
RAPIDLY MODIFYING MULTIPLE USER INTERFACES OF ONE
APPLICATION

Leveraging Multi-level Dialogue Refinement

Alexander Behring, Andreas Petter and Max Mühlhäuser
FG Telecooperation, TU Darmstadt, 64283 Darmstadt, Germany

Keywords: UI models, Refinement, Engineering user interfaces, User interface description languages.

Abstract: An increasing demand for supporting users in diverse contexts of use, e.g., depending on interaction device
and primary task, results in new challenges for User Interface (UI) development. Two key challenges are: how
to create these multiple UIs for one application (creation challenge), and how to consistently modify them
(modification challenge). The creation challenge has been addressed in various works utilizing automatic UI
generation. We present our approach (Dialogue Refinement) and its tool-support to address the modification
challenge by allowing one modification to be applied to multiple UIs at once.

1 INTRODUCTION

Multiple causes lead to an increase in the number of
User Interfaces (UIs) per application. Technological
advances allow us to interact with computers in situa-
tions that could not be supported by information tech-
nology before. We can observe that more and more
commercial services are already offered not only for
the traditional desktop computer, but for mobile de-
vices like the iPhone, Java-enabled cell phones or
alike. Examples beyond simple train, airplane or bus
schedule services are electronic boarding-passes, and
the possibility to buy electronic public transportation
tickets for and with mobile devices. Regarding these
UIs, key challenges are how to create UIs for differ-
ent contexts of use (creation challenge) and how to
apply modifications to them, once the UIs are created
(modification challenge).

Our approach to address the modification chal-
lenge is based on the key idea to allow one modifi-
cation to change multiple UIs. In order to control the
propagation of a modification, UIs are ordered in a
tree. The modification is ”passed” down the tree along
associations between the UIs. Changing these associ-
ations allows the UI engineer to adapt the propagation
of modifications to suite the problem at hand.

Our main contributions in this paper are the refine-
ment concept (sect. 2) and its editor-support (sect. 3).
A case study and preliminary user study are presented
subsequently (sect. 4). Finally, we discuss related ap-
proaches (sect. 5).

2 DIALOGUE REFINEMENT

After introducing objectives for addressing the mod-
ification challenge, our approach is introduced. it is
supported by a metamodel and a toolset, which are
presented afterwards.

2.1 Objectives
Objective 1: The UI engineer must be kept in the
loop.

Automatic approaches hold great potential to re-
duce the effort to provide multiple UIs for one ap-
plication. But their interfaces are prone to usabil-
ity problems and lack aesthetic quality (Myers et al.,
2000; Meskens et al., 2008) when compared to man-
ually designed UIs.

Objective 2: The artifact edited by the UI engineer
must resemble as much as possible the resulting UI.

Working on abstract artifacts isolates the UI en-
gineer from the concrete interface. This was a reason
why User Interface Management Systems (UIMS) did
not catch on, as Myers et al. discussed in (Myers
et al., 2000). They discovered that expressing graph-
ical concepts by graphical means was an important
success factor for interface builders. It lowered the
threshold of use and the modifications were not prone
to unpredictability. The term WYSIWYG – what you

344
Behring A., Petter A. and Mühlhäuser M. (2009).
RAPIDLY MODIFYING MULTIPLE USER INTERFACES OF ONE APPLICATION - Leveraging Multi-level Dialogue Refinement.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 344-347
DOI: 10.5220/0002260103440347
Copyright c© SciTePress



Root

Desktop

Regular Touch-Display

Mobile

Subnotebook Small-Screen

Nokia E70 iPhone Penbased
More

Concrete

More

Abstract

Figure 1: An exemplary Refinement Tree of UIs refined for different contexts of use. The topmost UI is called Root UI.

see is what you get – makes this even more clear:
there is no difference between the edited artifact and
the result.

Objective 3: The UI engineer must be able to
provide her information at the level of abstraction
suitable for the problem at hand.

UI changes can be situated at different levels of
abstraction, e.g., just for the concrete iPhone UI or
more abstract for all small-screen UIs. Depending
on domain and application, the number of abstraction
levels suitable may vary.

2.2 Concept

To create a UI for a new context of use, the UI engi-
neer refines an already existing one and adds, removes
or modifies elements of it. Applying this step multiple
times results in a refinement tree, as shown in figure 1.
The tree structure is captured through refinement as-
sociations, created during the refinement. These as-
sociations connect the refined UI with the more ab-
stract1 UI.

Our key concept to address the modification chal-
lenge is to allow one modification to be applied to
multiple UIs. When applying a modification, the re-
finement associations are used to propagate the mod-
ification through the refinement tree, thus applying it
to multiple UIs at the same time. Through changing
the refinement associations, the UI engineer can in-
fluence, to which UIs a modification is propagated.
Consequently, a value is either refined (i.e. the value
is inherited from the more abstract UI), or it is set lo-
cally.

We implemented the concept as a metamodel in

1We use the word abstract in the context of refinement
rather than generalization.

EMF (Eclipse Modeling Framework2). In this meta-
model, UIs are made up of InteractionObjects. The
UI engineer arranges them in UIBoxes to determine
the look and feel of a UI. A UIBox contains the UI
for a specific context of use and is a node in the re-
finement tree. Refinement associations can connect
UIBoxes or InteractionObjects. The metamodel is ag-
nostic of the concrete UI toolkit used, they are inte-
grated through libraries.

3 WYSIWYG TOOL SUPPORT

Renderers (model interpreters), in our approach, work
directly on the UI model without intermediate code
artifacts. Thus, there are no synchronization prob-
lems, which allows for an easy extension of render-
ers with WYSIWYG editing capability (cf. figure 2).
Furthermore, editors must allow the UI engineer to
modify and identify the current refinement state of a
value (refined or set locally). The UI engineer must
be able to explore the refinement associations for an
element: does it have refining versions or an abstract
version?

We implemented renderers for HTML and Swing
in Java integrated into our UI research platform Ma-
pache. The Swing renderer was extended with edit-
ing capabilities and connected to Eclipse, as shown in
figure 2. The Eclipse property view allows to identify
and modify the refinement state of element proper-
ties. Also in Eclipse, a Refinement View showing the
refinement tree (cf. figure 1) was implemented. Be-
sides showing the UI hierarchy, it can be used to ex-
plore which related elements (regarding refinement)
exist for the currently selected element.

2http://www.eclipse.org/emf

RAPIDLY MODIFYING MULTIPLE USER INTERFACES OF ONE APPLICATION - Leveraging Multi-level Dialogue
Refinement

345



Figure 2: The interactive model interpreter in edit-mode with its eclipse properties page. The property page is synchronized
with the interpreter and shows the currently selected item (Button ”Find an exhibit”). The value of the text-property is refined
from a super-version, as depicted in the properties view.

4 CASE STUDY

We created a larger case study application. The use
case was a university guide (UniGuide), allowing
people to get information on objects in our computer
science building. It was targeted at three different
contexts of use: desktop, subnotebook and smart-
phone. Figure 3 shows the ”exhibit details” window
refined for smartphones and desktop.

Figure 3: UIs of our case study – the ”exhibit details” win-
dow refined for smartphone and desktop.

We used our editors presented in section 3 to build
the UIs for the case study. Attaching behavior can be
done at any refinement level using an event-registry.
Domain elements are shared among different UI ver-
sions. Their properties can automatically be synced
with UI element properties (“Value Bindings”).

After implementing the case study, we conducted
a preliminary user study. Seven participants with a
great variance in GUI building skills had to complete
two UI modification tasks. Task one consisted of re-
placing a text in all UIs, whereas task two was to
add tooltips to existing elements. After a short intro-

duction, we asked the participants to complete both
tasks with and without our tools. As a baseline, we
used Netbeans, because Eclipse does not provide an
industrial-grade interface builder. For both tasks to-
gether, 9 steps were necessary using our tools, 21
steps in Netbeans.

All participants, even those with no experience in
GUI creation, successfully completed both tasks us-
ing our approach and had no delays in applying the
concept with regard to the use of Netbeans. We can
conclude that the concept is easily comprehensible
and thus has a low threshold of use. The normal-
ized error rate (total errors per total number of steps)
hinted that participants were less likely to produce er-
rors when using our approach (4%±6%) versus Net-
beans (21%±20%). We attribute this to the repetitive
nature of the task in Netbeans. Such errors could pose
a great problem in larger projects with a bigger set of
supported contexts of use.

5 RELATED APPROACHES

Several works apply model-to-model transformations
to create or synchronize UI models. For example,
Sottet et al. (Sottet et al., 2006) use ATL, and
Limbourg applies a generic graph-transformation lan-
guage (Limbourg, 2004). Approaches that provide
generic solutions, as transformations do, can be ap-
plied to a great range of problem domains. But since
they are not focused on the UI, their syntax, and more
important their semantic, does not address UI specific
issues. Consequently, they are very abstract for the
UI engineer to use. In contrast to our approach, such
generic transformation approaches thus suffer from
unpredictability. Furthermore, a new (often complex)
language has to be learned, raising the threshold of
use. In addition, they are prone to usability problems

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

346



and lack aesthetic quality.
Seminal Teresa (Mori et al., 2004) supports an ab-

stract and a concrete UI level. The semantics of ab-
stract and concrete levels are fixed. In contrast, us-
ing our approach, the number of abstraction level can
be chosen with respect to the problem at hand. Also,
the UI engineer can choose the subject of abstraction
freely and is not tied to fixed abstraction semantics.

Damask (Lin and Landay, 2008) is a tool mainly
targeted towards UI prototyping. The modification of
existing UIs, or even UIs that are already used in run-
ning applications is not Damask’s focus. However,
the layer concept presented in Damask is similar to
the Refinement Tree of our approach. But our work
goes beyond the two layers supported in Damask in
order to support a wide range of different contexts of
use.

Gummy (Meskens et al., 2008) is tool for creating
different UIs for different contexts of use in WYSI-
WYG fashion. UIs for new contexts of use can be
transformed from existing ones, but after creation the
connection to the source UI is lost: modifications can
only be applied to a single UI. In contrast, our ap-
proach keeps these connections and thus allows to ap-
ply one modification to multiple UIs.

6 CONCLUSIONS

We presented the Dialogue Refinement approach and
its tool-support to address the modification challenge.
The approach allows the UI engineer to apply one
modification to multiple UIs at once. A case study
and preliminary user study showed its applicability,
ease of use, and a lower error rate compared to an
industrial-grade GUI builder.

We currently research the integration of transfor-
mation approaches and the concepts presented in this
paper. Because hand-crafting user interfaces for mul-
tiple target platforms is a costly task, transformations
can be used for automatic generation of UIs. The aes-
thetic quality and usability of the UIs can be obtained
by easily allowing manual modifications to generated
UIs. Furthermore, we investigate the integration of a
voice-based toolkit (VoiceXML) into refinement.

ACKNOWLEDGEMENTS

This work has been supported by the BMBF SoKNOS
project. We thank our colleagues for their valuable
feedback and Jannik Jochem for his support in imple-
menting the tools.

REFERENCES

Limbourg, Q. (2004). Multi-Path Development of User In-
terfaces. PhD thesis, Universit catholique de Louvain.

Lin, J. and Landay, J. A. (2008). Employing patterns and
layers for early-stage design and prototyping of cross-
device user interfaces. In CHI ’08, pages 1313–1322,
New York, NY, USA. ACM.

Meskens, J., Vermeulen, J., Luyten, K., and Coninx, K.
(2008). Gummy for multi-platform user interface de-
signs: shape me, multiply me, fix me, use me. In AVI
’08, pages 233–240, New York, NY, USA. ACM.

Mori, G., Paternò, F., and Santoro, C. (2004). Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw.
Eng., 30(8):507–520.

Myers, B., Hudson, S. E., and Pausch, R. (2000). Past,
Present, and Future of User Interface Software Tools.
ACM Transactions on Computer-Human Interaction
(TOCHI), 7(1):3–28.

Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., and De-
meure, A. (2006). Towards mapping and model trans-
formation for consistency of plastic user interfaces. In
Workshop “The Many Faces of Consistency in Cross-
platform Design”, CHI ’06. ACM.

RAPIDLY MODIFYING MULTIPLE USER INTERFACES OF ONE APPLICATION - Leveraging Multi-level Dialogue
Refinement

347


