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Abstract: Neural Networks are more than just mathematical tools to achieve optimization and learning via sub-
symbolic computations. Neural networks can perform several other types of computation, namely symbolic 
and chaotic computations. The discrete time neural model presented here can perform those three types of 
computations in a modular way. This paper focuses on how neural networks within this model can be used 
to automatically parallelize computational processes. 

1 INTRODUCTION 

The initial works of McCulloch and Pitts in the 
1940’s presented neural networks as computational 
models for logic operations considering that with 
some associated model of memory they could 
calculate the same computable functions as Turing 
Machines (McCulloch and Pitts, 1943). The 
computational equivalence of a linear model of 
neural net to Turing Machines was achieved only in 
the 1990’s by (Siegelmann and Sontag, 1994) and  
(Siegelmann, 1999). In those works, like in this 
paper, neural networks are not used to apply 
optimization or learning algorithms but, rather, as a 
way to express computational processes as those 
computed by a standard Turing Machine or by a 
computer with von-Neumann arquitecture. 

Herein, we are only concerned with neural 
networks that compute symbolic computation, i.e., 
computation where information has a defined and 
well specified type (like integers or booleans). If 
provided a high-level description of an algorithm A, 
is it possible to automatically create a neural 
network that computes the function described by A? 
Our previous works, (Neto et al., 1998, 2003, 2006), 
show that it is possible to answer this question, with 
a simple discrete time network model. Related 
works of symbolic processing in neural networks 
can be found at (Gruau et al., 1995; Siegelmann, 
1999; Carnell et al., 2007; Herz et al., 2006). 

Since this symbolic computation is executed over 
a massive parallel architecture, can we use this 
feature to our advantage? This paper focuses on this 
problem. There are some features where 

parallelization is possible in order to speed even 
non-parallel algorithms. Those are: (i) executing 
type operators (check section 3); (ii) adding parallel 
blocks (section 4); (iii) using a virtual machine to 
execute the neural network (section 5). 

We first sketch the work done in previous 
articles where we shown how to use the massive 
parallelization feature of neural networks to 
automatically translate a symbolic algorithm into a 
specific neural net. Herein, we extend those results 
by showing how to parallelize some sequential 
aspects of those translated algorithms. 

2 NEURAL SYMBOLIC 
COMPUTATION 

First we present the neural network architecture able 
to sustain symbolic computation (more details in 
Neto et al., 1998, 2003).  

The chosen analog recurrent neural net model is a 
discrete time dynamic system, x(t+1) = φ(x(t), u(t)), 
with initial state x(0) = x0, where t denotes time, xi(t) 
denotes the activity (firing frequency) of neuron i at 
time t, within a population of N interconnected 
neurons, and uk(t) denotes the value of input channel 
k at time t, within a set of M input channels. The 
application map φ is taken as a composition of an 
affine map with a piecewise linear map of the 
interval [0,1], known as the piecewise linear 
function σ: 
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The dynamic system becomes,  
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kjk (t)ub  + cj ) (2)

where aji, bjk and cj are rational weights. Figure 1 
displays a graphical representation of equation (2), 
used throughout this paper. When aji (or bjk or ajj) 
takes value 1, it is not displayed in the graph.  

 
Figure 1: Graphical notation for neurons, input channels 
and their interconnections.  

Using this model, we designed a high-level 
programming language, called NETDEF, to hard-wire 
the neural network model in order to perform 
symbolic computation. Programs written in NETDEF 
can be converted into neural nets through a compiler 
available at www.di.fc.ul.pt/~jpn/netdef/netdef.htm.  

NETDEF is an imperative language and its main 
concepts are processes and channels. A program can 
be described as a collection of processes executing 
concurrently, and communicating with each other 
through channels or shared memory. The language 
has assignment, conditional and loop control 
structures (figure Figure 2 presents a recursive and 
modular construction of a process), and it supports 
several data types, variable and function 
declarations, and many other processes. It uses a 
modular synchronization mechanism based on 
handshaking for process ordering (the IN/OUT 
interface in figure Figure 2). A detailed description 
of NETDEF is found at https://docs.di.fc.ul.pt/ (report 
99-5).  

The information flow between neurons, due to the 
activation function σ is preserved only within [0, 1], 
implying that data types must be coded in this 
interval. The coding for values of type real within 
[-a, a], where ‘a’ is a positive integer, is given by 
α(x) = (x + a)/2a, which is a one to one mapping of 
[-a, a] into set [0, 1]. 

Input channels ui are the interface between the 
system and the environment. They act as typical 
NETDEF blocking one-to-one channels. There is also 

a FIFO data structure for each ui to keep 
unprocessed information (this happens whenever the 
incoming information rate is higher than the system 
processing capacity). 

The compiler takes a NETDEF program and 
translates it into a text description defining the 
neural network. Given a neural hardware, an 
interface would translate the final description into 
suitable syntax, so that the neural system may 
execute. The use of neural networks to implement 
arbitrary complex algorithms can be then handled 
through compilers like NETDEF.  

 
Figure 2: Process construction of: IF b THEN x := x–1. 

As illustration of a symbolic module, figure 2 
shows the process construction for IF b THEN x := x–
1. Synapse IN sends value 1 (by some neuron xIN) 
into xM1 neuron, starting the computation. Module G 
(denoted by a square) computes the value of boolean 
variable ‘b’ and sends the 0/1 result through synapse 
RES. This module accesses the value ‘b’ and outputs 
it through neuron xG3. This is achieved because xG3 
bias -1.0 is compensated by value 1 sent by xG1, 
allowing value ‘b’ to be the activation of xG3. This 
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result is synchronized with an output of 1 through 
synapse OUT. The next two neurons (on the Main 
Net) decide between entering module P (if ‘b’ is 
true) or stopping the process (if ‘b’ is false). Module 
P makes an assignment to the real variable ‘x’ with 
the value computed by module E. Before neuron x 
receives the activation value of xP3, the module uses 
the output signal of E to erase its previous value. In 
module E the decrement of ‘x’ is computed (using 
α(1) for the code of real 1). The 1/2 bias of neuron 
xE2 for subtraction is necessary due to coding α. 

The dynamics of neuron x is given by (3). 
However, if neuron x is used in other modules, the 
compiler will add more synaptic links to its 
equation. 

x(t+1) = σ( x(t) + xP3(t) – xE3(t) ) (3)

This resulting neural network is homogenous (all 
neurons have the same activation function) and the 
system is composed only by linear, i.e., first-order 
neurons. The network is also an independent 
module, which can be used in some other context. 
Regarding time and space complexity, the compiled 
nets are proportional to the respective algorithm 
complexity. 

3 OPERATOR TYPE 
PARALLELIZATION  

It is possible to insert parallel computation on 
certain type expressions. An example follows with 
arithmetic expressions. When, say, expression 
(a+4)*(b+c) needs evaluation, typical high-level 
languages tend to execute it to a sequential fashion. 
However, in this case, since each operator will 
consist of a neural network, it is possible to execute 
all expressions at once and simply wait for the 
higher priority expressions to be computed before 
executing the lower priority ones. Here we have 
three priorities: (i) evaluate the values of the atomic 
expressions (‘a’, ‘4’, ‘b’ and ‘c’), (ii) evaluate both 
sums (‘a+4’ and ‘b+c’) and finally, (iii) evaluate the 
multiplication (see figure 3). 

Since there are no operators with side-effects in 
NETDEF (nothing like C’s i++) it is safe to fetch the 
values of every variable at the same time and 
execute these net to compute the final expression 
value. 

 
Figure 3: Network scheme for the parallelization of 
expression(a+4)*(b+c). To understand its internal 
structure check next section’s parallel blocks. 

4 PARALLEL BLOCKS 

This section deals with controlling the parallel 
execution of all neurons to allow sequential 
processes. 

As seen in figure 2, NETDEF uses a hand-shaking 
mechanism to control each module execution. A 
module is connected to their immediate neighbors 
via an IN/OUT signal synchronization. A module only 
starts after receiving an IN signal and ends by 
outputting an OUT signal. This allows for a simple 
sequential block structure: 

 
Figure 4: A sequential block. 

A parallel block can be built based on this next 
network: 

 
Figure 5: Synchronizing output signals. 

This network waits for the last signal to arrive. 
That is, if each of the leftmost arrows indicates the 
end of a certain module execution, that signal (again, 
a value 1) will be kept within a specific neuron (the 
left neurons have a synapse onto themselves with 
weight 1). Every signal will be kept on its neuron 
until all n neurons have value 1 (due of the –(n-1) 
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bias of the right neuron, which is enough to 
compensate for n-1 activated neurons). Only when 
all n neurons are sending values (meaning that all 
previous modules ended their execution), the 
negative bias is overcome and the right neuron will 
output a 1 while, at the same time, resetting the left 
neurons (via the -1 synapses showed above). This 
net is useful to synchronize expressions (like those 
in the previous section) but also to control 
instructions. 

 
Figure 6: A parallel block. 

This parallel block, however, must be explicitly 
stated by the programmer, since a sequential or a 
parallel block of the same set of instructions denotes, 
usually, quite different semantics. The other parallel 
features (presented in sections 3 and 5) do not need 
any programmer assistance and can be executed 
automatically by the compiler and execution 
processes. 

5 VIRTUAL MACHINE 

In section 2, we referred a compiler which translates 
high-level algorithmic descriptions into neural nets. 
It is straightforward to simulate the execution of 
these nets using a regular computer (our own 
software can compile and execute the resulting nets). 
But, what kind of ‘neural’ hardware would be 
adequate to compute these networks? The NETDEF 
language produces modules which communicate via 
a small number of channels, but nonetheless the 
resulting networks are highly non-planar with 
complex topologies. It would not be feasible to 
translate this into a 3-D hardware of neurons and 
synapses. Besides, every algorithm produces a 
different network, so a fixed architecture would be 
useful just for a specific problem. It is theoretically 
possible to implement a universal algorithm, i.e., to 
implement a neural network that codes and executes 
any algorithm, but there are easier solutions. 

Neural networks can be interpreted as vectors. 

Assume a neural network Ψ with n neurons. The 
neurons activation at time t can be represented by 
vector xt = (x1(t),x2(t)…xn(t),1). This vector includes 
all the relevant data to define Ψ’s state. The 
structure of Ψ is given by a (n+1)×(n+1) matrix MΨ 
containing all synaptic weights (the extra 
row/column is for biases). So, the network dynamics 
is given by 

x0 = (x1(0),x2(0)…xn(0),1) 
xt+1 = MΨ . xt 

(4)

which, afterwards, apply function σ to every element 
of the resulting vector. Graphically: 

 
Figure 7: Updating the network state. 

This implementation is simple and it only uses 
sums, products and the σ function. However there 
are disadvantages. The typical NETDEF networks 
produce sparse MΨ matrixes resulting on 
unnecessary space quadratic complexity.  

Our proposed solution is to split the matrix into 
smaller tokens of information, namely triples, 
looking at a neural network as a list of synapses, 
called LΨ.  

A classic synapse has three attributes: (a) the 
reference to the output neuron (or 1 if it is a bias 
synapse), (b) its synaptic value, and (c) the reference 
to the input neuron.  

 
Figure 8: This neural network translates to  
[(x,a,y), (y,b,y), (1,c,y)]. 

The list LΨ size is proportional to the number of 
synapses. On the worst case (a totally connected 
network) it has space quadratic complexity (the 
same as the matrix approach). But the usual NETDEF 
network is highly sparse, making it, in practice, 
proportional to the number of neurons.  

Notice there is no need to keep detailed 
information about each neuron; they are implicitly 
defined at LΨ. This list, herein, has a fixed size: it is 
possible to change the synaptic values dynamically 
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but is not possible to create new neurons or delete 
existing ones. There is, however, the possibility of 
deactivating a neuron by assigning zero values to its 
input and output synapses. With some external 
process of neuron activation/deactivation, it would 
be straightforward to insert/delete the proper triples 
at LΨ. More details can be found in (Neto, 2006) 
including how to execute this network 
representation. 

There are ample possibilities for optimization. 
The network modules are not all active at once. 
Except for high-parallel algorithms (where the 
parallelization was thought and designed by the 
programmer and is, therefore, not that important in 
this stage) there is only a small number of modules 
active at each given moment. So, many triples (those 
from the inactive modules) are not used and should 
not enter in the next computation step. How can we 
easily deduce what triples should be calculated? 
Herein, the IN/OUT synchronization mechanism is 
again helpful. Since a certain module M is only 
activated after its input neuron receives an activation 
signal (i.e., the previous synapse receives a 1) that 
means that we should keep the triples of those input 
synapses – let’s denote them input triples – as 
guards of the set of triples representing the 
remaining module structure. So, every time an input 
triple is activated, the system will upload the entire 
triple structure of that module (notice that this may 
or may not include the inner sub-modules, 
depending on the number of triples these sub-
modules of arbitrary complexity may represent) and 
compute it along with all the other active triples. 
When an active module ends its computation, the 
output triple (representing the synapse that transfers 
the output signal to the input neuron of the next 
module) is activated and the system has enough 
information to remove the module structure from the 
pool of active triples.  

Using this mechanism, the number of triples in 
execution depends only of the number of active 
modules and not in the entire network structure. This 
will speed the execution of single modules and 
provide a better efficient use of the available parallel 
processing power. 

6 CONCLUSIONS 

Neural networks can be used to compute the 
execution of symbolic algorithms. The fact that 
neural nets are massive parallel models of 
computation, allow us to use this feature in several 
ways to speed the calculation of modules and 

expressions that do not have precedence over each 
other. We have shown two possible uses at this 
level: expression parallelization and parallel blocks. 
Also, since neural nets can be decomposed into 
triplets (each representing a synaptic connection), it 
is also possible to speed computation by allocating 
sets of synaptic triples into different CPU’s to 
calculate the next computing state. 
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