ SO(n) and t ∈ T. 
Thus the Euclidean motion group is a semi-direct 
product (see e.g. (Mackey, 1968), pp. 37 – 45, for 
further information on semi-direct products) of 
SO(n) and Rn as follows. Suppose that the rotation 
r(i) is represented by a matrix A(i) and the translation 
t(i) is represented by a vector b(i) then if gi = tiri 

 g1g2x = g1(A2x + b2) 
    = A1A2x + b1 + A1b2 
Hence if an element of G is now denoted by (b, A), 
the following group operation is obtained 
 (b1, A1) ° (b2, A2) = (b1 + A1b2, A1A2). 
Clearly Rn appears as a normal subgroup here (the 
first component of the Cartesian product). 

Thus if the point x0 is taken to be the origin then 
the stability subgroup is simply SO(n) and the quo-
tient is Rn. 

Incidentally, in (Gangolli, 1967) it is mistakenly 
claimed that SO(n) is a normal subgroup. This is not 
true and thus the quotient does not carry a group 
structure (addition) but must be considered as space 
of cosets. However, this is only confusing since the 
results given in (Gangolli, 1967) are not affected by 
the error. 

Now theorem 3.2 (albeit because of the above 
remark not the corollary) can be applied to obtain 

4.2.1 Theorem 

Every p.d. kernel K on Rn that is invariant under the 
Euclidean motion group G is given by a p.d. radial 
function on Rn, i.e. a function that depends only on 
the Euclidean distance from the origin. 

Proof: Since Rn considered as quotient does not 
carry a group structure, it has to be treated as the 
space of left cosets. Nevertheless, by theorem 3.2 the 
kernel K is still described by a bi-invariant p.d. func-
tion on G which must, a fortiori, be also p.d. on Rn. 
Starting with an arbitrary p.d. function f2 on Rn it can 
be extended to G by defining it to be constant on left 
cosets. However, this will not suffice to make it bi-
invariant. Indeed since (denoting the extended func-
tion by f1) 
 f1((b1, A1) ° (0, A2)) = f1((b1, A1A2)) =  

f1((b1, I)) = f1((b1, A1)) = f2(b1)  
and thus f1 is right invariant. 
However, since 
 f1((0, A1) ° (b2, A2)) = 
 f1((A1b2, A1A2)) 
one must demand for left invariance that for arbi-
trary rotations A1 f1((A1b2, A2)) = f1((b2, A2)) and 
this in turn leads to the requirement that f2 must be a 
p.d. radial function on Rn, i.e. f2(b) = h(||b||), where h 
is some other function and ||.|| denotes the length of a 
vector in Rn.    Q.E.D. 

4.3 Remarks 

(i) It is interesting to observe that applying the inva-
riance condition in the case of the Euclidean motion 
group leads to a radial basis function kernel and thus 
to RBF networks. For example if one considers the 
Gaussian kernel  

K(x,y):= exp[-||x-y||2/2σ2], 
Then the feature map φ represents the elements of 
the feature space as functions in a Hilbert space by 
 φ(x) = K(x, .), 
where the scalar product between functions is then 
given by 
 <ΣiαiK(xi, .), ΣjβjK(xj, .)> = 
 ΣiΣjαiβjK(xi,xj). 
For further details see also (Shawe-Taylor and Cris-
tianini, 2004), p. 77 and p. 297.  
It should also be observed that in the case of finite 
permutation groups as treated by Minsky, cf. 
(Minsky and Papert, 1990), p. 53, the invariance 
condition leads to very severe restrictions.  
(ii) It can be shown that any continuous function on 
a compact interval can be approximated with arbi-
trary accuracy by a linear combination of RBFs, cf. 
(Bishop, 2006), p. 299, (Powell, 1987). 
 (iii) From example 4.1 (ii) and theorem 4.2.1 it is 
now possible to obtain a complete description of all 
p.d. kernels on Rn that are invariant under the Eucli-
dean motion group. Of course, it must be admitted 
that here only complex valued kernels have been 
considered because of technical convenience whilst 
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generally the real valued ones will be of major inter-
est. Moreover there is the question of choosing a 
suitable measure for the direct integrals. Neverthe-
less, modulo these complications the explicit de-
scription is arrived at by “radializing” the positive 
definite functions on Rn along the lines described in 
(Gangolli, 1967), p. 134 for Levy Schoenberg Ker-
nels. For further explicit examples see (Gangolli, 
1967; Falkowski, 2001; Falkowski, 2003). In partic-
ular in (Gangolli, 1967) several real-valued Mercer 
kernels are explicitly described. 

5 CONCLUSIONS 

Some results from pure mathematics have been 
employed to derive a detailed description of group 
invariant Mercer kernels, where the group action 
was assumed to be transitive. As an application a 
classical theorem due to Gelfand and Raikov was 
recovered. Thereafter kernels invariant under the 
Euclidean motion group were considered in detail. A 
complete description (modulo some technical de-
tails) was provided. Moreover it was shown that 
these kernels are derived from radial functions on 
Rn. En passant a minor but confusing error in (Gan-
golli, 1967) was rectified. The connection to radial 
basis function networks was explained. It seems 
rather satisfying that using only invariance condi-
tions (which have also very successfully been em-
ployed in an entirely different context such as quan-
tum mechanics, cf. (Mackey, 1968) Mackey) on the 
kernels such explicit results can be derived for inter-
esting practical applications, cf. (Schölkopf et al., 
1999). The author is tempted to paraphrase part of 
Minsky and Papert’s remark in (Minsky and Papert, 
1990), p. 241: These methods brought the feeling of 
“real mathematics”. ... This is still sufficiently rare 
in computer science to be significant. We are con-
vinced that respect for “real mathematics” is a pow-
erful heuristic principle, though it must be tempered 
with practical judgment. 
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