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Abstract: In this article a procedure to tune robust Generalized Predictive Controllers (GPC) is presented. To tune
the controller parameters a multiobjective optimization problem is formulated so the designer can consider

conflicting objectives simultaneously without establishing any prior preference. Moreover model uncertainty,

represented by a list of possible models, is considered. The multiobjective problem is solved with a specific

Evolutionary Algorithm (ev-MOGA). Finally, an application to a non-linear thermal process is presented to
illustrate the technique.

1 INTRODUCTION The GPC tuning methodology that is presented
tries to achieve that goal by:

Generalized predictive control (GPC) (Clarke et al., Using non-linear parametric models with uncer-

1987a) (Clarke et al., 1987b) has been shown to be an tainty. The uncertainty is consider by means of a

effective way of controlling single-input single-output set of models, the Feasible Parameter 5&).

processes. The strategy proposed by GPC is simple to Although the real process is not known, assume
understand and makes good practical sense: predict 4t it lies within the FPS (Walter and Piet-

the behaviour ofthe outputas afunction Qf future con- Lahanier, 1990).

trol increments and minimize over these increments a ) L L

cost index. This cost includes the errors between pre- ® Proposing a Multiobjective optimization (MO)
dicted and desired outputs and the control effort. De- ~ GPC tuning approach.

spite its advantages, tuning GPC methods are basedptimal tuning considers not only a nominal model
on a linear models, which are usually adjusted around but the FPS adjusting the controller parameters for
an operating point. When the process operates out-the worst case (the most unfavorable model). More-
side the validity zone of the model (where differences over, because the tuning method has to consider
between model and process behaviour increase) pooiconflicting objectives, an optimization multiobjective
control performance is obtained since in that case the problem is stated where each objective minimizes the
tuning is suboptimal even close-loop stability could maximum cost function for all the models in the un-
take place. certainty description.

To avoid that, robust GPC tuning approach is as- Multiobjective optimization (MO) techniques
sumed. In this case model uncertainties are taking present advantages as compared with single objective
into account to cover non-modelled dynamics (such optimization techniques due to the possibility of giv-
as non linearities, high frequency dynamics, and so ing a solution with different trade-offs among differ-
on) and measurement noise (Reinelt et al., 2002). Theent individual objectives so that the Decision Maker
simpler the model is the bigger uncertainties are, pro- (DM) can select an appropriate final solution.
ducing an excess of conservativeness in the tuning  The presence of multi-modal MO functions and
result, which give as a result a loss of performance non-convex constrined spaces needs optimizer with
in the close-loop control. Therefore the goal is to good performance. A good choice are stochastic op-
achieve robust tunings with good performance at the timizers such as the Evoluationary Algorithms (EAS)
same time, for instance, minimizing error or control (Coello et al., 2002) that can work well with multi-
effort. Objectives that are usually in contraposition. modal and non-convex problems, in particular, the al-
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gorithms used in this work will be the ev-MOGA one
(Herrero et al., 2007c; Herrero et al., 2007b).

This paper is organized as follows. Section 2
presents GPC formulation, section 3 introduces tun-
ing procedure proposed in this article, section 4 de-
scribes briefly used. Section 5 illustrates the GPC tun-
ing procedure with the example of a thermal process.
Finally, some concluding remarks are reported in sec-
tion 6.

2 GPC FORMULATION

The GPC formulation with quadratic cost index has
been extensively developed in (Clarke et al., 1987a),
(Clarke et al., 1987b). Such formulation uses the fol-
lowing CARIMA stochastic model:

1 1
VO = AUt D+ gaedt)

where: u(t) andy(t) are the process input and out-
put respectivelyd(t) the disturbance (white noise),

T(z 1) is a polynomial used to filter disturbance and,
B(z 1) andA(z 1) are the polynomial transfer func-

tion of the discrete model. A GPC controller is ob-
tained through the optimization of the following cost
index and applying Receding Horizon:

)

N2

J(8u) =E[ % aly(t+i) —r(®)?+ Nz AAu(t+ j — 1))

j=1
@

where N = N — N; + 1 is the prediction hori-
zon, Ny is the control horizon,a is the pre-
diction error weighting factor,A is the con-
trol weighting factor, r(t) is the setpoint, and
[ Au(t) Au(t+1) Au(t+N,—1) |7 are the
control actions.

Optimizing index (2) and applying Receding
Horizon (so that, using onlfu(t)) the following GPC
expression is obtained:

T (Hor(2) - 252y(2))
(T(zH)+R(zHzHA

Figure 1 represents implementation of this controller
with a block diagram.

u(z) =

3 MULTIOBJECTIVE TUNING
OF ROBUST GPC

Let's assume the following model structure:
X(t) = f(x(t),u(t),8), Y(t,8) =g(x(t),u(t),6) (3)
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Figure 1. Control structure for GPC.represents the set
point for the outpuy.

where: f(.),g(.) are the non-linear functions of the
model; 8 € R" is the vector of unknown model pa-
rametersx(t) € R" is the vector of model states(t)
is the input process angt;8) the output.

Asume 6, are the parameters of the nominal
model which belong t&PS

FPS:={61,...,0p} (4)

that represents the model parameters uncertainty.
The possible controller parameters to tunelare

{N1,N2,Ny,0,A, T(2)}. To obtain the controller the

following MO problem can be formulated:

minJ(k) = min3u(k), J2(k)..... (k)] (5)
whereJ;(k), i € B:=[1...9 are the objectives to min-
imize andk is a solution inside the solution spaide

Since each objective to minimize has to take into
account the model uncertain®PS' then

3(k) = max (6)
where the cost functiog is the real objective to min-
imize for the worst model case belonging kF&S'.
Some typical criteria are: the norm of the control ac-
tion: @ = ||u(t)||, the norm of the rate of change of
control action:@ = ||Au(t)||, the norm of the error:

@ = ||r(t) —y(t)|| or the norm of the error weighted
with time: @ = |[t(r(t) — y(t))]|.

Anyway, to solve the MO problem the Pareto op-
timal setKp (solutions where no-one dominates oth-
ers) must be foundKp is unique and normally in-
cludes infinite solutions. Hence a $&% (which is not
unique), with a finite number of elements frafp,
should be obtained (see (Coello et al., 2002) for de-
tails of MO problems). To obtai ; a MOEA known
as the ev-MOGA algorithm (Herrero et al., 2007c;
Herrero et al., 2007b) will be used.

Finally a unique solutiok™ of the Pareto optimal
setK} has to be selected. The selection procedure is
based on designer preferences and can differs depend-
ing on design needs. Since all Pareto optimal points
are non-dominated any selection made will be always
optimal.
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4 EV-MOGA ALGORITHM

ev-MOGA (previously calledgZMOGA, (Herrero
et al., 2007b; Herrero et al., 2007c¢)) is an elitist mul-
tiobjective evolutionary algorithm based on the con-
cept ofe-dominance (Laumanns et al., 2002). A com-
pleted and detailed version of ev-MOGA algorithm is
developed in (Herrero, 2006) where the performance
of the algorithm is tested by facing up to classical
benchmarks for MO. It obtains asPareto setKp,
that converges towards the Pareto optimalksgtin
a distributed manner around Pareto frd(ip), with
limited memory resources. Next a brief description of
the ev-MOGA algorithm is presented.

ev-MOGA adjusts the limits of the Pareto front
J(K}p) dynamically and prevents the solutions belong-
ing to the ends of the front from being lost. For this
reason, the objective space is split up into a fixed num-
ber of boxes_box, for each dimension so that this
grid preserves the diversity dfKj) since one box
can be occupied by only one solution. This fact pre-
vents that the algorithm converges towards just one
point or area inside the objective space (see Fig. 2).

box
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\ e-dominated by k
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Figure 2: The concept of-dominance. e-Pareto Front
J(Kp) in a two-dimensional problem.J™", 3", Jnax
I3 Pareto front limits;eq, €2 box widths; andn_box,
n_box, number of boxes for each dimension.

The algorithm is composed of three populations:
The main populatiof(t) which explores the search-
ing spaceD during the algorithm iterationg)( Its
Population size isNindp; the archiveA(t) which
stores the solutiofi . Its sizeNinda can vary but
it will never be higher than

M-y n _box+1

Nind _max A=
4 N_boXmax+ 1

(7)
wheren_boxnax= max([n_box,...,n_box]) and the
auxiliary populationG(t). Its size isNindg, which
must be an even number.

The pseudocode of the ev-MOEA algorithm is
given by

t:=0; A(t): =0,
(t):=ini_randon(D)
eval (P(t))

A(t):=storepni(P(t),A(t))

while t<t_max {
Qt):=create(P(t), A(t))
eval ((t))
A(t+1):=store(Gt), A(t))
P(t+1):=update(Qt), P(t))
t:=t+1}

The main steps of the algorithm are detailed as

©o~Noa~wNMdTDE

follows:

Steps2 and 6. Function eval calculates function
value (Equation (5)) for each individual iA(t)
(step 2) and>(t) (step 6).

Step 3. Functionstorepn; checks individuals oP(t)
that might be included in the archivgt) as fol-
lows:

1. Non-dominated(t) individuals are detected,
KND.

2. Pareto front limitsJ™® andJ™" are calculated
from J(k),Vk € Knp.

3. Individuals inKyp are analyzed, one by one,
and those that are netdominated by individu-
als inA(t), will be included inA(t).

Step 5. Functioncreate creates individual o6(t) by
using linear recombination technique and random
mutation with Gaussian distribution.

Step 7. Functionstore checks, which individuals in
G(t) must be included if\(t) on the basis of their
location in the objective space. Only individu-
als which are not-dominated by any individual
from A(t) will be included (if its box is occu-
pied by an individual not-dominated too, then
the individual lying farthest away from the cen-
tre box will be eliminated). Individuals from(t)
which ares-dominated by individual o6G(t) will
be eliminated. Also this function updates the lim-
its J1X JM" of the Pareto front if it is necessary.

Step 8. Functionupdate updatesP(t) with individ-
uals fromG(t). Every individualk® from G(t)
is compared with an individu&l” randomly se-
lected fromP(t). If k® dominatek” thenk® re-
placesk. kP will not be included inP(t) if there
is no individual inP(t) dominated byk®.

Finally, individuals fromA(t) compound the MO
problem solutiorK 5.
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5 ROBUST GPC TUNING FOR A
THERMAL PROCESS

algorithm were set to:Nindg = 4; Nindp = 100;
tmax = 1000 (resulting in 4100 evaluations df(K)
and J(k)) andn_box = n_box = 200. The algo-

A scale furnace with a resistance placed inside is con-"thm was run 10 times.

sidered. A fan continuously introduces air from out-
side (air circulation) while energy is supplied by an
actuator controlled by voltage. Taking into account

Fig. 3 shows the best Pareto front and set ob-
tained. Notice that the Pareto front is disjoint, the
same as the Pareto optimal set. The better characteri-

heat transfer phenomena (conduction, convection andzation of the Pareto front is needed the lamgeox
radiation) the dynamics of the resistance temperatureNas to be used. ev-MOGA algorithm captures the ex-

can be modelled by

(Buut)? — B (x(t) — Ta(t)) — 27201

Xt = 1000 )
8
y(t) = x(t), 9)

where: X(t) is the model statey(t) is the input
voltage with rank 0 - 100 (%)y(f) is the resistance
temperature®C) (model output)T(t) is the air tem-
perature {C) and® = [6;,6,,63]" are the model pa-
rameters.

To obtain the FPSY), which characterize the
model uncertainty, the robust identification method

presented in (Herrero et al., 2007a) was applied. The
FPS is discrete characterization of the parameter set
which keeps the model predictions error bounded for

certain norms and bounds.

In this exampleo-norm and absolute norm are si-
multaneously used to determine tR®S'. Bounds
are selected in order to hold tkd>S* models predic-
tions errors lower than°€ and their average values
lower than 08°C.

The resulting-PS' contains 304 models (for more
details see (Herrero et al., 2007c¢)).

The nominal modeB, = [0.07764.52,0.17¢ €
FPS' is linearized in they,u] = [56.1,50] point and
converted to discrete time withy = 10 sample time
obtaining the following modeB(z 1) = 0.0758 !
andA(z 1) = 1-0.953% 1. The following GPC pa-
rameters are fixeth =N, =a=1,T(z 1) = Az 1)
whilst N, andA will be tuned. Therefore the search-
ing space is defined by, € [5,6,...100 andA €
[0.1...100. The functions selected are the follow-
ings:

r(t) —y(t
= OO o augey
with r(t) = [r(0),r(1-T9...r(N-Ts)] andN =
250 is the number of samples.
Then the MO problem to solve is the following:

I
LK) 32001 = il . s o

To solve this MO problem the algorithm ev-
MOGA is used. The parameters of the ev-MOGA
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tremes of the Pareto front, and thkig will contain
the optimal solutiong” of eachJ; considered on an
individual basis.

Analyzing the Pareto front (see Fig. 3), the so-
lutions corresponding to higher values Yf(bottom
right area of the Pareto Front) produce bigger control
error as it is expected. Otherwise, the solutions corre-
sponding to lower values @fand bigger values df,

(top left area) produce lower control error in exchange
for bigger control effort.

Therefore, taking into account the Pareto front
and set obtained, the following compromise solution
k* has been selectekt = [12,6.552 = J(k*) =
[3.08851231767.

Fig. 4 shows the envelop generated by the com-
promise controllek* for the outpuy(t) and inputu(t)
when all the models of thEPS are considered.

6 CONCLUSIONS

A methodology, based on Evolutionary Algorithms,
has been developed to tuning robust GPCs from an
MO point of view. The methodology presents the fol-
lowing features:

e Assuming parametric uncertainty, all kind of pro-
cesses can be considered.

e Since a non-linear models set have been consid-
ered, low uncertainties are produced by the ro-
bust identification process (a difference that a liner
model with interval parametric uncertainty were
considered) and therefore less conservativeness is
produced.

e Any kind of design objectives can be used simul-
taneously to tune the GPC controller resulting in
a MO Problem. Thanks to the ev-MOGA algo-
rithm would be possible to characterize all kind
of Pareto fronts in a well-distributed manner with
bounded memory resources.
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Figure 3: Top: thee-Pareto frontJ(K5). Bottom: the Pareto optimal s&ts. (*) Compromise solution obtained,” and
J(k*).
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Figure 4: Top: Set point trajectory generatét and the envelop of the output&) when the controllek® is applied toF PS*
models. Bottom: the envelop of the control action produbessnvelop of the outputs.
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