
SOCIAL PATTERNS FOR QUALITY CONTROL
IN MULTI-AGENT SYSTEMS

Thi-Thuy-Hang Hoang and Manuel Kolp
Information System Unit, Louvain School of Management, Université Catholique de Louvain

Place des Doyens, 1, 1348 Louvain-la-Neuve, Belgium

Keywords: Social pattern, Multi-agent system, Quality requirement.

Abstract: Modern softwares are not only required to perform some specific functions but also have to satisfy all the
quality constraints described by the initial requirements. In this paper, we focus on some useful social
patterns that will facilitate the developers’ task when dealing with quality constraint in multi-agent systems.
These patterns define some agents and their interactions that help to monitor and to react to any changes of
quality at the runtime.

1 INTRODUCTION

Nowadays, software plays a crucial role in every
corner of the modern life. The numerical era requires
people to be equipped with at least a minimal
knowledge of information technology. Online
shopping, e-newspapers, cyber games, social
networking, etc. become daily activities. Daily bank
transactions, administrative obligations… are also
computerized. This electronic life has transformed
people into e-citizen, e-learner, e-banker, e-shopper,
etc.

Being an emerging development paradigm that
has some advantages over traditional development
techniques such as structured and object-oriented,
agent-oriented software development has become a
modern buzzword in software engineering. Software
agents, with certain autonomy and intelligence, are
expected to substitute human agents in a lot of tasks.
Moreover, they are designed to live in a virtual
society of agents who interact with each others to
exchange their knowledge, to reason about the
environment and to act towards individual goals as
well as social goals.

It is known that the agent-oriented paradigm
favours extensibility and interoperability. But these
qualities cannot be automatically attained by just
choosing to use an agent-oriented software
development methodology. A good analysis of
requirements and a sound design could help any
software system to have these qualities even if they
are not built using agent-oriented software
development methodology. Analysis and design are
among the deciding factors contributing in the deve-

lopment of quality software.
Extensibility and interoperability are only two

among many other quality requirements. Quality
requirements are also considered as non-functional
requirements (Chung, Nixon, Yu and Mylopoulos,
2000) describing HOW the system will do, in
contrast to functional requirements describing
WHAT the system will do. In goal-based approach,
quality requirements are described as a subset of
soft-goals (Castro, Kolp and Mylopoulos, 2002)
whose satisfaction conditions are not defined in a
clear-cut way. Recently, (Jureta, Mylopoulos and
Faulkner, 2008) revisited the core ontology of
requirement engineering by redefining a list of basic
concepts: goal, soft-goal, quality constraint, plan,
and domain assumption. According to this, quality
constraints are well defined and verifiable while
soft-goals are abstract qualities whose verifiability is
ill-defined and usually subjective. Another attempt
to clarify the role of quality requirements in the
goal-based approach (Hoang, 2008), (Hoang and
Kolp, 2009) separates quality requirements from
soft-goals. Based on the measurability, quality
requirements are classified into measurable, partly
measurable, heuristically measurable and
immeasurable. When quality requirements are not
immeasurable, one can still find some measurements
that can provide some idea about the fulfilment of
such quality requirements. This might be directly
applied in any system to reduce the number of viola-
tions of quality requirements.

However, in a multi-agent system, the global
goal is designed to be attained only by the indivi-
duals’ collaborations governed by the individuals’

336
Hoang T. and Kolp M. (2009).
SOCIAL PATTERNS FOR QUALITY CONTROL IN MULTI-AGENT SYSTEMS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 336-343
DOI: 10.5220/0002259403360343
Copyright c© SciTePress

goals. The system is a ‘society’ where individuals
are free, to a certain extent, to choose what they do.
As a consequence, more questions about the quality
requirements must be asked on those systems than
on traditional systems. It is also more difficult to
deal with quality requirements in a multi-agent
system than in a traditional system.

In this paper, we will present a catalogue of
social patterns that help software developers to
design and build quality-aware agent software.
Social patterns are design patterns (Gamma, Helm,
Johnson and Vilssides, 1995) to which some
additional dimensions have been added: social,
intentional, structural, communication and dynamic
(Kolp, Do, Faulkner and Hoang, 2005). For object-
oriented approach, design patterns have been being
very useful tools for designing good software
system. Therefore it is quite natural to bring the
existing design patterns and to create new design
patterns for multi-agent systems, as done by a
number of works (Gamma, Helm, Johnson and
Vilssides, 1995), (Kolp, Do, Faulkner and Hoang,
2005), (Aridor and Lange, 1998).

We adopt i* (pronounced as eye-star) notions
(Yu, 1995) to describe relations between agents. The
essentials of i* are dependencies between pairs of
agents. In a dependency, the agent that depends on
the other is called the depender and the dependee is
the one that is depended upon. The depender
depends on the dependee to have access to a
resource, to do a task or to achieve a goal (soft-goal
or hard-goal). Besides, we use also the Agent
Unified Modelling Language (AUML) (Bauer, 1999)
to model agents’ structure using class diagrams and
agents’ interaction using sequence diagrams and
collaboration diagrams.

This paper will be organized into four main
parts. This introduction is followed by a section that
positions the proposed patterns inside our current
research. The third part describes the patterns. An
example application of a high availability printing
service will be presented in the fourth part before the
final remarks and conclusions.

2 QUALITY-AWARE
AGENT-ORIENTED
SOFTWARE

One of our research objectives about agent
technology (Castro, Kolp and Mylopoulos, 2002) is
to establish a complete quality-aware development
process for multi-agent systems. The resulted
process should cover all the main development
phases ranging from early and late requirements to

architectural and detailed designs and can be
extended to the verification and the deployment of
the system.

There are evidences showing that using agent
notion and goal-based analysis might reduce the gap
between the requirements and the final system
(Castro, Kolp and Mylopoulos, 2002). This is
because the notion of agents and their goals provide
a modelling language for capturing requirements
and are the reflection of real stakeholders and their
intentions in analysing requirements. Later on,
agents and goals become main elements of the
system design reflected in the final product using
agent-oriented programming languages (JACK,
2002), (Bellifemine, Poggi and Rimassa, 2001). This
makes client requirements the principal force that
drives the development process.

An example of a complete goal-based
development process is defined by the Tropos
project (Castro, Kolp and Mylopoulos, 2002).
However, the current Tropos process does not deal
with the quality requirements. In (Hoang, 2008),
(Hoang and Kolp, 2009), quality requirements are
added into the goal-based analysis. The main
objective of this research is to capture the quality
requirements, to analyze and refine all the
requirements and to design the final system that
meets the functional requirements and is aware of all
the quality requirements. The following section is
one of the possible measures for the very last stage
of design and implementation of the system.

A well designed system should satisfy most of
the initial requirements including quality
requirements. However, it is quite common that
some quality requirements are left unsatisfied by the
design and needs to be controlled at the runtime.
Moreover, qualities may be influenced by external
conditions that do not exist at the design time. As a
consequence, quality control is needed to assure the
quality of offered services at the runtime. T o deal
with quality requirements, in the earlier development
stages (Hoang and Kolp, 2009), we use the enriched
i* notions to add the notion of quality requirements.
Quality requirements are captured as early as other
requirements. Then, they are analyzed, decomposed
and operationalized during the process. As
mentioned above, it is common that after some
design iterations (i.e. architectural design and
detailed design), some quality requirements are left
unsatisfied as in the simplified example in Fig. 1.

We analyze an online store namely E-Shop in
which there is a Banking Agent that checks the
shop’s banking account for payment arrivals. Any
received payment must be reported immediately to
Order Manager. Since fast shipping is always an
important factor for gaining the confidence of clients,

SOCIAL PATTERNS FOR QUALITY CONTROL IN MULTI-AGENT SYSTEMS

337

Depender Dependee

Resource

Task

Goal

Softgoal

D

D

D

D

D

D

D

D

Quality OO

OO

OO
OO

(b)

Banking
Agent BankPayment

Receipt
D D

Order
Mgr

PromptnessPayment
Notified

D
D OO

OO

E

-

Shop

(a)
Figure 1: E-shop example (a) modelled by a enriched version of i* notion (b).

we impose (through the requirement analysis) that
any orders should be shipped as soon as the payment
is received. To do that Promptness quality
requirement is required for Payment Receipt
(resource) and Payment Notified (goal). We decided
to look at it closely to detect any suspect delay
between deposit time figuring in the payment receipt
and the notification time to Order Manager and to
adjust, at the runtime, the interval between two
consecutive checks.

Above is a very simple example where quality
requirements are easily measured and assured at
runtime. In real systems, there could be many
quality requirements interacting positively and/or
negatively with each others. This is why we try to
introduce, in the following section, a set of simple
social patterns that would facilitate the job of the
designers in a systematic way. As we will see, those
patterns would increase the awareness of the quality
of its services. In the final product, the quality
control mechanism can be integrated into a
subsystem called Quality Management Subsystem
that can be switched on or off at any time.

3 SOCIAL PATTERNS FOR
QUALITY CONTROL

It is known that quality requirements could be
favourably treated by choosing the right options
during the analyse as well as the design of the
system. However, in most cases, it is impossible to
find a design solution that fulfils all the quality
requirements. Based on the fact that almost any
quality requirements can be at least heuristically
measured, we then have a possibility to monitor in
order to react whenever any quality requirement is
violated at the runtime. The following is the
description of some social patterns for designing the
Quality Management Subsystem that can be built as
a sub-system inside the system-to-be. Quality
requirements to be monitored are those of the final
system but not those of the development process.
Usually, quality requirements of the development
process such as: low cost, time constraint, etc. are

usually fulfilled by the choices in means-ends
analysis, designs’ structures and implementation
styles.

The desired subsystem is built based on the
following remarks:

 Qualities can be measured at least heuristically
or partly. Judgments of human agents can be also
considered as a measurement.

 A quality metric can use more than one source
of signal. As a consequence, a quality meter can be
subscribed to all the necessary sources.

 Signal sources can be states, variable values,
etc. Changes in signal needed for the measurement
of a quality requirement are usually detected at
places having that quality requirement.

 For a quality requirement, there can be more
than one quality managers (who keep track of the
quality fulfillment and decide to carry out necessary
actions). This implies that quality violations can be
reported to more than one manager.

 Monitoring continuously necessary signals can
be very costly. Hence, the subsystem must offer the
polling (or sampling) mode in its implementation.
This means that not every changes of signal will be
taken into account. Only when the signal is needed,
the current value can be pulled out from the signal
source.

In the next section, we will detail the proposed
patterns that facilitate the designer in designing the
quality management subsystem as well as in
incorporating this subsystem into the system-to-be.
The description of the following social patterns
follows SKwyRL Social Pattern Framework (Kolp,
Do, Faulkner and Hoang, 2005).

3.1 Social Dimension

The subsystem will have the following possible roles
played by agents. Notice that each agent in the
system can play many roles at the same time.
 Signal Source. emits signals used in the

measurement of some quality requirements on the
system. Signal source can be also human, for exam-
ple, users of a website that fill in an evaluation form
about their satisfaction.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

338

 Signal Manager. maintains a currently updated
list of available signal sources together with the
type of signal and possible modalities of
acquisition (pulling and/or pushing).

 Quality Meter. combines different signals to
calculate indicative values reflecting the
fulfilment degree of quality requirements.

 Quality Manager. responsible for detecting any
quality violations using the indications given by
quality meters as well as for checking required
conditions before doing some actions.

 Quality Assurer. agents that are required to fulfill
some quality requirements for its attributes, plans
or operations. They are the ones that trigger the
procedure of quality control.
The social dimension identifies not only the

relevant agents and roles but also the intentional
dependencies between these roles/agents. The
following paragraphs are intentional dependencies
between agents inside each of the described social
patterns.

3.1.1 Signal Pushing Pattern

This pattern specifies the interactions between a
Signal Source and Quality Meter. It is favourable for
cases where every change in the signal is pushed to
the Meter. Main interactions are summarized in the
social diagram in Fig.2.

For the meter, in order to receive the signal from
the signal source, every Quality Meter needs to
subscribe itself to Signal Sources. At the Signal
Source, there is a list of current subscribers to which
the Signal Source must send any change in signal.
Signal Sources are discovered by Quality Meters
with the help of Signal Manager who keeps track of
a signal directory.

3.1.2 Signal Pulling Pattern

Contrary to the pushing pattern presented above
Quality Meters play an active role in the Signal
Pulling Pattern presented in this section. The signal
is acquired only by demand determined by the
monitoring strategy of the signal monitor. The social
diagram is as in Fig.3.

For a Quality Meter, first he has to connect to the
Signal Source and keep this connection. Depending
on the monitoring strategy usually supported by a
schedule, the monitor will pull the current value of
the signal from the signal source. In this pattern, the
Signal Manager helps Quality Meters to discover
and to keep track of the availability of Signal Sources.

One could argue that the two above patterns are
similar to the well-known Observer pattern
(Gamma, Helm, Johnson and Vilssides, 1995) with a

Matchmaker pattern (Kolp, Do, Faulkner and
Hoang, 2005). However, in the context of multi-
agent systems and quality control subsystem, we can
point out here some reasons of not to separate these
patterns:

 The presence of a Signal Manager is
mandatory, since it guarantees and verifies the
availability of signal sources. Without this, quality
requirements cannot be correctly controlled.
 Signal sources may not be agents in the system-

to-be. This implies that the pushing mode might
not be available. Quality meters must sense itself
any changes in the signal.
 The presence of all the three agents Signal

Source, Signal Manager and Quality Meter
represents the existence constraint of these agents
inside the system-to-be.

Signal
Source

Signal
Manager

Quality
Meter

Registered

Unregistered

D

D D

D

D

Signal
Located

D

D

Signal
Availablity
Checked

D

Signal
Value Pushed

Unsubcribed

D

D

D

D Subcribed

D

D

Figure 2: Signal Pushing Pattern.

Signal
Source

Signal
Manager

Quality
Meter

Registered

Unregistered

D

D D

D

D

Signal
Located

D

D

Signal
Availablity
Checked

D

DSignal
Value Pulled

D

Figure 3: Signal pulling pattern.

3.1.3 Quality Assurance Pattern

This pattern focuses on the interventions into the
normal execution of an agent in order to control the
fulfilment of any quality requirement. There are
three types of interventions:

Precondition check: when agent is about to take
an action, it needs to verify whether the
preconditions on the quality are met. The
preconditions define the states of the world,
including the state of the quality fulfilment at which
the action can be carried out. If the current state is
not favourable for the requested action, the quality

SOCIAL PATTERNS FOR QUALITY CONTROL IN MULTI-AGENT SYSTEMS

339

manager could carry out some additional plans to
bring the system into a favourable state. If he has
already tried every possible plan without success, he
will have to notify the plan executer to cancel the
requested plan.

Intermediate check: during the execution of an
action, it is possible that the fulfilment of a quality
requirement required is violated. The cause may
come not only from the plan itself but also from
other agents in their continuously changing
environment. This is also possible that at each stage
of the action, the quality requirements are different.
In either case, intermediate checks are very
important. These checks can be carried out by
predefining a list of several check points, usually
vulnerable points to the quality fulfilment, together
with conditions to be satisfied at each check point.
When a condition is not met, the managers will try
to do additional work to satisfy the condition. In this
case, the plan executor is notified and may decide to
continue with the plan or to start with other plans or
to give up.

Post-condition check: carried out when the plan
is done. This can confirm that the plan has been
carried out successfully and that all the quality
requirements are fulfilled.

The pre-condition and the post-conditions have
usually been known before the plan is started, while
the intermediate conditions are variable in
accordance to the operations really carried out by the
plan.

Quality
Manager

Quality
Assurer

Precondition
Checked

Precondition
Checked

D

DD

D Intermediate
Condition
Checked

D D

Figure 4: Quality assurance pattern.

The social diagram is presented in Fig.4. Here
we omit the relation between Quality Manager and
Quality Meter which can be characterized by the
well-known Observer pattern in which Quality
Manager is the observer that observes measurements
carried out by Quality Meter.

3.1.4 Total Quality Manager Pattern

In a complex system, when the number of quality
requirements becomes large, we need to distribute
the responsibility among several Quality Manager.
This partition can be made based on:
 Topology Setup. a system may operate on

different geometrical or logical sites. Therefore, to
control and assure each quality requirement, one can

eventually put a Quality Manager on each site.
 Quality Relations. a quality requirement can

usually be split into several sub-quality
requirements. For example, Security can be split into
Confidentiality, Integrity, etc. One can create a
quality manager for each of the sub-quality
requirements.
 Manager Hierarchy. one can also decide to put

quality managers in to a hierarchy where lower-rank
managers have to report to their direct higher
manager.

Since our ultimate objective is to build systems
in which every quality requirement could be
controlled and assured, we include here the Total
Quality Manager pattern that does the aggregating
job among the managers. Top Managers will be the
ones that communicate the overall status of quality
fulfilment to system administrators.

Manager
Level n+1

Manager
Level n

Manager
Level n+1

Report
Updated

Command
Executed

D

D

D

D

Report
Updated

Command
Executed

D

D

D

D

Figure 5: Total quality manager.

With this pattern, one can have a total control of
the Quality Management Subsystem even in a very
complex system. Quality managers can be organized
in to several levels depending on the organizational
structure of the system. However, the designer
should limit the maximum height of the manager
hierarchy to reduce the loss of control and the
latency of the subsystem due to the overhead of the
heavy organization. Furthermore, the system’s
designer could also decide to give different manager
roles to a single manager agent when needed.

As an immediate use, this hierarchical structure
can provide a simple way to attach and to detach any
part of or the whole quality control subsystem
from/to the main system when needed. This is useful
when the operation of the system becomes
sufficiently stable and the agility of some services
becomes occasionally necessary.

3.2 Intentional Dimension

Having identified the interdependencies between
agents, we now focus in the rationale of each
agent/role. To keep the paper concise, we show here
only some important abstract services offered by the
above agents.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

340

Table 1: Agents’ services in quality control.

Service Names Informal description Agent
FindSignalSrc Find all signal sources that

match the specified
description.

Signal
Manager

AvailCheck Check the availability of a
signal source

Signal
Manager

ConflictResolve Resolve any conflict in
fulfilment of quality

Quality
Manager

StateReport Report the fulfilment to the
superior

Quality
Manager

QualityAssure Take necessary actions to
guarantee the quality

Quality
Manager

...

Among the above services, ConflictResolve and
QualityAssure are two of the most important. While
the latter tries to fulfil a quality requirement, the
former verifies if the fulfilment of that quality
requirement will be harmful to the others in the
system. Some trade-offs could be made because, in a
complex system, quality requirements are usually
contradictory when being fulfilled.

In SKwyRL, services are defined formally using
the formal Tropos language which is skipped in this
paper. Services are operationalized into plans that
are described in the structural dimension.

3.3 Communication Dimension

Communication dimension emphasizes the exchange
of events between the agents.

Quality Assurer Quality Manager

Check Precondition

X

OK

Check failed

Plan that has
quality requirement

Check quality fulfillment

X

Check failed

At vulnerable points

OK

Check Postcondition

X

Check failed

OK

At the end of
plan's execution

Figure 6: Quality assurance.

Figure 6 shows an execution of a plan that the
agent Quality Assurer carries out. Since it is required

that the execution must satisfy some quality
requirements, Quality Assurer has to verify the
fulfilment of those requirements at the beginning of
the plan, during the plan (e.g. at predefined
checkpoints) and after the plan.

We skip the descriptions of others plans as well
as the definition of the described social patterns in
the structural dimension, where services are
decomposed into agents’ Belief, Event and Plan, and
in the dynamic dimension, where the relationships
between plans and events are elaborated. We will
now take a look at a simple example into which the
described patterns are applied.

Editor

Print
Queue

Printer
Locator

Printer
Driver

Printer
LocatedD D

D D
DD

Printer
Manager

Printer Send Print
Command

DD

Add
DocumentD D

Subscribe
Printer

Subscribe
Printer

D

Put job
In queue D

Availability

OO

OO

Print
Agent

Figure 7: Highly-available print service.

4 HIGH AVAILABILITY PRINT
SERVICE

We consider an example about a printing service
inside a network where there is a requirement that
states: some printers must be turned on so that
editors are able to print a document at anytime as
described in the architectural design in Fig 7. First,
we must identify the signal sources that can provide
indicators of printers’ availability:
 Printer State. standby, stopped, started,

connected or disconnected. This availability signal
can be monitored directly from the printers.
 Printer Driver State. absent, present or defected.

When a printer driver is present and operational, it
can give greater details about the printer, if the
printer is online.
 Print Queue State. details of a number of

documents in the queue which could make the
printing of the newly introduced document
unavailable during a period of time.

For the availability signal, since the printers may
be disconnected accidently from the network, they
cannot notify themselves their absence to the printer
manager, therefore we decide to check the

SOCIAL PATTERNS FOR QUALITY CONTROL IN MULTI-AGENT SYSTEMS

341

availability of each printer by using the pulling
scheme.

Since, these signals can be the indicators of other
quality requirements of the system such as: Energy
Efficiency and can be inputs for many quality
metrics in the system, we may also implement some
intermediate agents that relay and transform the
signal before the final signal is provided to the
quality managers and quality executors. The first
part of the subsystem is the monitoring part by
which the Printer Availability Manager senses the
availability state of the system’s printers.

Availabilty
Meter 1

Printer
Availability
Manager

Availability
Detected

D

D

Unsubscribed Notify
Violation

D

D D
D

Pinging
Status

D

D

Subscribed

D
D

Availability
Detected

D

Printer
Status

D

D

D

Print
Queue

System
Security
Manager

Unsubscribed

Changes
In Queue

D

D D

D

Subscribed

D D

Precondition
Checked

DD

D

DDPrint
Agent

Printer
Driver

Printer

Postcondition
Checked

D

Intermediate
Condition Checked

Figure 8: Highly-available print service.

In Fig.8, three identified signal sources are
added. For Printers and Printer Drivers, we use the
Signal Pulling Pattern to get the status of the printers
and printer drivers. All the printers physically
installed in the system are pinged by the agents
Availability Meter1 at every small interval of time
(e.g. 0.5 seconds). The drivers of joinable printers
are also probed at a larger interval (e.g. 5 seconds).
The third useful signal used to determine the
availability of the printer is the length of the Print
Queue. Because this signal can be used directly by
the Printer Availability Manager and this signal is
changed by precise events, we use the pushing
pattern to report the queue status. Using this
structure, the Printer Availability Manager has, at
every moment, the availability of all the printers
available inside the system with the precision of at
least 5 seconds (equals to the interval between two
consecutive probing of printer driver).

We now detail the Printing Plan of the Print
Agent of the Editor. Before printing, the Print Agent
refers to the Printer Availability Manager to check
whether the document can be printed in an expected
time, e.g. 2 minutes. At the Manager side, it checks
the printer capabilities and the size of the print queue
to estimate the expected delay. If the delay is greater
than the requested delay, it tries to start a standby
printer. If it finds a way to respect the delay, it

returns a positive answer to the editor to begin the
printing job. If it fails to make the printing system
available, it sends a negative answer to the
requesting Print Agent and sends a detailed report to
the human manager about the overload problem.

A portion of the class diagram focusing on the
quality management subsystem is shown in Fig.9.
The main class in Availability control is the agent
Printer Availability Manager. It subscribes itself to
the Print Queue and the Availability Meter 1 to
receive the update of the Queue state and Printer’s
state. From the received data, it can estimate the
maximum delay for a new job requested by any
Print Agent. Print Agent has a reference to the Print
Queue to send printing jobs when it is possible. At
the Printer Driver end, each driver has a reference to
the corresponding Printer. We include an additional
agent Printer Monitor that can be considered as
another metric that combines information from
Printer Driver and Printer Queue. The Printer
Monitor has references to all the Printers and their
software drivers in order to ping and query the
configuration of the Printers. It also has a reference
to some Meters, the Availability Meter1 in this case,
to notify any changes in the Availability and the
configuration of Printers and Printer Drivers.

The Print Agent may have references to many
other quality managers at the same time for
example: Energy Saving Manager and Printing
Quality Manager to assure the quality of its printing
plan. In Fig.9, we omit other details and only keep
the most important parts necessary in the Printer
Availability Management Subsystem.
The printing plan of the Print Agent is triggered
when the user hits the print command in the editor’s
interface. It first determines the maximum delay that
this job can allow by consulting the user or taking
the delay in the global configuration of the system. It
then asks the Printer Availability Manager to check
the delay constraint using the current state of
Printers and the Print Queue. It will try to do some
additional things to try to assure that the printing job
will be finished in time.

If the Printer Availability Manager fails to make
the print plan finish in time, the Editor will show a
notice to the user and ask for the new instruction. If
the printing plan is approved, the Print Agent
connects to the Print Queue and starts to send the
data to the Print Queue. During and after the
transmission, the editor continues to refer to the
Printer Availability Manager to update the expected
finish time of the current job depending on the actual
state of the printers and the time used for the
transmission, if the delay constraint is violated, the
manager will try to intervene again and the user will
be also notified. Normally, the expected due time

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

342

Print Agent Printer Availability
Mgr. Printer Monitor Print Queue Printer

SubmitPrintRequest
[Deadline failed] StartPrinter

Deadline Failed
Has more printer

Delay returned

Send Data Packets

Notify Change

Notify Change

New events

VerifyDeadline
[Deadline failed] StartPrinter

Deadline Failed
Has more printer

Delay returned

Has more data
Deadline accepted

GetExpectedDelay

Delay Returned

<<Agent>>
Print Agent

Render()
SendData()

Plan:
Print

<<Agent>>
Printer AvailabilityMgr.

EstimateJobDuration()
UpdateState()

Plan:
EstimateFinishTime
StartAPrinter

<<Agent>>
Printing Quality Mgr.

<<Agent>>
Print Queue

Loc: PrinterLocator

QueueDocument()
PrinterConnect()

Plan:
LocatePrinters

-PrinterQualityMgr1

*

-PrinterAvailMgr

1

*

1

-PrinterAvailMgr

*

<<Agent>>
Availability Meter 1

ComputeJobTime()
Notify()

Plan:
DetectChanges

-PrintQueue

1 *

<<Agent>>
Printer Monitor

PingPrinter()
ProbeDriver()

Plan:
MonitorPrinters

Printer Printer Driver

-PrinterList *

-PrinterList

*

11

*

-SubscriberList

1

*

-SubscriberList

1

(a) (b)
Figure 9: Top-level interaction of Printing Plan (a) and the Agent Diagram (b).

after the transmission is not far from the reality,
since the print job is already in the Print Queue,
unless one of the printers fails or is accidentally
stopped. When this happens, the Printer Availability
Manager will try to make more printers available to
guarantee the deadlines.

Figure 9a shows the top level of the Printing
Plan of the Print Agent. More details can be also
added using lower-level of sequence diagram or
using the plan diagram.

5 CONCLUSIONS

Multi-agent framework has been gaining its
popularity. However, there are still not many
commercial products that are implemented using the
multi-agent technology. The too flexible structure of
agent-based systems may not encourage the software
industry to adopt the agent-oriented methodology.
Flexibility is not the only quality that is required by
software quality. Indeed, qualities such as security,
availability, traceability, etc. have become vital for
modern software.

This paper is an attempt to help multi-agent
systems to cope efficiently and systematically with
quality requirements. The proposed social patterns
together with a sound development process could
give the agent-oriented framework a bigger role in
the continuously-growing industry of software.

REFERENCES

Chung, L., Nixon, A. B., Yu, E., 2000. Mylopoulos J.,

 Non-functional Requirements in Software
Engineering, Kluwer Academic Publishers.

Castro, J., Kolp M., Mylopoulos, J., 2002. Towards
Requirements-Driven Information System
Engineering: The Tropos Project, Information System
Journal, 27: 365-389.

Jureta, I. and Mylopoulos, J. and Faulkner, S., 2008.
Revisiting the Core Ontology and Problem in
Requirements Engineering, Proceedings of the 2008
16th IEEE International Requirements Engineering
Conference: 71-80.

Hoang, T.T.H, 2008. Quality-aware agent-oriented
software development, internal report, Louvain School
of Management, Université catholique de Louvain.

Hoang, T.T.H and Kolp, M., 2009. Goal, Soft-goal and
Quality requirement, submitted for publication.

Gamma, E. and Helm, R. and Johnson, R. and Vlissides,
J., 1995. Design patterns: elements of reusable object-
oriented software, Addison-Wesley.

Kolp, M., Do, T.T., Faulkner, S. and Hoang, HTT, 2005.
Introspecting Agent-Oriented Design Patterns,
Advances in Software Engineering and Knowledge
Engineering, 3.

Aridor, Y. and Lange, D.B., 1998. Agent design patterns:
elements of agent application design, Proceedings of
the second international conference on Autonomous
agents, p108—115.

Yu E., 1995. Modeling strategic relationships for process
reengineering, PhD Thesis University of Toronto.

Bauer, B., December 1999. Extending UML for the
Specification of Agent Interaction Protocols, OMG
document ad/99-12-03, FIPA submission to the
OMG’s Analysis and Design Task Force (ADTF) in
response to the Request of Information (RFI) entitled
“UML2.0 RFI”.

Agent Oriented Software Pty. Ltd., Mars 2002. JACK
Intelligent AgentsTM User Guide.

Bellifemine, F., Poggi, A. and Rimassa, G., 2001.
Developing Multi-agent Systems with JADE, Springer.

SOCIAL PATTERNS FOR QUALITY CONTROL IN MULTI-AGENT SYSTEMS

343

