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Abstract: In this paper, we present an extension to the resynchronization attack on stream ciphers of (Daemen et al.,
1993). The most general attack in (Daemen et al., 1993) on a nonlinearly filtered register with linear resync
has attack complexity⌈ n

φ⌉×2φ, wheren is the key length andφ the input size of the filter function. It was
further shown specifically that the attack complexity can be reduced in the case when the filter function is
a multiplexer. The attack of (Daemen et al., 1993) is most efficient when the input size is small. We shall
show that a large input size may not necessarily guard against this attack, even when a function with good
cryptographic properties is used. It may decrease the attack complexity, in the example illustrated in this
paper. Boolean functions from the Maiorana-McFarland class make good choices for these filter functions
due to their good cryptographic properties such as balance, high nonlinearity and high order of resiliency.
However, these functions can become linear when certain input bits are fixed. We shall demonstrate this
weakness and use it to achieve lower attack complexities for the general resynchronization attack of (Daemen
et al., 1993).

1 INTRODUCTION

Resynchronization mechanisms are used to prevent
the loss of synchronization in stream ciphers deployed
in synchronous communication contexts. The scheme
allows multiple parties to dynamically join or leave
a secure network by encrypting the communication
channel using different key streams generated by dif-
ferent initial states of the cipher. The internal state is
repeatedly reinitialized using publicy-known initial-
ization vectors (IV). Since resynchronization is per-
formed multiple times over the duration of communi-
cation, the mechanism should be fast. By using pub-
licly known information (e.g. time) to generate the
IVs, no additional information (apart from the shared
secret key) required for cipher operations need to be
transmitted. For efficiency, the internal state of the ci-
pher at the start of each resynchronization is typically
linearly generated from the IV and secret key. Non-
linear functions are used to map internal state bits to
keystream bits.

While the scheme may appear to enhance secu-
rity by generating keystream bits from multiple initial
states, it was shown in (Daemen et al., 1993) that the
cipher becomes vulnerable to the paper’s proposed at-
tack when the input size of the filter function is suffi-

ciently small and we have enough keystream bits from
different resyncs. As a natural countermeasure, a ci-
pher designer can use a nonlinear function with large
input size. We shall demonstrate in this paper that
this measure may not guard against the resynchro-
nization attack, even when the nonlinear function is
known to have good cryptographic properties. Fur-
thermore, it may improve the efficiency of a resyn-
chronization attack. This can happen when the non-
linear function belongs to Maiorana-McFarland class
of Boolean functions, which are known have good
trade-offs between various desirable cryptographic
properties such as correlation immunity and nonlin-
earity (Carlet, 2002; Canteaut et al., 2000; Seberry
et al., 1993; Sarkar and Maitra, 2000). Maiorana-
McFarland functions are used in ciphers such as Toy-
ocrypt (as described in (Mihaljevic and Imai, 2002))
and Grain-128 (Hell et al.).

In this paper, we shall first briefly recount the
original resynchronization attack of (Daemen et al.,
1993). In Section 2.3, we shall present the resynchro-
nization attack based on Maiorana-McFarland func-
tions. In Section 3, we compare our attack with other
known resynchronization attacks before concluding
this paper.
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2 RESYNCHRONIZATION
ATTACK ON FILTER
FUNCTION

2.1 Attack Setup

In this paper, we assume the attack model and no-
tation of (Daemen et al., 1993). Resynchronization
is achieved by initializing the internal state by an
affine transformation on the keyK ∈ {0,1}n. If we
let s0

i ∈ {0,1}n be the initial internal state of thei-th
resync, then

s0
i = L(K, IVi)

= A(K)⊕B(IVi)

= A(K)⊕Ri,

where L denotes a linear mixing of the secret key
K and known initialization vectorIVi. A and B
are known affine transformations.Ri, defined to be
B(IVi), is therefore publicly known.

The state gets updated at every clocking time-step
via a linear functionF. If st

i denotes the internal state
at clockt during thei-th resync, we have

st+1
i = F(st

i). (1)

Keystream bitszt
i ∈ {0,1} are generated at each

clock via a nonlinear filter functionf , acting on some
subsetut

i of internal state bitsst
i :

zt
i = f (ut

i), (2)

where
ut

i = G(st
i), (3)

for some known linear transformationG which
projects the internal state vectorst

i ontout
i.

2.2 Basic Resynchronization Attack

If we suppose thatut
i ∈ {0,1}φ and thatut

i is known,
then we can formφ linear equations involving the key
bits of K. We can solve for the keyK when enough
bits from the internal statest

i are known. If all linear
relations formed are independent, we would need to
collect⌈ n

φ⌉ ut
i vectors.

To reconstructut
i, we make use of the easily veri-

fiable resultut
i = ut

j ⊕G◦Ft(Ri ⊕R j), for any j. Sub-
stituting this intof (ut

i) = zt
i , we get

zt
j = f (ut

i ⊕G◦Ft(Ri ⊕R j)). (4)

When multiple keystream bitszt
j at the same clock

t across different resyncs are known, we can solve for
ut

i by performing 2φ evaluations off , thus forming a
set ofφ linear equations in the key bits. Since we need

a total ofn equations, the total number off evalua-
tions is about

⌈n
φ

⌉

×2φ. (5)

For this attack, we need a total of⌈ n
φ⌉× φ keystream

bits. Each group ofφ bits has to come from the same
clock.

2.3 Extension to Maiorana-McFarland
Filter Function

If we supposef : {0,1}φ → {0,1} is of the form:

f (x1,x2, . . . ,xφ) = g(x1,x2, . . . ,xr)

⊕ h(x1, . . . ,xr) · (xr+1, . . . ,xφ), (6)

whereh : {0,1}r →{0,1}φ−r andg : {0,1}r →{0,1},
the attack complexity can be improved, in spite of
the desirable cryptographic properties functions of
this form exhibit (Sarkar and Maitra, 2000). This is
mainly brought about by a reduction in search com-
plexity from 2φ to about 2r.

Instead of guessing allφ bits in ut
i , we guess ther

bits inut
i that correspond to the inputs to the functions

g andh. Each such guess linearizes (6) and produces
one linear equation in terms of the(φ− r) unknown
bits in ut

i that are input to(xr+1, . . . ,xφ). We collect
(φ− r) resyncs at the same clockt and form a system
of (φ− r) equations in terms of these unknown bits.
We then solve this system of equations.

We check for consistency by substituting all bits,
both guessed and solved, ofut

i, into the functionf for
the r additional resyncs at the same clock and com-
pare our result with the actual keystream bits. If they
agree, we keep the vectorut

i. Since we have made 2r

guesses inut
i and we are verifyingr keystream bits,

we should end up with about one guess out of 2r that
passes the consistency check. With this correct solu-
tion for ut

i, we formφ linear equations in terms of the
n key bits ofK.

The steps in the two preceding paragraphs are re-
peated as necessary to solve for moreut′

i s. A total of
⌈ n

φ⌉ ut′
i s need to be formed from distinct clocks. When

we have formed enough linear equations, we solve for
the key bits by Gaussian elimination.

In the guess and verification steps, we require a
total of about

⌈n
φ

⌉

×φ×2r. (7)

f -function evaluations.
The total number of row operations needed is

⌈n
φ

⌉

× (φ− r)2×2r + n2. (8)
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The above expression can be refined to represent
the complexity more accurately. If(φ− r) > 64 and
we are performing Gaussian elimination on a 64-bit
machine, then the number of row operations needed

to solve the(φ− r)× (φ− r) matrix is (φ−r)3

64 , assum-
ing that matrix coefficients are stored in 64-bit words.
The same goes for then2 term, which should ben

3

64
whenn > 64.

We need a total of⌈ n
φ⌉× φ keystream bits. Each

group ofφ keystream bits has to come from the same
clock.

3 COMPARISON WITH OTHER
RESYNCHRONIZATION
ATTACKS

3.1 Comparison with the Original
Resynchronization Attack

Suppose we have a 256-bit LFSR and a 128-bit IV. We
let the key sizen = 128,φ = 50 andr = 25. To guard
against the Time-Memory-Data Trade-Off Attack, we
have chosen the size of the LFSR to be twice the size
of the key.

The basic resync attack of (Daemen et al., 1993)
requires⌈128/50⌉×250≈ 251 f -function evaluations

and 1283

64 = 215 row operations.
In comparison, our attack in Section 2.3 requires

⌈128/50⌉ × 50× 225 ≈ 232 f -function evaluations

⌈128/50⌉× (50−25)2×225+ 1283

64 ≈ 236 row opera-
tions.

The attack of (Daemen et al., 1993) has a factor
of 221 less row operations than the attack of Section
2.3, while the latter has a factor of 219 less function
evaluations. These factors are comparable. However,
since function evaluation is a more computationally
complex task (more so when the function is of high
degree) compared to row operations, we can expect
the overall complexity for the attack of Section 2.3
to be less than that for (Daemen et al., 1993). The
resource requirements for both attacks are tabulated
in Tables 1 and 2.

Table 1: Basic Attack.

f -function evaluations 251

Row operations 215

Number of resyncs 50
Number of clocks 3

Table 2: Our Attack.

f -function evaluations 232

Row operations 236

Number of resyncs 50
Number of clocks 3

3.2 Comparison with Cube Attack

The cube attack is an algebraic attack recently intro-
duced by Dinur and Shamir at Crypto 2008 (Dinur
and Shamir, 2009). Given a functionf : {0,1}φ →
{0,1} of degreer + 1, we attempt to findmaxterms,
monomialst = xi1 . . .xir of degreer. They have the
property thatf0 can be expressed as

f (x) = t ·P(x)+ Q(x)
whereQ(x) does not have any terms that are divisi-
ble by t, andP(x) is nonzero. Then, by summingf
over thecube where thexi j are varied over all possi-
ble values, and varying the values of the otherxk, we
can solve forP(x). SinceP(x) is linear, by takingφ
maxterms, we get a system of linear equations which
we can solve for thexi.

When applied to a LFSR filtered by a Maiorana-
McFarland function of degreer+1, we get a precom-
putation complexity of

⌈n
φ

⌉

×φ(φ+1)×2r + n2, (9)

and online complexity of
⌈n

φ

⌉

×φ×2r + n, (10)

wheren is the key size andφ the input size of the fil-
ter function. In Equations (9) and (10), then2 and
n terms account for complexities of matrix inversion
and matrix multiplication respectively. These terms
should be changed ton3/64 andn2/64 whenn > 64
for reasons mentioned in Section 2.3. The online at-
tack complexity is comparable with that of our resync
attack above.

However, our resync attack has several advantages
over the cube attack. Firstly, it requires only known
IVs, whereas the cube attack needs chosen IVs so as
to be able to sum over the cube. Furthermore, the cube
attack requiresφ×2r resyncs, while our resync attack
only needsφ − r resyncs. (Both methods need⌈ n

φ⌉

clocks per resync.) These much weaker conditions
make our resync attack more suitable than the cube at-
tack for Maiorana-McFarland functions. Finally, the
operations used in the resync attack are matrix row
operations, which are computationally less demand-
ing than the large number of function evaluations for
the cube attack.
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To illustrate the complexities of the two attacks,
we consider the following example:

f (x0, . . . ,x49) = x0 · x25+ x1 · x26+ · · ·+ x23 · x48
+S(x25, . . . ,x48)+ x24+ x49

whereS is a degree 24 function comprising the sum of
many high degree monomials such that it is difficult
to find a low degree multiple.

This is a degree 24, 1-resilient (balanced and 1-
correlation immune) boolean function with a high
nonlinearity of 249−225, and it is also resistant to al-
gebraic attack due to the lack of a low degree multiple.
Suppose the key sizen = 128. We let the input tof0
be a linear mixing of key and IV.

Our resync attack requires 3×50×224≈ 231 func-
tion evaluations, and 3×262×224+ 1283

64 ≈ 235 row
operations, as well as approximately 26 resyncs.

The cube attack needs 3× 50× 51× 223 ≈ 236

function evaluations and1283

64 = 215 row operations
for the precomputation stage, as well as 3×50×223≈

230 function evaluations and1282

64 = 28 multiplications
for the online phase. It also requires approximately
229 chosen IV resyncs.

Table 3: Our Attack.

f -function evaluations 231

Row operations 235

Number of resyncs 26
Number of clocks 3

Table 4: Cube Attack.

f -function evaluations (precomp) 236

Row operations (precomp) 215

f -function evaluations (online) 230

Multiplications (online) 28

Number of chosen IV resyncs 229

Number of clocks 3

As shown in the Tables 3 and 4, the number of
function evaluations required for our attack is compa-
rable to that for the cube attack. However, our attack
requires a much smaller number of resyncs. Further-
more, the IVs do not need to be of a chosen form.

4 CONCLUSIONS

We have applied the resynchronization attack on
stream ciphers with linearly clocked registers filtered
with Maiorana-McFarland functions. While Boolean

functions with large input sizes, nonlinearities, re-
siliencies and algebraic degrees may be ideal choices
for the cryptographic components in a synchronous
stream cipher we have described, it is not the case
for the class of functions we have studied. Despite
their good trade-off between cryptographically desir-
able properties, their simple algebraic form has made
them prone to guess-and-linearize-like attacks such as
that we have described. Our study has also affirmed
the common view that the internal state should not be
linearly resynchronized from the key and IV.
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