
A FRAMEWORK FOR TESTING SOA APPLICATIONS

Samia Oussena1, Balbir Barn2 and Dan Sparks1

1Thames Valley University, U.K.
2Middlesex University, U.K.

Keywords: Testing, Test-driven Development, Distributed Architecture, Framework, SOA, BPEL, WSDL, XML.

Abstract: Test driven development (TDD) is emerging as one of the most successful developer productivity aids. A
key feature of TDD is the construction of a robust test harness before implementing code, enabling the
creation of a “virtual contract”. The semantics of that contract are the fully enumerated set of test conditions
for the system under construction. Service Oriented Architecture (SOA) raises a particular challenge in that
there exists no unified method for testing an SOA application, which not only looks at individual artefact of
the SOA application but also the complete application. Further, in SOA, the flexibility and connectivity
provided by loosely coupled services increases both the opportunity for errors and the complexity of the
testing. Given this situation, this paper describes a unified test-driven approach to a ground-up
implementation of an SOA application where testing is seen as central to the development process. The
paper proposes a framework that focuses on process-, configuration-, and service-oriented testing that
provides relatively complete and flexible viewpoints of an SOA artefact’s health. A critical evaluation of
our approach is presented in the context of the development of SOA applications that support core Higher
Education business processes.

1 INTRODUCTION

SOA is gaining industry-wide acceptance and usage.
Typically a system developed in SOA will consist of
a collection of finer grained services put together
through an orchestration. The services themselves
may consist of even more finely-grained web
services. A number of client applications will be
developed to consume the service and interact with
the end user, for example; a web portal, web
application or a fragment of a workflow application.
This loose coupling of SOA services presents
additional challenges to testing.

SOA’s architecture of loosely coupled services
provides increased opportunities for errors and
therefore the complexity of the testing increases
dramatically. Execution patterns are dynamic,
distributed, and by their nature are not easily
repeatable. The orchestration of services within an
SOA system is itself also dynamic i.e. the selection
of services can be done at the run time and therefore
adds further complexity to the testing process.

Few practical attempts have been made to
address the problem of SOA testing. Those that have
been made have mainly addressed Web Service

functionality. Tsai et al (Tsai 2002) proposed
extensions to WSDL to allow for the testing of the
services described by the use of invocation
sequences, input-output dependencies, hierarchical
functional description, and sequence specification.
Other approaches have included multi-phase,
iterative testing (Tsai 2004, Bloomberg 2002), and
so-called rapid testing, involving regression testing,
pattern verification, and group testing (Onoma 98,
Tsai 2003). Lenz et al have proposed a model driven
testing to SOA application, but here as well the main
focus in on the web services (Lenz 2007).

All these investigations, however, have taken a
more focussed approach to individual parts of the
SOA, or even components within those parts, with a
particular focus on the Web Service interface. It is
recognised that there are many parts to the testing of
a Web Service; however, this is still only concerned
with the web services, and each service is only
looked at in isolation. Integration testing is rarely
considered. Orchestrations and how services are
integrated to provide the component parts of an
application should also be taken into account. To
develop a comprehensive testing solution, one must
take into consideration all aspects of SOA. To fail to

53
Oussena S., Barn B. and Sparks D. (2009).
A FRAMEWORK FOR TESTING SOA APPLICATIONS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 53-60
DOI: 10.5220/0002257200530060
Copyright c© SciTePress

consider deployment variables, for instance, is to
only partially address the issues involved even in
testing only a Web Service, and as such we believe
that only a holistic approach can achieve this. Tool
vendors, such as Parasoft and Empirix (Parsoft
2009, Empirix 2009) have started to address the
issues of SOA testing. Persisting problems of
solutions proposed by tool vendors are, in our
opinion, either a lack of integration with open-
source IDEs, or too much integration; tying
developers into one IDE for all development work.
Although for example, Parasoft’s approach is
relatively exhaustive, again there is a focus on Web
Service testing only; BPEL testing is not covered.
The reason may be that a lack of maturity of the
technology coupled with the problems associated
with working with constantly evolving standards and
protocols make testing tool development difficult.

In this paper, we propose a testing framework for
SOA that will provide a holistic approach.
Successful testing needs to have as near to total
coverage as possible of all the artefacts that are
produced in the development of an SOA system.
This framework will be the basis for combined
automated and methodological support in testing
such a system.

Most recent development trends incorporate
some level of unit testing and test first approaches.
Therefore any framework would need to be aligned
with the test-driven development process. The
framework will need to make testing an integral part
of the development. One reason that test-driven
development process has become so widely accepted
is that in addition to the natural integration of the
development and testing, there is provision for
automation support for unit testing. With continuous
integration, as requested by most agile processes
(Beck 2000, Cockburn 2001), automation of unit
tests is a must. The framework has therefore to
provide and identify the expected level of
automation support

2 THE AGILE APPROACH TO
TESTING

Traditionally testing has been done separately from
the development work, by a separate team. Systems
today tend to be developed using iterative
development methodologies, which make the
traditional model of testing costly, and increasingly
ineffective. Agile approaches to testing have strong
links with SOA, coming, as they do, from a heavily

OO-influenced sector. The separate services that the
SOA artefact utilises can be viewed in much the
same way as a software package, module, or
component, and consequently, we feel, should reap
the same benefits from an agile approach. It is
interesting to note how well the technique of test-
first coding, now considered to belong to the realm
of smaller projects using agile development
methods, lends itself to an SOA approach. The most
likely reason for this is that although the domain is a
vast canvas, breaking the domain into service
components implies a modular approach, similar to a
number of smaller projects. The overall management
of the project can only be undertaken with
safeguards, and in particular tests, in place at the
service level.

Such a comprehensive approach to testing may
not be a problem in what is viewed as the ‘target
audience’ for SOA. Much discussion about SOA
concerns the reuse and exposure of Legacy
applications as services. These are systems which
already work. The difficulty in SOA-enabling them
is in wrapping and exposing them via a WSDL
specification, and then orchestrating that via BPEL.
Hopefully, the general programming logic has been
cleared of most (if not all) bugs.

Developing an SOA application from the ground
up, there are many more factors to consider, and
therefore a more comprehensive approach to testing
is required. It is vital to monitor and constantly
assess the health of all newly written artefacts.
Presumably in any reasonably-sized development
there will be teams taking responsibility for different
services, for the exposure via WSDL, and for the
orchestration. Even so, those teams need to ensure
they have testing that covers the entire range of
functionality for their code. All these parts feed into
the orchestration process to identify the bugs with a
minimum of effort and frustration.

Test design, where possible, needs to be
addressed at an early a stage as possible; ideally at
the modelling stage. The automation of some of the
development activities means that it is not always
possible to do this. For example, WSDL creation
must wait until XML schemas have been generated.
This means it is not possible to create full test cases
at the modelling stage.

In summary, there is a parallel between SOA
development and agile development processes. The
need for comprehensive testing in the development
of ground-up web services, should, we feel, be able
to be adequately addressed by an agile, unit-test-
driven approach. This approach, however, must be

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

54

integrated with the SOA development process to
take into account the automation of artefact creation.

3 REQUIREMENTS FOR A SOA
TESTING FRAMEWORK

The framework has been developed as a result of the
difficulty we faced when developing an SOA
artefact (Barn 2006) and was then refined and used
in two further projects. We have so far identified a
number of requirements due to the nature of SOA
applications. These are:

R1) Our development using SOA involved working
with constantly evolving standards and
protocols. Our framework will therefore require
a modular approach, as well as implementing
different levels of abstraction.

R2) In order to be integrated in a test-driven
development process, the framework needs to
provide and identify the expected level of
automation support.

In the rest of this section we discuss the
requirements of the framework with reference to the
problems we have encountered, and needs we have
identified during our development. We will examine
the testing activities from two perspectives; the
development of the application, and the application
deployment.

3.1 Development Requirements

It is most likely that a variety of Integrated
Development Environments (IDE) will be used. The
different artefacts that make up an SOA application
can often require a specific IDE. In our case, we
needed to work with XML Schema, BPMN
(Business process management notation) and BPEL
processes, WSDL creation and code generation from
the WSDL and Database development

R3) The framework needs to accommodate all the
artefacts (or components) that will be a part of
the SOA application’s development and
deployment.

To successfully deploy our BPEL processes, we
had to use an IDE that supported deployment to the
Oracle BPEL Process Manager (Juric 2006), which
in this case, was Oracle JDeveloper in two projects.
In another project we used Intalio Designer and
Intalio Server of the development and the
deployment of BPMN processes (Barn 2008).

Similarly, we needed to support UML and XML
Schema generation and WSDL to Java code
generation. These capabilities were provided by
IBM Rational Software Architect (Quatrani 2006).
The framework therefore needs to address the fact
that different and indeed incompatible IDEs will be
required during the development.

R4) The design of the framework requires an IDE-
independent approach to be taken. This includes
the automation of test, and test data, creation,
which needs to reach a level congruent with that
expected by developers.

3.2 Deployment Requirements

With distributed elements, deployment of services
will almost certainly not be uniform for an SOA
artefact. As with IDEs, certain services will require
specific server environments. All our web services
have been deployed to a Tomcat 5.5 application
server, running behind an Apache 1.3 web server
(Tomcat 2009), using the mod_jk Tomcat/Apache
module (Mod_jk 2009) as a connector between the
two servers. The advantage of this approach is that
the Apache server routes all requests for web
services to the appropriate application server. It is
consequently possible to change the port or
application server that contains any or all web
services without any client needing to be aware of
such a change. The successful deployment of a web
service in this environment relies not only on
correctness of the component but also each server’s
correct configuration.

R5) The configuration of server environments
therefore also needs to be factored into our
testing framework.

Another key consideration when deploying an
application is the classloading. This is typically done
by either adjusting the server’s startup classpath, or
putting the shared libraries in a special library
directory. Our database was an implementation of
Oracle 10g XML DB (Scardina 2004). The services
that used this needed specific libraries – in addition
to standard JDBC libraries, they needed the XML
DB libraries installed in their server environment

R6) The server’s classpath and libraries
configuration needs consideration within the
testing framework.

Physical deployment of the application
components to the servers might be server specific.
For example, developed BPEL processes are
deployed to local instances of the Oracle BPEL

A FRAMEWORK FOR TESTING SOA APPLICATIONS

55

Process Manager. This provides a web interface
similar to Tomcat’s where a BPEL suitcase (also
known as a suitecase) JAR (Java Archive) file
containing the packaged BPEL specification and
related code can be uploaded. We found though that
this method of deployment did not deploy the
necessary JSP files needed for User Tasks; this was
achievable by deploying directly from Oracle’s
JDeveloper, which became our IDE of choice for
BPEL development. This was similar for the Intalio
XForms.

R7) Because technologies may require certain
environments, we must be sure to accommodate
them all. Our testing framework must have a
flexible, environment-independent approach.

Having distributed resources and components
require that we test the accessibility of each resource
used by a number of artefacts, including WSDL,
database and BPEL. In our case the schema resides
on the same server as our services, however, this is
not to say that they could not be deployed on a
different server, or servers. Ensuring the availability
of schema is another element of the framework’s
deployment requirements.

As another example, most business processes
will require some human intervention, which is
represented in BPEL by User Tasks, presented to
users in the form of a workflow application.
Supposedly this could be deployed to any server,
though in our case we made use of the Oracle
workflow application provided by the same server
that hosted our BPEL processes.

R8) The accessibility of resources (particularly
where distributed) needs to factored into the
testing framework.

Even in this relatively simple scenario, the
deployment requirements are not trivial. If not taken
care of as seriously as the development
requirements, a simple problem in one part of the
deployment configuration may jeopardize the
reliability of the entire application.

We next present elements of the proposed
framework. Although we present in a pseudo-
chronological order, it is important to take into
account that the testing is iterative, for each stage,
and also for the entire process.

4 THE FRAMEWORK

We have identified that there are a number of testing

requirements that need to be considered to achieve
our holistic testing approach. We now present our
proposed framework (Figure 1) as a series of
elements that can meet these requirements.

Our framework contains the identified testing
elements, contextualised to facilitate understanding
and cohesion of the test-driven development
process. Each element appears individually, but is
also grouped with other elements by criteria
modelled on that used in the Zachman Framework
(Zachaman). Elements are grouped by different
architectural areas. These areas typically require
different and specific types of testing such as data,
function and user interaction.

Elements are further contextualised by their
place within the development lifecycle. While the
process in the framework seems largely linear, we
have allowed for iterations within the process, as
well as the possibility of iterations of the entire
process. The testing ‘checkpoints’, or phases, are
pre-implementation, post-implementation and post-
deployment. These contain the testing elements of
the framework that drive the development of the
next stage. In this way, we lay a foundation for a
comprehensive test-driven SOA development
process.

We show in our diagram that Method Unit Test
Cases should take place at the pre-implementation
phase. They are directly informed by the outputs of
the conceptual and logical phases (in this case a
service or component model), and they in turn drive
the development of the physical phase’s artefacts,
such as service or interface implementation, WSDL,
and generated code. We have also made it clear
within the framework that the purpose of these
particular tests is to meet the functional
requirements of the project.

Figure 1: Framework for testing SOA applications.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

56

Our identified user interaction configuration
tests, on the other hand, need to be written at pre-
deployment testing status, and this time the
framework indicates that these tests relate to the
project’s user interaction requirements.

Each test element can be similarly interpreted.
The framework provides a clear indication of the
purpose, and function of each test element, and from
this information it will be possible to identify and
allocate resources to, and responsibility for, each
particular area of testing.

4.1 WEB Service Testing

Unit tests were written for each service, testing the
exposed web service methods, but with more of a
focus on internal functionality. Appendix 1 shows a
fragment of code from such a test. This meant that
any changes to code on a service could easily be
checked. On identification of a problem, the
involved services can have their unit tests run
against their code; if the tests pass, the problem is
elsewhere. If a test fails, the problem is easily
located and solved.

Client 'applications' were also developed for each
service, this time with a focus on the exposed
methods of the web service. These applications
could be viewed as 'external test suites', and, when
packaged into an overall test with the internal web
service unit tests, provide a robust and helpful
method of testing a web service. This approach has
been taken further, by integrating the ‘client’ tests
with the WSDL. A schema for a collection of test
results is used to return test results via a WSDL
method. By extending the JUnit framework [JUnit],
we can run the unit tests built for the service whilst
in its deployment environment.

4.2 BPEL Testing

The Oracle BPEL Process Manager provides a
browser-based tool for testing BPEL processes. It is
possible to run individual tests of a process, or to run
a 'stress test', with varying data, to see how the
process holds up under demand. Feedback from the
tests comes in summaries of process states, visual
flows of the processes, identifying places where the
process has failed, and full audit trails of XML
messages and data objects as they are created and
passed back and forth.

This tool is very useful, but not without
limitations. As our scenarios contain User Tasks, the
processes tested need user interaction. From a
testing perspective this is problematic: not only is it

time consuming to have a tester physically involved,
there is also the greatly increased risk of user error.
A mistyped field can have serious consequences on
the output of a given test, resulting in more time lost
to testing, or the false identification of a bug that
does not exist.

During our development process, we examined
the Oracle BPEL API and the Intalio BPEL API
with the aim of mechanising as many of our test
cases as possible. This had the advantage of being
less time consuming, and more error-free than
human-operated testing. The approach was quite
primitive, largely due to the amount of time and
effort needed to ensure that sufficient test data was
in place, and the time and effort required to maintain
the integrity of that test data. We did not invest too
much time as we were aware that in the latest release
of the Oracle Business Process Manager (10.1.3) a
BPEL test framework would be available. This now
includes the automation of some process unit testing.

4.2.1 BPEL Test Framework

The newest version of the Oracle Business Process
Manager (10.1.3) contains the BPEL test
framework. It is possible to build an entire test suite
within JBuilder. The results of these tests can be
created in JUnit format, useful if other parts of an
SOA application’s testing utilises JUnit.

Creating a test suite is, on a basic level, as simple
as following a click-through wizard. In practice, it is
a little more complicated. External service
interactions are spoofed by the Process Manager
when running the tests, so it is important to ensure
there have been adequate ‘dummy responses’
created for each interaction with an external service.
Of course, these can be created to provide different
responses depending on the data you want to start
the test with.

Advantages to this approach are that the only
thing being tested is the process itself – there is no
confusion over an ambiguous problem being the
fault of either a process or an external service. The
logic of the process can be tested thoroughly without
having to consider any influence from anything not
contained within the BPEL code.

Disadvantages are that the data that one uses to
start a test might not produce anything other than an
error from an external service – the disconnect
between external services and the process being
tested means that it might be the case that the
process is being tested to completion with
completely useless data. Similarly, testing in this
way does not take into consideration such things as

A FRAMEWORK FOR TESTING SOA APPLICATIONS

57

invoking the correct service method, or even the
correct service – such environmental issues are not
examined by this method and will need to be
explored elsewhere.

The BPEL Process Manager also provides a
means for automated load testing of a process. The
tester completes a small browser-based form
specifying maximum concurrent threads, number of
loops (repetitions of the concurrent thread
execution), and the delay between each invocation,
in milliseconds. Once run, detailed results of the
load test are available. If this interface were to be
extended it could provide a more comprehensive
collection of testing approaches; for example, the
sending of a range of input parameters, rather than
just one. The recently released test framework for
BPEL Process Manager builds upon this
functionality. It is still not perfect – there are issues
where complex processes that loop may fail to
generate successful test cases. The testing is
constantly being refined, however, and if it
continues to do so, BPEL testing will become much
easier, and a great deal less time-consuming.

4.3 UI Testing

Workflow applications, like most web applications,
follow the Model View Controller (MVC) approach.
Our views were programmed as Java Server Pages
(JSPs) and Xforms, The UI testing therefore did not
focus on logical behaviour, instead testing code
which accessed and displayed attributes, loop
iterations for dynamic creation of user input forms
and the dynamic, event-based generation of pages.
At this point, we can use HttpUnit [Httpunit] or a
similar tool to validate HTML pages. Further testing
of web-based interaction can be done through such
applications as AutomationAnywhere (Automation
Anywhere), which allows for the recording and
subsequent replay of browser-based interaction. This
kind of automation software is sparse on detail when
recording the results of testing, and should be used
in conjunction with logging software in order to
identify causes of failure. A detailed description of
web application testing is beyond the scope of this
paper. There are many sources including (Dallaway,
Link 2003) which discuss unit testing of web
applications.

4.4 Database Testing

Persistency plays an important role in most
applications and this is still true for SOA
applications. The creation of unit tests for

persistence mechanisms is often accompanied by
major problems, because both the execution speed
and the large number of dependencies make the
testing approach difficult. It is therefore important
to adopt an architecture that will not hinder testing;
i.e. the persistency layer should not have
unnecessary external dependencies and the ones that
remain should easily be replicated in a test
environment. Our persistency layer implementation
has first followed the DAO pattern (DAO) and later
used Hibernate framework (Hibernate), which are
particularly good at eliminating unnecessary
dependencies.

The other step that we have taken in our testing
is to isolate each test by clearing the database before
each test is run. This has been facilitated by the use
of Dbunit framework (DBunit). Dbunit is an
extension of JUnit that helps simplify testing
database applications. Within this framework the
database can be created and populated from an XML
file, making it easy to manage the test environment.

Here as well a full detailed discussion of
persistency unit testing is beyond the scope of this
paper. There are many sources including (DBUnit,
Freeman) which discuss unit testing the persistency
layer.

4.5 Validation

Any schema or WSDL can also be checked for well-
formedness, however, this will ideally be integrated
within the development environment(s), and
additionally automated. This will ensure that each
time a change is made, any error is identified and a
chance is given to quickly and easily address it. This
is similar to functionality provided by many IDEs,
where code is constantly compiled, and errors are
pointed out to the developer at source.

4.6 Deployment Configuration Testing

While testing of artefacts within their deployed
environment can give an overall picture of
application health, the isolation of the deployment
environment is extremely useful as it allows for
focused examination of deployment issues. Testing
should always identify problems quickly and
efficiently. Assessing deployment configurations
lets us quickly spot problems, or otherwise disregard
the environment as being a cause of a problem. This
has the beneficial effect of narrowing our
investigation scope and guiding us to the cause of
the fault we are investigating.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

58

Within an SOA artefact, there are a great deal of
factors to be tested relating to deployment. We have
already identified these in our requirements analysis,
and here we provide our approaches to the testing of
two of these; the need for a server to contain the
required libraries, and resource naming and lookup.

4.6.1 Library Configuration Testing

The machines running certain servers, database
implementations, and services, require specific
libraries. These libraries are in turn required by
specific server such as database, or service
implementations, though any combination of these
may share libraries. While this may appear to be an
administrative nightmare, the unit test approach
provides a simple and manageable solution.

For each library, tests can be written that call a
method or methods from the library. If these tests
pass, it can be assumed that the library is installed
correctly in the environment. Each test can then be
integrated into a deployment test suite for a specific
server, database, or service. This may provide some
redundancy, but in this case this is not necessarily a
bad thing, as it removes the burden of test
reconfiguration with each deployment of a new
service, database or server to an environment.
Instead, we can provide specific test cases which can
be combined as required, allowing for a greater
degree of flexibility.

The automation of this approach, for example
some kind of linking between an artefact’s classpath
and the deployment tests required for it, will add
more value to the process in terms of flexibility, ease
of use, and reduced test configuration and
implementation time. We intend to explore this
further in future work.

4.6.2 Resource Naming and Lookup
Configuration Testing

We have identified that, in addition to library
requirements, deployment environment testing needs
to address correct resource naming and lookup.
Similarly to library testing, resource testing is
specific to the environment as a whole, and to
individual service, database, and server
implementations, and again, a unit testing approach
can achieve the flexible and comprehensive testing
solution required.

Again, the approach adopted for library testing
can be used. This approach is modular not only in
terms of one aspect of the deployment testing, be it
library or resource configuration testing, but also for
the deployment testing overall. The test suites, in

addition, can be combined to provide views of
overall artefact deployment health, and again these
views can be combined with previously discussed
approaches to provide the needed holistic, multi-
layered, multi view solution to SOA testing.

5 CONCLUSIONS

Testing methods for SOA are underdeveloped. In
this paper, we have proposed a unified approach to
SOA testing. It is our opinion that such a testing
framework could have a significant impact on the
SOA development community.

Providing a framework with divisional foci
allows for analysis at varying levels. Because we
can take different views, it is possible to quickly
identify and isolate causes of problems. This also
helps the development process; the test cases
provide requirements, which inform the
development of artefacts. The integration of
artefacts is supported because tests for each artefact
already exist, and can be used in varying
combinations for different integrations.
Additionally, the iterative SOA development process
is made easier.

Recognising that we have only looked at the
functionality of SOA applications, our future work
will consider expanding the framework to take into
account non-functional aspects such as quality of
service, security, and performance. We are also
considering implementing the framework and
providing a model driven approach to testing.

REFERENCES

Apache Server http://httpd.apache.org
AutomationAnywhere http://www.automationanywhere.

com
Barn B.S Oussena S (2008) "BPMN, Toolsets and

Methodology: A case study of business process
management in higher education" In: ISD’08
conference

Barn, B.S., Dexter, H., Oussena, S. Petch, J.: An
Approach to Creating Reference Models for SOA
from Multiple Processes. In: IADIS Conference on
Applied Computing, Spain 2006.

Beck, K. Extreme Programming Explained: Embrace
Change, Boston: Addison-Wesley, 2000

Beck, K., Test-Driven Development: By Example. Boston:
Addison-Wesley, 2003

Bloomberg, J., Web services testing: Beyond SOAP,
ZapThink LLC, Sep 2002

A FRAMEWORK FOR TESTING SOA APPLICATIONS

59

Cockburn, A. Agile Software Development, Boston:
Addison-Wesley 2001

Dallaway, R., JSP test http://www.dallaway.com/jsptest/
DAO Pattern http://java.sun.com/blueprints/corej2

eepatterns/Patterns/DataAccessObject.html
DBUnit http://sourceforge.net/projects/dbunit/
Empirix, http://www.empirix.com/
Freeman,S., Developing Jdbc Applications Test-First

http://www.mockobjects.com/DevelopingJdbcApplica
tionsTestFirst.html

Hibernate: http://docs.jboss.org/ejb3/app-server/
Hibernate3/reference/en/pdf/hibernate_reference.pdf

HttpUnit http://httpunit.sourceforge.net/
JUnit http://www.junit.org
Juric., M. Business Process Execution Language for Web

Service, 2nd ed., Birmingham, Packt, 2006.
Lenz C., Chimiak-Opoka,, J. Breu R..

“Model driven testing of soa-based software”
In Daniel Luebke, editor, Proceedings of the
SEMSOA Workshop 2007 on Software Engineering
Methods for Service-Oriented Architecture, volume
244 of CEUR Workshop Proceedings (ISSN 1613-
0073), pages 99-110, Hannover, Germany, May 2007

Link, J. and Frohlich, P., Unit Testing in Java: How Tests
Drive the Code, Morgan Kaufmann Publishers, 2003

mod_jk Tomcat Connector
http://tomcat.apache.org/connectors-doc/

Onoma A.K., Tasi W.T., Poonawala M. and Sugama H.
Regression testing in an Industrial Environment,
Communication of ACM, Vol. 41, No 5, 1998, 81-86

Parasoft, www.parasoft.com
Tsai, W. T., Paul, R., Wang, Y., Fan C., and Wang D.,

“Extending WSDL to Facilitate Web Services
Testing”, Proc. of IEEE HASE, 2002, pp. 171-172.

Quatrani, T. and Palistrant, J. Visual Modeling with IBM
Rational Software Architect and UML, Pearson
Education, 2006

Scardina, M., Chang, B., and Wang, J., Oracle Database
10g XML & SQL: Design, Build, and Manage XML
Applications in Java, C, C++ & PL/SQL, McGraw-
Hill, 2004

Tsai W. T., Zhang D., Chen Y., Huang H., Paul R., and
Liao N., “A Software Reliability Model for Web
Services”, the 8th IASTED International Conference
on Software Engineering and Applications,
Cambridge, MA, November 2004, pp. 144-149.

Tsai W. T., Paul R., Yu L., Saimi A., and Cao Z.,
“Scenario-Based Web Service Testing with
Distributed Agents”, IEICE Transactions on
Information and Systems, 2003, Vol. E86-D, No. 10,
2003, pp. 2130-2144

Tomcat Server http://tomcat.apache.org
Zachman Institute for Framework Advancement

http://www.zifa.com

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

60

