

A QUERY LANGUAGE FOR SERVICE DISCOVERY

Andrea Zisman, George Spanoudakis
Department of Computing, City University London, Northampton Square, London EC1V 0HB, U.K.

James Dooley
School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, U.K.

Keywords: Service Discovery, Structural, Behavioural, Constraints.

Abstract: To support the discovery of services during development and execution time of service-based systems, it is
necessary to have ways of expressing the characteristics of the services to be discovered and the
applications that will use them. In this paper, we present SerDiQueL, an XML-based query language that
allows for the description of service discovery queries expressing structural, behavioural, quality, and
contextual characteristics of services to be discovered. The language supports the identification of services
during both development and execution of service-based systems and is supported by prototyped query
processors performing similarity analysis between services and queries.

1 INTRODUCTION

Service discovery is an important activity for service
oriented computing. Over the last few years various
approaches (Hausmann et al., 2004) (Li and
Horrock, 2003) (Shen and Su, 2005) have been
proposed to support identification of services that
can fulfill the functionality and quality aspects of
service-based systems during the design,
deployment, and use of these systems. Some of these
approaches support the identification of services
during the development of service-based systems
(viz. static service discovery), while other
approaches allow for the identification of services
during the execution time of these systems (viz.
dynamic service discovery).

The need for static service discovery arises when
it is necessary to develop systems that are
constructed as composition of services available in
different service registries. The need for dynamic
service discovery arises when it is necessary to
identify services during execution time of these
systems due to unavailability or malfunctioning of
services participating in the systems; changes in the
context, structure, behaviour, and quality of these
services; changes in the context of the system; or
availability of new services.

In any of the above situations, it is necessary to
have ways of expressing the characteristics of the
services to be discovered. More specifically, for
static service discovery, it is necessary to have a
query language that allows the representation of
structural, behavioural, and quality aspects of a
service-based system being developed in order to
identify services that match these aspects and use
these services in the design of the system. For
dynamic service discovery, it is necessary to have a
query language that can express not only structural,
behavioural, and quality aspects, but also contextual
aspects of deployed services that need to be replaced
in service-based systems and contextual aspects of
the environment where a system is executed.

For an example of static service discovery,
consider the development of a service-based system
that assists users to plan a trip. In this case, it may be
necessary to identify services that allow to check for
availability of flights, calculate the cost of a flight,
get the details of a flight, and book a flight, in this
exact order, with some specific parameters and a
restriction that the time to execute those actions by
the service should not be more than two seconds.
For an example of dynamic service discovery,
consider a service-based system that schedules
journalists’ daily tasks. Suppose this application has
a service that identifies the whereabouts of

 55
Zisman A., Spanoudakis G. and Dooley J. (2009).
A QUERY LANGUAGE FOR SERVICE DISCOVERY.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 55-65
DOI: 10.5220/0002260400550065
Copyright c© SciTePress

journalists. Assume that this service fails. In this
case, it may be necessary to discover services that
can identify journalists at a certain location.

In this paper we present SerDiQueL, an XML-
based service discovery query language allowing the
description of service requests expressing structural,
behavioural, quality, and contextual characteristics
of the systems and services to be identified during
both static and dynamic service discovery.
SerDiQueL supports queries that can be performed
in both push and pull modes during the execution of
service-based systems.

SerDiQueL is composed of three sub-queries.
The first sub-query describes structural
characteristics of the services to be discovered that
comply with the application being developed, or
services already being used by a system. The second
sub-query expresses behavioural characteristics of
services and systems representing the existence of a
certain functionality or sequence of functionalities,
the sequence and order in which certain
functionalities should be executed, pre-conditions,
and dependencies between functionalities. The third
sub-query represents extra constraints. These extra
constraints may involve (i) quality characteristics,
(ii) contextual characteristics, or (iii) extra structural
and behavioural conditions that cannot be
represented in the structural and behavioural sub-
queries of the language. Examples of these extra
constraints are the time or cost to execute a certain
operation in a service, the specific receiver of a
message, the provider of a service, or the number of
parameters in a service operation.

SerDiQueL has been developed as part of a large
programme of research to support service discovery
in static (Kozlenkov et al., 2007) and dynamic
pull/push modes (Zisman et al., 2008). The language
supports the representation of service queries that
are executed by a service discovery framework. In
this paper, we discuss the language and give a brief
overview of the framework. In our work, we assume
services specified from different perspectives such
as interface (WSDL (WSDL)), behavioural
(BPEL4WS (BPEL4WS)), quality, context, and
textual descriptions in XML format. The similarities
between service queries and service specifications
are computed by using distance functions.

The remainder of this paper is structured as
follows. Section 2 presents an overview of our
framework to support static and dynamic service
discovery. Section 3 describes SerDiQueL and gives
example queries to illustrate it. Section 4 presents
related work. Finally, Section 5, provides an overall
discussion, concluding remarks, and future work.

2 OVERVIEW OF SERVICE
DISCOVERY FRAMEWORK

Our service discovery framework has been
developed to support both static (Kozlenkov et al.,
2007) and dynamic identification of services
(Zisman et al., 2008). In the case of static service
discovery, our framework advocates an iterative
process in which service-based systems are
developed based on available services. More
specifically, the framework supports the
identification of services that provide functional and
non-functional characteristics of service-based
systems during the design phase of these systems.
The identified services are used to formulate and
amend the design models of these systems. The
reformulations of the design models may trigger new
service discovery iterations. In the case of dynamic
service discovery, our framework advocates
identification of services in both reactive and
proactive ways, based on subscribed service
requests, to replace services in a service-based
system during execution time.

In both cases, the framework assumes services
described from different perspectives by a set of
XML-based facets. These facets include (i) textual
facets describing general information of the services
in an XML format, (ii) structural facets describing
operations of services with their data types using
WSDL (WSDL), (iii) behavioural facets describing
behavioural models of services in BPEL4WS
(BPEL4WS), (iv) quality of service facets describing
non-functional aspects of services, and (v) context
facets describing quality aspects of a service that
change dynamically.

Figure 1 shows the overall architecture of our
service discovery framework. As shown in the
figure, the main components of the framework are:
(a) service requestor, (b) query processor, and (c)
service registry intermediary. The framework also
uses external service registries and, is invoked by an
external client application, and uses special servers
and listeners to support notification of changes in
services and application environment.

The external client application supports the
creation of service requests to be executed both
statically and dynamically. These service requests
may contain structural, behavioural, quality, and
contextual characteristics. The service requestor
receives a service request from the client
application, as well as context information about the
services and application environment in the case of
dynamic service discovery. It prepares service
queries to be evaluated, organises the results of a

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

56

query, and returns these results to the client
application. In addition, it manages push query
execution mode subscriptions, receives information
from listeners about services that become available
or about changes to existing services, in the case of
dynamic service discovery. The query processor is
responsible to parse the different parts of a query
and evaluate these parts against service
specifications in the various service registries. As
shown in the figure, the query processor is formed
by three sub-components, namely (i) structural, (ii)
behavioural, and (iii) constraint matchmakers. Each
of these sub-components is responsible to evaluate a
different part of a query (see Section 3).

Our framework assumes that constraints in a
query can be contextual or non-contextual. A
contextual constraint is concerned with information
that changes dynamically during the operation of the
service-based system and/or the services that the
system deploys, while a non-contextual constraint is
concerned with static information related to
structural, behavioural, and quality aspects of the
services and systems. The non-contextual constraints
can be hard or soft. A hard constraint must be
satisfied by all discovered services for a query and
are used to filter services that do not comply with
them. A soft constraint does not need to be satisfied
by all discovered services, but are used to rank
candidate services for a query.

The evaluation of a query is executed in a two-
stage process. In the first stage, the constraint
matchmaker is invoked in order to evaluate hard
constraints in the query. This is a filtering stage,
which selects candidate services from the registries
that match exactly the hard constraints of a query.
The second stage is an optimization stage in which
the candidate services returned from the first stage
are matched against structural, behavioural, and soft
constraints in a query. When a query does not have
hard constraints, the structural, behavioural, and soft
constraints parts of a query are matched against all
the services in the registries. The above matching is
executed by the structural, behavioural, and
constraint matchmakers, respectively and is based on
the computation of structural, behavioural, and
constraint distances.

In the case of static service discovery, the
matching in the second stage of the process returns
n-best services for a query (n can be specified in a
query or can be equal to ten by default). The
identified best services are used by the designer of a
service-based system under development to select
the services to be used by the system. Details of the
static discovery process and distance measures are

beyond the scope of this paper, but can be found in
(Kozlenkov et al., 2007) (Zisman and Spanoudakis,
2006).

Figure 1: Architecture overview of framework.

In the case of dynamic service discovery, the
matching in the second stage of the process returns
the best service for a query also based on the
computation of structural, behavioural, and
constraint distances as described in (Zisman et al.,
2008). The dynamic service discovery supports both
pull and push modes of query execution. For the
push mode of query execution, the framework
assumes a proactive approach in which services are
identified in parallel to the execution of a service-
based system based on subscriptions of application
environment, services, and queries associated with
these services, so that replacement services can be
identified, when notification of changes in services
and application environments are pushed to listeners
(Zisman et al., 2008). These notifications of changes
are supported by the use of service context server,
application context server, and service listeners.

The service registry intermediary supports the
use of different service registries and the discovery
of services stored in different types of registries. It
provides an interface to access services from various
registries. The framework allows accessing services
from registries organized as faceted structure, as
proposed in the SeCSE project (SECSE). More
specifically, in the registries, a service is specified
by a set of XML-based facets, namely (i) textual
facets, (ii) structural, (iii) behavioural, (iv) quality of
service, and (v) context facets.

3 SerDiQueL

SerDiQueL is an XML-based language that allows
for the specification of structural, behavioural,
quality, and contextual characteristics of services to

A QUERY LANGUAGE FOR SERVICE DISCOVERY

57

be discovered or service-based systems being
developed. The language has been developed based
on requirements for supporting both static and
dynamic service discovery identified by industrial
partners in the areas of telecommunications,
automotive, software, media, and banking in the
European research projects (GREDIA) (SECSE),
and the framework described in Section 2. These
requirements point out the need for:

 • Generating service discovery queries from
design models of service-based systems
specifying functional and non-functional
properties of such systems;

Figure 2: Overview schema of SerDiQueL.

3.1 Structural Sub-query • Generating service discovery queries from
characteristics of services that have already
been deployed in systems, but may need to be
replaced;

The structural sub-query describes structural aspects
of (i) a service-based system being developed (in the
case of static service discovery) or (ii) a service that
needs to be replaced and is being used by a service-
based system (in the case of dynamic service
discovery).

• Providing service discovery queries that
express arbitrary logical combinations of
prioritised functional, non-functional, and
contextual properties of required services, and
similarity-based queries of the form "find a
service that is similar to service X";

The description of structural aspects for case (i)
is based on design models of this system. Our
service discovery framework assumes design models
expressed in UML class and sequence diagrams
represented as XMI documents, due to the
popularity of using UML for designing software
systems in general, and service-based system in
particular (Deuble et al., 2005) (Gardner, 2004).
However, the structural sub-query could be based on
other types of design models representing the
functionality of a system.

• Efficient matching of service discovery queries
against different types of service specifications
and return of services with varying degrees of
match with the queries;

• Supporting service discovery in both pull and
push execution mode (based on subscriptions);

• Proactive dynamic service discovery to increase
efficiency especially at runtime;

• Integrating discovered services into an iterative
design process in which service-based systems
design models may be re-formulated after the
discovery of services.

In order to support the definition of structural
aspects of a system under development based on
UML models, we have developed a UML 2.0 profile
(Kozlenkov et al., 2007). The profile defines a set of
stereotypes for different types of UML elements
such as messages in sequence diagrams, or
operations and classes defining the types of
arguments in the messages in the class diagrams.

Figure 2 presents the overall XML schema of
SerDiQueL. As shown in the figure, a query
specified in the language (ServiceQuery) has three
elements representing structural, behavioural, and
constraint sub-queries. The division of a query into
these three sub-queries is to (i) allow the
representation of these three types of information
and (ii) support the representation of queries with
arbitrary combinations of these types of information.
A ServiceQuery also has a unique identifier, a name,
and one or more elements describing different
parameters for a query. A parameter element is
defined by a name and a value. Examples of
parameters that can be used in a query are: (a) name
of the query, (b) type of the query (e.g., static or
dynamic), (c) mode of execution (push or pull), (d)
author of the query, and (e) number of n-best
services to be returned by a query.

For example, messages in a sequence diagram
may be stereotyped as: (i) query messages
representing service operations needed in identified
services; (ii) context messages representing
additional constraints for the query messages (e.g. if
a context message has a parameter p1 with the same
name as a parameter p2 of a query message, then the
type of p1 should be taken as the type of p2); (iii)
bound messages representing concrete service
operations that have been discovered in previous
query executions.

In our framework, structural sub-queries for a
service-based system being developed are automatic
generated from the class and sequence diagrams of a

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

58

Figure 3: XML Schema for behavioural sub-query.

system based on the selection of messages from the
designer of the system. The description of structural
aspects of a service-based system based on design
models of these systems supports the representation
of operations being searched in different services
together with the representation of the input and
output parameters of these operations and their
respective data types. This is important to assist with
the matching of structural aspects of the systems
with structural aspects (interface descriptions) of
available services. Moreover, it supports the
development of a service-based system based on the
characteristics of available services instead of on
requirements that may never be able to be fulfilled
by existing services.

The description of structural aspects for case (ii)
is represented as the WSDL (WSDL) specification
of the service to be replaced. In this case,
SerDiQueL supports a complete representation of
the structural aspects of a service to be identified as
interface descriptions. In the framework, structural
sub-queries for a service that needs to be replaced
during execution time are automatic generated based
on the notification that a service became
malfunctioning, unavailable, or there have been
changes in the characteristics of the service or in the
context of the application environment. In both static
and dynamic service discovery, structural sub-
queries are matched against interface descriptions of
services specified as WSDL considering the names
of the operations and the data types of the
parameters of the operations. Details of the matching
process is found in (Zisman et al., 2008).

3.2 Behavioural Sub-query

The behavioural sub-query is matched against
behavioural service specifications. In our
framework, the matching of the behavioural sub-

queries is executed based on the comparisons of
paths representing the query and service
specification. More specifically, the behaviour
matching is executed by (i) transforming
behavioural service specifications into state
machines, (ii) extracting all the possible paths from a
service statemachine, (iii) transforming the
behavioural sub-query into paths, and (iv) verifying
if the paths representing the query can be matched
against a path of the statemachine of a service.
Given its popularity, we assume behavioural service
specifications represented in BPEL4WS
(BPEL4WS). However, the behaviour sub-query can
be matched against other types of behavioural
service specifications that can be represented as or
transformed into statemachines.

The behavioural sub-query is based on temporal
logic supporting the representation of behavioural
aspects of required services. In particular, it supports
the description of queries that verify (a) the
existence of a certain functionality, or a sequence of
functionalities, in a service specification; (b) the
order in which certain functionalities should be
executed by a service; (c) dependencies between
functionalities; (d) pre-conditions; and (e) loops.
Figure 3 shows a graphical representation of the
SerDiQueL’s XML schema for behavioural sub-
queries. As shown in the figure, a behavioural sub-
query is defined as (a) a single condition, a negated
condition, or a conjunction of conditions, or (b) a
sequence of expressions separated by logical
operators. A behavioural sub-query also allows for
the specification of requires elements.

Requires elements define one or more service
operations that need to exist in service
specifications, represented as members (element
MemberDescription). These member elements are
used in various conditions and expressions of a
query. The existence of requires elements in service
specifications are verified as an initial step during

A QUERY LANGUAGE FOR SERVICE DISCOVERY

59

Figure 4: XML Schema for behavioral Sub-query.

the execution of a sub-query, in a fail-fast processing
mode, instead of being verified during the analysis
of the conditions and expressions that use these
elements, providing optimization for the sub-query
execution process. A member element has three
attributes, namely (a) ID, indicating a unique
identifier for the member within a query; (b)
opName, specifying the name of an operation
described in the structural sub-query, (for the case of
dynamic service discovery, this attribute may also
contain the port type for this operation for the
WSDL description in the structural sub-query); and
(c) synchronous, a boolean attribute indicating if the
service operation needs to be executed in a
synchronous or asynchronous mode in the service.

A condition can be negated and is defined as
GuaranteedMember, OccursBefore, OccursAfter,
Sequence, or Loop elements, as shown in Figure 4.
A GuaranteedMember represents a member element
(i.e., service operation) that needs to occur in all
possible traces of the execution in a service. This
element is defined by attribute IDREF that
references requires, sequence, or loop elements. The
OccursBefore and OccursAfter elements represent
the order of occurrence of two member elements
(Member1 and Member2). They have two boolean
attributes, namely (a) immediate, specifying if the
two members occur in sequence or if there can be
other member elements in between them, and (b)
guaranteed, specifying if the two members need to
occur in all possible traces of execution in a service.
A Sequence element defines two or more members
which must occur in a service in the order
represented in the sequence. It has an identifier
attribute that can be used by the guaranteed member
element. A Loop element specifies a sequence of
members that are executed several times. It has a
unique identifier and is defined as a statement that
references other elements.

Expressions are defined as sequences of requires
elements, conjunctions of conditions, or other nested
expressions connected by logical operators AND
and OR. The definition of requires elements within
an expression (E1) supports the cases where the non-
existence of requires elements in a service does not
invalidate the selection of this service, if other
expressions in the sub-query that are disjointed with
the expression are matched against the service.

<tnsb:BehaviourQuery>
<tnsb:Requires>
<tnsb:MemberDescription ID="login"
 opName="locS.login" synchrounous="true" />
<tnsb:MemberDescription ID="getLocation"
 opName="locS.retrieveJournalistLocation"
 synchrounous="true”/>
<tnsb:MemberDescription ID="getAllJournalists"

 opName="locS.getJournalistList"
 synchrounous="true" />

<tnsb:MemberDescription ID="select"
 opName="locS.selectJournalist"

 synchrounous="true" /> </tnsb:Requires>
<tnsb:Expression>
 <tnsb:Condition> <tnsb:GuaranteedMember
IDREF="login"/>
 </tnsb:Condition></tnsb:Expression>
<tnsb:LogicalOperator
operator="AND"/><tnsb:Expression> <tnsb:Condition>
 <tnsb:Sequence ID="getJournalistLocation">

<tnsb:Member IDREF="getAllJournalists" />
 <tnsb:Member IDREF="select" />

 <tnsb:MemberIDREF="getLocation"/>
 </tnsb:Sequence></tnsb:Condition>
<tnsb:Condition>
 <tnsb:OccursBefore immediate'"false"
 guaranteed="false">

<tnsb:Member1 IDREF="login" />
<tnsb:Member2 IDREF="getAllJournalists" />

 </tnsb:OccursBefore>
</tnsb:Condition> </tnsb:Expression>
</tnsb:BehaviourQuery>

Figure 5: Example of behavioural sub-query.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

60

Figure 6: XML schema for constraint sub-query.

As an illustration consider the example described
in Section 1 for the service-based system that
schedules journalists’ tasks and assume that service
S1 which identifies the location of journalists fails.
In this case, consider a query for identifying a
service to replace S1 with the following behavioural
conditions: (i) the service needs to have operations
similar to operations login, getJournalistList,
selectJournalist, and retrieveJournalistLocation; (ii)
a user of the service always need to be authenticated;
(iii) operations getJournalistList, selectJournalist,
and retrieveJournalistLocation need to be executed
in this order; and (iv) operation login should be
executed before operation getJournalistList. Figure
5 shows the description of the behavioural sub-query
in SerDiQueL. As shown in the figure, the above
conditions are described by the use of the elements
Requires (case i), GuaranteedMember (case ii),
Sequence (case iii), and OccursBefore (case iv).

3.3 Constraints Sub-query

The constraint sub-query described different types of
extra conditions that need to be fulfilled by a
service.

These extra conditions may include (a) quality
aspects, (b) contextual aspects, or even (c) extra
structural and behavioral aspects of a service that
cannot be represented by the structural and
behavioural sub-queries.

As described in Section 2, a constraint can be
classified as contextual or non-contextual. The non-
contextual constraints in a sub-query can be
evaluated against any type of service specification
(facet) in the service registries. The contextual
constraints are evaluated against context facets.
These context facets are associated with services and

describe context information of the operations in
these services. Context information is specified as
context operations that are executed at run-time. The
framework assumes the existence of context services
that provide context information. Details of the
context constraint matching are described in
(Spanoudakis et al., 2007).

Figure 6 shows a graphical representation of
SerDiQueL’s XML schema for specifying
constraints. As shown in the figure, a constraint sub-
query is defined as a single logical expression, a
negated logical expression, or a conjunction or
disjunction of two or more logical expressions,
combined by logical operators.

A constraint sub-query has four attributes,
namely (a) name, specifying a description of the
constraint; (b) type, indicating whether the constraint
is hard or soft; (c) weight, specifying a weight in the
range of [0.0, 1.0]; and (d) contextual, a boolean
attribute indicating whether the constraint is
contextual or non-contextual. The weight is used to
represent prioritisations of the parameters in a query
for soft constraints. When the value of the contextual
attribute is true, the query may contain
ContextOperand elements. If the value is false, the
query may contain NonContextOperand.

A logical expression is defined as a condition, or
logical combination of conditions, over elements or
attributes of service specifications (for non-
contextual constraints) or over context aspects of
service operations (for contextual constraints). A
condition can be negated and is defined as a
relational operation (equalTo, notEqualTo, lessThan,
greaterThan, lessThanEqualTo, greaterThanEqualTo,
notEqualTo) between two operands, which can be
non-contextual, contextual, constants, or arithmetic
expressions.

A QUERY LANGUAGE FOR SERVICE DISCOVERY

61

Figure 7: XML schema for constraint sub-query.

As shown in Figure 7, a non-contextal operand
(element NonContextOperand) has two attributes,
namely (a) facetName, specifying the name of the
service specification and (b) facetType, specifying
the type of the service specifications to which the
constraint will be evaluated. The operand contains
an XPath expression indicating elements and
attributes in the service specification referenced in
facetName attribute. Therefore, the constraints can
be specified against any element or attribute of any
facet in the registries.

A contextual operand (element ContextOperand)
specifies operations that will provide context
information at runtime. More specifically, a
contextual operand describes the semantic category
of context operations instead of the signature of the
operation represented by sub-element
ContextCategory. This is due to the fact that context
operations may have different signatures across
different services. A contextual operand is defined
by (a) attribute serviceOperationName, specifying
the name of the service operation associated with the
contextual operand, and (b) attribute serviceID,
specifying the identifier of a service that provides
the operation. The value of attribute serviceID is
specified when the context operand provides the
specification of a context operation of a known
service. This is normally the case when the context
operation is associated with a service-based system
for which the value of a context aspect of the system
needs to be dynamically identified during the
evaluation of a query (e.g., location of a mobile
device application). In this case, attribute serviceID
referes to the service-based system itself. Otherwise,

the value of serviceID is specified as “any” (see
Figure 7).

A ContextCategory element represents the
semantic category of an operation, instead of its
actual signature. It is defined as a relation between
two categories (Category1 and Category2). These
categories can be either a reference to a document or
a constant. A document category (element
Document) has an attribute type indicating if the
document is an ontology or a context facet, and
contains an XPath expression referencing elements
in the document. In the case of an ontology
document, an attribute with the URL indicating the
location of the ontology that describes the context
operation is used. The language can support
different ontologies for describing context operation
categories since it does not make any assumption of
the structure and meaning of the ontologies used,
apart from the fact that the ontologies need to be
described in XML. A context category in a query is
evaluated against context facets of candidate
services. This evaluation verifies if a candidate
service has a context operation with semantic
category that satisfies the categories specified in a
query.

Arithmetic expressions define computations over
the values of elements or attributes in service
specification or context information. They are
defined as a sequence of arithmetic operands or
other nested arithmetic expressions connected by
arithmetic operators. The arithmetic operators are:
addition, subtraction, multiplication, and division
operators. The operands can be contextual, non-
contextual, constants, or functions.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

62

<tnsa:ConstraintQuery name="C1" type="SOFT"
 contextual="false" weight="0.5">
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:NonContextOperand facetName="OSem"
 facetType="Beh">
 //BPEL/process/sequence/*[1]/@operation

 </tnsa:NonContextOperand> </tnsa:Operand1>
 <tnsa:Operand2>

 <tnsa:Constant
type="String">login</tnsa:Constant>

 </tnsa:Operand2></tnsa:Condition>
</tnsa:LogicalExpression>

</tnsa:LogicalExpression>
</tnsa:ConstraintQuery>
<tnsa:ConstraintQuery name="C2" contextual="true"
 type="SOFT" weight="0.5">
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="LESS-THAN">

 <tnsa:Operand1>
 <tnsa:ContextOperand
serviceOperationName="retrieveJournalistLocatio

n"
serviceID="any">
 <tnsa:ContextCategory relation="EQUAL-TO">
 <tnsa:Category1>
 <tnsa:Document

location="http://eg.org/CoDAMoS_Extended.xml"
 type="ONTOLOGY">string(/owl:Class/@rdf:ID)
 </tnsa:Document></tnsa:Category1>
 <tnsa:Category2> <tnsa:Constant type="STRING">
 GREDIA_RELATIVE_TIME</tnsa:Constant>
 </tnsa:Category2></tnsa:ContextCategory>
</tnsa:ContextOperand></tnsa:Operand1>

 <tnsa:Operand2>
 <tnsa:Constant type="STRING">SECONDS-5
 </tnsa:Constant></tnsa:Operand2>
</tnsa:Condition></tnsa:LogicalExpression>
</tnsa:ConstraintQuery>

Figure 8: Example of SerDiQueL query.

A function supports the execution of a complex
computation over a series of arguments. The results
of these computations are numerical values that can
be used as an operand in an arithmetic expression. A
function has a name and a sequence of one or more
arguments. Each of these arguments may be also a
contextual or non-contextual operand, constant, or
arithmetic expression.

In order to illustrate, consider service S1 that
identifies the location of journalists in the example
in Section 1. Assume two constraints for the service
to be identified to replace S1, namely: (a) contextual
constraint specifying that the time to retrieve the
location of a journalist should not be more than 5
seconds, and (b) non-contextual constraint
concerned with the fact that a user is authenticated
before accessing other functionalities of the service.

Figure 8 shows these two constraints in
SerDiQueL. Constraint C1 verifies if the first
operation in the service’s behavioural specification
is the operation login (case (a)). Constraint C2
specifies that any candidate service that can identify
the location of journalists (i.e., services that match
operation retrieveJournalistLocation) needs to have a
context operation classified in the category
GREDIA_RELATIVE_TIME in ontology
http://eg.org/CoDAMos_Extended.xml, and the
result of executing this operation has to less than
SECONDS-5 for this service to be accepted.

4 RELATED WORK

Several query languages have been proposed to
support web services discovery (Beeri et al., 2006)
(Pantazoglou et al., 2006) (Pantazoglou et al., 2007)
(Papazoglou et al., 2002) (Yunyao et al., 2005). In
(Beeri et al., 2006), the authors propose BP-QL a
visual query language for business processes
expressed in BPEL. SeDiQueL also supports
querying BPEL specifications. However, it differs
from BP-QL since it supports the specification of
structural, quality, and contextual conditions in the
query, and the behavioural conditions can be
matched against other types of behavioural service
specifications. The query language proposed in
(Papazoglou et al., 2002) is used to support
composition of services based on user’s goals.
NaLIX (Yunyao et al., 2005), a language developed
to allow querying XML databases based on natural
language, has also been adapted to cater for service
discovery. In (Pantazoglou et al., 2006), the authors
propose USQL (Unified Service Query language),
an XML-based language to represent syntactic,
semantic, and quality of service search criteria.
SeDiQueL is more complete, since it accounts for
the representation of behavioral aspects of the
application being developed and services to be
discovered, as well as context characteristics of
services and application environments. An extension
of USQL that incorporates behavioral based on
UML sequence diagrams has been proposed in
(Pantazoglou et al., 2007). The behavioural sub-
query of SerDiQueL is not restricted only to the
representation of sequence of operations.

Semantic matchmaking approaches have been
proposed to support service discovery based on logic
reasoning of terminological concept relations
represented on ontologies (Hausmann et al., 2004)
(Klein and Bernstein, 2004) (Klusch et al., 2006) (Li
and Horrock, 2003). In (Hausmann et al., 2004), the

A QUERY LANGUAGE FOR SERVICE DISCOVERY

63

discovery of services is addressed as a problem of
matching requests specified as a variant of
Description Logic (DL). The work in (Klein and
Bernstein, 2004) extends existing approaches by
supporting explicit and implicit semantics using
logic based, approximate matching, and IR
techniques. Our work differs from the above
approaches as it supports explicit and separate
representation of service requests based on various
types of characteristics for both static and dynamic
discovery.

In (Hall and Zisman, 2004) the authors advocate
the use of behavioural models of services to increase
the precision of the discovery process. Similarly, in
(Shen and Su, 2005) the authors use service
behaviour signatures to improve service discovery.
These approaches do not support service discovery
based on quality and contextual characteristics of the
services.

Context awareness in service discovery has been
proposed in (Bormann et al., 2005) (Choonhwa and
Helal, 2003) (Doulkeridis et al., 2006). In
(Doulkeridis et al., 2006), context information is
represented by key-value pairs attached to the edges
of a graph representing service classifications. This
approach does not integrate context information with
behavioural and quality matching and, since context
information is stored explicitly in the service
repository, this repository must be updated following
context changes. The approach in (Bormann et al.,
2005) uses ontologies to express service queries,
service descriptions, and context information.
Context information in this approach can also be
used as an implicit input to a service.

Overall, most of the proposed approaches
support service discovery for certain criteria whilst
SerDiQueL allows the specification of
comprehensive queries structural, functional,
quality, and contextual characteristics of services
and service-based applications at the same time.

5 CONCLUSIONS, DISCUSSION
AND FUTURE WORK

In this paper we have described SerDiQueL, a query
language for specifying service discovery queries
that can be executed during the development and
execution of service-based systems. SerDiQueL
allows the representation of structural, behavioural,
quality, and contextual characteristics of the services
to be discovered and the service-based systems
needing them.

A parser for SerDiQueL has been implemented
in Java. We have used SerDiQueL in a service
discovery framework that we have developed to
support static and dynamic service discovery. The
use of SerDiQueL in this framework has shown that
the language can support the description of
comprehensive queries expressing different
characteristics of the services to be discovered.

In particular, the representation of the structural
criteria in the query is flexible and can accommodate
both the description of design models of the systems
being developed and the services to be replaced in
them. The behavioural sub-query supports the
specification of different behavioural criteria of
services and service-based systems and is not
constrained by the use of proprietary languages (e.g.,
BPEL4WS). The language also supports behavioural
sub-queries to be evaluated in a fail-fast mode,
optimizing the matching of these sub-queries with
service specifications. The behavioural sub-query
does not support control structures and conditional
loops, since these types of operators require
knowledge of the state values of the services during
query evaluation, which in general are not available.
The constraint sub-query can specify a wide
spectrum of complex conditions ranging from
quality and contextual criteria, to extra structural and
behavioural aspects that cannot be specified in the
structural and behavioural sub-queries. The language
supports the use of different ontologies for
describing context operation categories and different
types of context operations for which values can be
extracted from a context server. In addition, the
constraint sub-query allows for the description of
any type of quality aspects that are described by
service specifications.

We have used SerDiQueL to describe service
discovery queries in both design and execution time
of service-based systems in different applications in
the telecommunication, automotive, software,
media, and banking domains with positive results.
More specifically, the use of SerDiQueL to support
the development of service-based systems has
shown an average precision of 91% for services with
very low distance to queries (less than 0.1 in a scale
between [0.0 and 1.0]), and a recall of 94% for
services with distance of up to 0.5 with queries.
Initial evaluation of the performance of matching
queries specified in SerDiQueL with structural,
behavioural, quality, and contextual constraints
against service specifications of the types described
in this paper, has shown average times of (i) 8,522
msec when matching 20 services; (ii) 18,153 msec

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

64

for 40 services, and (iii) 28,754 msec for 60
services.

We are currently investigating the use of
SerDiQueL in other service discovery frameworks
and developing an editor to support the specification
of SerDiQueL queries.

ACKNOWLEDGEMENTS

The work reported in this paper has been funded by
the European Commission under the Information
Society Technologies Programme as part of the
project and GREDIA (contract FP6-34363).

REFERENCES

Bormann, F., et al., 2005. Towards Context-Aware
Service Discovery: A Case Study for a new Advice of
Charge Service. In 14th IST Mob. & Wireless Comm.
Summit.

Beeri C., Eyal A., Kamenkovich S., Milo T., 2006.
Querying Business Processes. In 32nd International
Conference on Very Large Databases, Korea.

BPEL4WS. http://www128.ibm.com/developerworks/
library/specification/ws-bpel/

Choonhwa L., Helal, S., 2003. Context Attributes: An
Approach to Enable Context-awareness for Service
Discovery. In Symposium on Applications & the
Internet.

Deubler M., Meisinger M., Kruger I., 2005. Modelling
Crosscutting Services with UML Sequence Diagrams.
In ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems.

Doulkeridis, C., Loutas, N., Vazirgiannis, M., 2006. A
System Architecture for Context-Aware Service
Discovery. In Electr. Notes Theor. Comp. Sci. 146(1):
101-116.

Gardner T., 2004. UML Modelling of Automated Business
Processes with a Mapping to BPEL4WS. In 2nd
European Workshop on OO and Web Services
(ecoop).

GREDIA Project. http://www.gredai.eu
Hall, R.J., Zisman, A., 2004. Behavioral Models as

Service Descriptions. In International Conference on
Service Oriented Computing, New York.

Hausmann, J.R., Heckel, R., Lohman, M., 2004. Model-
based Discovery of Web Services. In Int. Conf. on
Web Services.

Klein, M., Bernstein, A., 2004. Toward High-Precision
Service Retrieval. In Internet Computing, 30-36.

Klusch, M., Fries, B., Sycara, K., 2006. Automated
Semantic Web Service Discovery with OWLS-MX. In
International Conference on Autonomous Agents and
Multiagent Systems.

Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas,
V., Sanchez, F., 2007. Architecture-driven Service
Discovery for Service Centric Systems. In
International Journal of Web Services Research,
special issue on Service Engineering, 4(2), April-June.

Li, L., Horrock, I., 2003. A Software Framework for
Matchmaking based on Semantic Web Technology. In
Workshop on E-Services & the Semantic Web.

Pantazoglou, M., Tsalgatidou, A., Athanasopoulos G.,
2006. Discovering Web Services in JXTA Peer-to-
Peer Services in a Unified Manner. In 4th International
Conference on Service Oriented Computing.

Pantazoglou, M., Tsalgatidou, A., Spanoudakis, G., 2007.
Behavior-aware, Unified Service Discovery. In
Proceedings of the Service-Oriented Computing: a
look at the inside Workshop, SOC@Inside.

Papazoglou, M., Aiello, M., Pistore, M., Yang, J., 2002.
XSRL: A Request Language for web services,
http://citeseer.ist.psu.edu/575968.html

SECSE Project. http://secse.eng.it
Shen, Z., Su, J., 2005. Web Service Discovery based on

Behavior Signatures. In Int. Conf. on Service
Computing.

Spanoudakis, G., Mahbub, K., Zisman, A., 2007. A
Platform for Context-Aware Run-time Service
Discovery. In IEEE Int. Conf. on Web Services, USA.

WSDL. http://www.w3.org/TR/wsdl
Yunyao, L.Y., Yanh, H., Jagadish, H., 2005. NaLIX: an

Interactive Natural Language Interface for Querying
XML. In SIGMOD, Baltimore.

Zisman, A., Spanoudakis, G., 2006.UML-based Service
Discovery Framework. In 4th International
Conference on Service Oriented Computing, ICSOC,
USA.

Zisman, A., Spanoudakis, Dooley, J., 2008. A Framework
for Dynamic Service Discovery. In IEEE International
Conference on Automated Software Engineering, ASE,
Italy, September.

A QUERY LANGUAGE FOR SERVICE DISCOVERY

65

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://citeseer.ist.psu.edu/575968.html
http://www.w3.org/TR/wsdl

