
ON EXTENDING THE PRIMARY-COPY
DATABASE REPLICATION PARADIGM

M. Liroz-Gistau, J. R. Juárez-Rodrı́guez, J. E. Armendáriz-Iñigo, J. R. González de Mendı́vil
Universidad Pública de Navarra, 31006 Pamplona, Spain

F. D. Muñoz-Escoı́
Instituto Tecnologico de Informática, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Keywords: Database Replication, Generalized Snapshot Isolation, Read One Write All, Replication Protocols, Middle-
ware Architecture.

Abstract: In database replication, primary-copy systems sort out easily the problem of keeping replicate data consistent
by allowing only updates at the primary copy. While this kind of systems are very efficient with workloads
dominated by read-only transactions, the update-everywhere approach is more suitable for heavy update loads.
However, it behaves worse when dealing with workloads dominated by read-only transactions. We propose a
new database replication paradigm, halfway between primary-copy and update-everywhere approaches, which
permits improving system performance by adapting its configuration to the workload, by means of a determin-
istic database replication protocol which ensures that broadcast writesets are always going to be committed.

1 INTRODUCTION

Database replication is considered as a joint venture
between database and distributed systems research
communities. Each one pursues its own goals: per-
formance improvement and affording site failures, re-
spectively. These issues bring up another important
question that is how different replicas are kept con-
sistent, i.e. how these systems deal with updates that
modify the database state. During a user transaction
lifetime it is a must to decide in which replica and
when to perform updates (Gray et al., 1996). We fo-
cus on eager solutions and study the different alterna-
tives that exist according to where to perform updates.

The primary copy approach allows only one
replica to perform the updates (Daudjee and Salem,
2006; Plattner et al., 2008). Changes are propagated
to the secondary replicas, which in turn apply them.
Data consistency is trivially maintained since there is
only one server executing update transactions. Secon-
daries are just allowed to execute read-only transac-
tions. This approach is suitable for workloads dom-
inated by read-only transactions, as it tends to be in
many modern web applications (Daudjee and Salem,
2006; Plattner et al., 2008). However, the primary
replica represents a bottleneck for the system when
dealing with a large amount of update transactions

and, furthermore, it is a single point of failure. The
opposite approach, called update-everywhere (Lin
et al., 2005; Kemme and Alonso, 2000), consists of
allowing any replica to perform updates. Thus, sys-
tem’s availability is improved and failures can be tol-
erated. Performance may also be increased, although
a synchronization mechanism is necessary to keep
data consistent. This may suppose a significant over-
load in some configurations.

Several recent eager update-everywhere ap-
proaches (Kemme and Alonso, 2000; Kemme et al.,
2003; Lin et al., 2005; Wu and Kemme, 2005)
take advantage of the total-order broadcast prim-
itive (Chockler et al., 2001). Certification-based
and weak-voting protocols are the ones which ob-
tain better results (Wiesmann and Schiper, 2005).
Certification-based algorithms decide the outcome of
a transaction by means of a deterministic certification
test, mainly based on on a log of previous commit-
ted transactions (Lin et al., 2005; Wu and Kemme,
2005; Elnikety et al., 2005). On the contrary, on
weak-voting protocols the delegate replica decides the
outcome of the transactions and informs the rest of
the replicas by sending a message. In an ideal repli-
cation system all message exchange should be per-
formed in one round (as in certification-based) and
delivered writesets should be committed without stor-

99
Liroz-Gistau M., R. Juárez-Rodríguez J., E. Armendáriz-Iñigo J., R. Gonzalez de Mendivil J. and D. Muñoz-Escoí F. (2009).
ON EXTENDING THE PRIMARY-COPY DATABASE REPLICATION PARADIGM.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 99-106
DOI: 10.5220/0002256600990106
Copyright c© SciTePress



ing a redundant log (as it is done in weak-voting).
In this paper we propose a novel approach that

circumvents the problems of the primary-copy and
update-everywhereapproaches. Initially, a fixed num-
ber of primary replicas is chosen and, depending on
the workload, new primaries may be added by send-
ing a special control message. A deterministic mech-
anism governs who is the primary at a given time.
Thus, at a given time slot, only those writesets coming
from a given replica are allowed to commit: A pri-
mary replica applies the writesets in order (aborting
local conflicting transactions if necessary), and when
its turn arrives, local transactions waiting for commit
are committed and their writesets broadcast to the rest
of the replicas. Moreover, replicas configuration can
be modified dynamically both by changing the role of
existing replicas (turning a primary into a secondary
or vice versa) or by adding new secondaries.

If we assume that the underlyingDBMS at each
replica provides Snapshot Isolation (SI) (Berenson
et al., 1995), the proposed protocol will provide
Generalized SI (Elnikety et al., 2005; González de
Mendı́vil et al., 2007) (GSI). The rest of this paper
is organized as follows: Section 2 depicts the system
model. The replication protocol is introduced in Sec-
tion 3 and fault tolerance is discussed in Section 4.
Experimental evaluation is described in Section 5. Fi-
nally, conclusions end the paper.

2 THE SYSTEM MODEL

We assume a partially synchronous distributed sys-
tem where message propagation time is unknown but
bounded. The system consists of a group of sites
M = (R0, ...,RM−1), N primary replicas andM − N
secondaries, which communicate by exchanging mes-
sages. Each site holds an autonomousDBMS provid-
ing SI that stores a physical copy of the replicated
database schema (i.e. we consider a full-replicated
system). An instance of the replication protocol is
running on each replica over the DBMS. It is encap-
sulated at a middleware layer that offers consistent
views and a single system entry point through a stan-
dard interface, such asJDBC. Middleware layer in-
stances of different sites communicate among them
for replica control purposes.

A replica interacts with other replicas by means
of a Group Communication System (Chockler et al.,
2001) (GCS) that provides a FIFO reliable multicast
communication service. This GCS includes also a
membership service with the virtual synchrony prop-
erty (Chockler et al., 2001; Birman and Joseph, 1987),
which monitors the set of participating replicas and

provides them with consistent notifications in case of
failures, either real or suspected. Sites may only fail
by crashing, i.e. Byzantine failures are excluded. We
assume a primary-partition membership service.

Figure 1: Startup configuration with one primary and main
components of the system.

Clients access to the system through their delegate
replicas to issue transactions. The way the delegate
replica is chosen depends on the transaction type. A
transaction is composed by a set of read and/or write
operations ended either by a commit or an abort op-
eration. A transaction is said to be read-only if it
does not contain write operations and an update one,
otherwise. Read-only transactions are directly exe-
cuted (and committed, without any further coordina-
tion) over primary or secondary replicas, while update
ones are forwarded to the primaries where their exe-
cution is coordinated by the replication protocol.

3 REPLICATION PROTOCOL

The main idea of our proposal is to extend the
primary-copy approach in order to improve the capac-
ity for processing update transactions and fault toler-
ance. In fact, its basic operation (working with one
primary and several secondaries) follows a classical
primary copy strategy, as shown in Figure 1. The
protocol separates read-only from update transactions
and it executes them on different replicas: updates on
the primary replica and reads on any replica. This
scheduler may be easily implemented in a middle-
ware architecture, as the one presented in (Muñoz-
Escoı́ et al., 2006). This middleware provides a stan-
dard transactional interface to clients, such as JDBC,
isolating them from the internal operation of the repli-
cated database. All transactions are executed locally.
At commit time, read-only transactions are commit-
ted straightforwardly, whilst update transactions must
spread their modifications. Thus, writesets are broad-
cast to the secondaries and they are applied (and com-
mitted) in the same order in which the primary site
committed them, as explained later. This guarantees
that secondary replicas converge to the same snap-

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

100



shot as the primary and therefore reads executed over
secondaries will always use a consistent snapshot in-
stalled previously on the primary.

3.1 Extending Primary-Copy Approach

In this paper, we extend the primary copy approach to
improve its performance (mainly increasing the ca-
pacity of handling a high number of updates) and
its fault tolerance. This new approach allows dif-
ferent replicas to be primaries alternately (and hence
to execute updates) during given periods of time by
means of a deterministic protocol. As pointed out be-
fore, this protocol follows at each replica (primary
or secondary) the most straightforward scheduling
policy: at a given slot, only those writesets coming
from a given primary replica are allowed to commit.
In the primaries, other conflicting local transactions
should be aborted to permit those writesets to com-
mit (Muñoz-Escoı́ et al., 2006). Secondary replicas
do not raise this problem since they are not allowed
to execute update transactions (read-only transactions
do not conflict under SI).

As it can be easily inferred, a primary replica will
never multicast writesets that finally abort. There-
fore, this protocol makes it possible to share the up-
date transaction load among different primary repli-
cas, while secondary replicas are still able to handle
consistently read-only transactions, usually increas-
ing the system throughput. Moreover, the most im-
portant feature is that a unique scheduling is gener-
ated for all replicas. Hence, considering that the un-
derlying DBMS at each replica providesSI, transac-
tions will see a consistent snapshot of the database,
although it may not be the latest version existing in
the replicated system. Therefore, this protocol will
provideGSI. The atomicity and the same order of ap-
plying transactions in the system have been proved
in (González de Mendı́vil et al., 2007) to be sufficient
conditions for providingGSI.

3.2 Protocol Description

In the following, we explain the operation of the de-
terministic protocol executed by the middleware at a
primary replicaRk (Figure 2), considering a fault-free
environment. Note that secondary replicas may exe-
cute the same protocol, considering that some steps
will be never executed or may be removed.

All operations of a transactionT are submitted to
the middleware of its delegate replica (explicit abort
operations from clients are ignored for simplicity).
Note that, at a primary copy, a transaction may sub-
mit read or update operations, whilst at a secondary

just read-only operations. At each replica, the middle-
ware keeps an array (towork) that determines the same
scheduling of update transactions in the system by a
round-robin scheduling policy based on the identifiers
of the primary replicas.

In general,towork establishes at each replica which
writesets have to be applied and in which order, en-
suring that writesets are committed in the same order
at all the replicas. Among primary replicas,towork
is also in charge of deciding which primary is al-
lowed to send a message with locally performed up-
dates. Each element of the array represents a slot that
stores the actions delivered from a primary replica.
These actions are processed cyclically according to
the turn, which defines the order in which the actions
have to be performed. There exists a mapping func-
tion (map turn()) that defines which turn is assigned to
which primary replica.

The middleware of a primary replica forwards all
the operations but the commit operation to the lo-
cal database replica (stepI of Figure 2). Each pri-
mary replica maintains a list (wslist) which stores local
transactions (T.replica = Rk) that have requested their
commit. Thus, when a transaction requests its com-
mit, the writeset (T.WS) is retrieved from the local
database replica (Plattner et al., 2008). If it is empty
the transaction will be committed straight away, oth-
erwise the transaction (together with its writeset) will
be stored inwslist. Secondary replicas work just with
read-only transactions. Thus, there is no need to use
the wslist, since transactions do not modify anything
and hence they will always commit directly in the lo-
cal database without delaying.

In order to commit transactions that have re-
quested it, their corresponding delegate primary
replica has to multicast their writesets in atocommit
message, to spread their changes, and wait for the re-
ception of this message to finally commit the trans-
actions (this is just for fault-tolerance issues). Since
our protocol follows a round-robin scheduling among
primary replicas, each primary has to wait for its turn
(turn=map turn(Rk) in step III) so as to multicast all
the writesets contained inwslist using a simple reli-
able broadcast service. Note that secondary replicas
are not represented in thetowork queue and therefore
they will never have any turn assigned to them and
hence they will never broadcast any message. Secon-
daries simply execute read-only transactions and ap-
ply writesets from primaries.

When the turn of a primary replica arrives and
there are no transactions stored inwslist, the replica
will simply advance the turn to the next primary
replica, sending anext message to all the replicas.
This message allows also secondary replicas to know

ON EXTENDING THE PRIMARY-COPY DATABASE REPLICATION PARADIGM

101



Initialization:

1. ws run := false

2. wslist := /0
3. nprimaries := N

4. towork[i] := /0 with i ∈ 0..N-1

5. turn := 0

I. Upon operation request for T from local client

1. if SELECT then
a. execute operation at Rk and return to client

2. else if UPDATE, INSERT, DELETE then
a. if ws run = true then wait until ws run = false

b. execute operation at Rk and return to client

3. else if COMMIT then
a. T.WS := getWriteset(T) from local Rk

b. if T.WS = /0 then commit T and return to client

c. else
- T.replica := Rk

- T.pre commit := true

- wslist := wslist · 〈T〉

II. Upon receiving message msg from Rn

1. Store msg in towork[Rn]

III. Upon replica’s turn /* turn = Rk */

1. if wslist = /0 then R multicast(〈next,Rk〉)

2. else R multicast(〈tocommit,Rk,wslist〉)

IV. Upon 〈next,Rn〉 in towork[turn]

1. Remove 〈next,Rn〉 from towork[turn]

2. turn := (turn+1) mod nprimaries

V. Upon 〈tocommit,Rn,seq txns〉 in towork[turn]

1. while seq txns 6= /0 do
a. T′ := first in seq txns

b. if T′ .replica = Rk then /* T′ is local */

- commit T′ and return to client

c. else /* T′ is remote */

- ws run := true

- apply T′.WS to local Rk

/* T′ may be reattempted */

- commit T′

2. Remove 〈tocommit,Rn, /0〉 from towork[turn]

3. turn := (turn+1) mod nprimaries

4. ws run := false

VI. Upon block detected between T1 and T2

/* T1.replica 6= Rk */

/* T2.replica = Rk, i.e. local */

1. abort T2 and return to client

2. if T2.pre commit = true then remove 〈T2〉 from wslist

Figure 2:Determ-Rep algorithm at a primary replicaRk.

that there is nothing to wait for from that replica.

Upon delivery of any of these messages (next and
tocommit) at each replica, they are stored in their
corresponding positions in thetowork array (stepII),
according to the primary replica which the message
came from and the mapping function (map turn(Rk)).
It is important to note that, although these messages
were sent since replica’s turn was reached at their cor-
responding primary replicas, replicas run at different
speeds and there can be replicas still handling pre-
vious positions of their owntowork. At each replica,
messages from a same replica will be delivered in the

same order, since we consider FIFO channels between
the replicas. However, messages from different repli-
cas may be delivered disordered (as we do not use
total order), but this is not a problem since they are
processed one after another as their turn arrives. Dis-
ordered messages are stored in their corresponding
positions in the array and their processing will wait
for the delivery and processing of the previous ones.
This ensures that all the replicas process messages in
the same order and as a result all transactions are com-
mitted in the same order in all of them.

Thetowork array is processed in a cyclical way. At
each turn, the protocol checks the corresponding po-
sition of the array (towork[turn]). If a next message is
stored, the protocol will simply remove it from the ar-
ray and change the turn to the following one (stepIV)
so as to allow the next position to be processed. If it is
a tocommit message, we can distinguish between two
cases (stepV). When the sender of the message is the
replica itself (a primary replica), transactions grouped
in its writeset (seq txns) are local (already exist in
the localDBMS) and therefore the transactions will
be straightforwardly committed. In the other case, a
remote transaction has to be used to apply and com-
mit the sequence of transactionsseq txns at the remote
replicas (other primaries and secondaries). In both
cases, once committed the transaction, the protocol
changes the turn to the following one to continue the
process.

At primary replicas, special attention must be paid
to local transactions, since they may conflict with the
remote writeset application, avoiding it to progress.
To partially avoid this problem, we stop the execu-
tion of write operations in the system (see stepI.2.a
in Figure 2) when a remote writeset is applied at a
replica, i.e. turning thews run variable to true. How-
ever, this is not enough to ensure the writeset appli-
cation in the replica; the writeset can be involved in
a conflict with local transactions that already updated
some data items that intersect with the writeset.

Progress is ensured by a block detection mecha-
nism, presented in (Muñoz-Escoı́ et al., 2006), which
aborts all local conflicting transactions (VI) allowing
the writesets to be successfully applied. Besides, this
mechanism prevents local transactions that have re-
quested their commit (T.precommit = true) from being
aborted by other local conflicting transactions, en-
suring their completion. Note also that the writeset
application may be involved in a deadlock situation
that may result in its abortion and hence it must be
re-attempted until its successful completion. Secon-
daries do not require this mechanism since they only
execute read-only transactions that never conflict with
the remote writesets.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

102



Figure 3: The process of adding a new primary to the replicated system.

3.3 Dynamic Load-Aware Replication
Protocol

Initial system configuration sets the number of pri-
mary and secondary replicas which compose the
replicated system. However, this is not a fixed con-
figuration. Our protocol may easily adapt itself dy-
namically to different transaction workloads by turn-
ing primaries into secondaries and vice versa. This
makes it possible to handle different situations ensur-
ing the most appropriate configuration for each mo-
ment.

VII. Upon 〈new primary,Rn〉 in towork[turn]

1. Remove message from towork[turn]

2. nprimaries := nprimaries + 1

3. Increase towork capacity in 1

VIII. Upon 〈remove primary,Rn〉 in towork[turn]

1. Remove message from towork[turn]

2. nprimaries := nprimaries - 1

3. Reduce towork capacity in 1

Figure 4: Modifications toDeterm-Rep algorithm to add or
remove new primaries to the system.

Note that a great number of primary replicas in-
creases the overhead of the protocol, since delay be-
tween turns is increased and there are more update
transactions from other primary replicas that need to
be locally applied. Therefore, it is clear that this leads
to higher response times of transactions. However,
this improves the system capacity to handle work-
loads predominated by update transactions. On the

other hand, increasing the number of secondary repli-
cas does not involve a major problem, since data con-
sistency is trivially maintained in these replicas as
they are only allowed to execute read-only transac-
tions. Thus, this improves the system capacity to
handle this type of transactions, although it does not
enhance the possibility of handling update ones or
putting up with failures of a single primary. There-
fore, the system performance is a trade-off between
the number of primaries and the number of secon-
daries, depending on the workload characteristics.

In this way, our protocol is able to adapt itself to
the particular behavior of the workload processed in
the replicated system. Considering a set of replicas
where one is primary and the others are secondaries,
we can turn a secondary easily into a new primary in
order to handle better a workload where update trans-
actions become predominant (see Figure 3). For this,
it is only necessary that a primary replica broadcasts
a message, pointing which secondary replica should
start behaving as a primary (new primary). A sepa-
rate dynamic load-aware protocol should be in charge
of doing this, according to the workload processed by
the system. Its study and implementation is not an
aim of this paper and this protocol simply provides
the required mechanisms. When delivering this mes-
sage, each replica will update the number of primaries
working in the system (nprimaries). They will also add
a new entry in the working queue (towork) to store
messages coming from that replica so as to process
them as stated. With these two minor changes, both
primary and secondary replicas will be able to han-

ON EXTENDING THE PRIMARY-COPY DATABASE REPLICATION PARADIGM

103



dle the incorporation of the secondary as a primary
replica. In the same way, when the workload becomes
dominated by read-only transactions, we can turn a
primary replica into a secondary one through a similar
process that updates the number of primaries and re-
moves the corresponding entry in the working queue
at each replica of the system.

4 FAULT TOLERANCE

In the system treated so far, replicas may fail, re-
join or new replicas may come to satisfy some per-
formance needs. The proposed approach deals also
with these issues. We suppose that the failure and re-
covery of a replica follows the crash-recovery with
partial amnesia failure model (Cristian, 1991). Fail-
ures and reconnections of replicas are handled by the
GCS by means of a membership service providing
virtual synchrony under the primary-component as-
sumption (Chockler et al., 2001) . In order to avoid in-
consistencies the multicast protocol must ensure uni-
form delivery (Chockler et al., 2001) and prevent con-
tamination (Défago et al., 2004).

The failure of a replicaR j involves firing a view
change event. Hence, all the nodes will install the new
view with the excluded replica. The most straightfor-
ward solution for a primary failure is to silently dis-
card the position oftowork associated to the primaryR j

at each alive replicaRk. Failures of secondary repli-
cas need no processing at all.The no contamination
property (Défago et al., 2004) prevents that correct
replicas receive messages from faulty primaries.

After a replica has crashed, it may eventually re-
join the system, firing a view change event. Thisre-
coveringreplica has first to apply the possible write-
sets missed on the view it crashed and then the write-
sets while it was down. Thanks to the strong virtual
synchrony, there is at least one replica that completely
contains all the system state. Hence, there is a process
for choosing arecovererreplica among all living pri-
mary nodes; this is an orthogonal process and we will
not discuss it here. Let us assume that there exists a
recoverer replica. Initially, a recovering node will join
the system as a secondary replica; later depending on
the system load it may become a primary. Upon firing
the view change event, we need to rebuild thetowork
queue including the primary replicas available in the
system. The recovering node will discard, in turn,
messages coming from working primary replicas un-
til it finishes its recovery. The recoverer will wait for
its turn to send the missed information to the recover-
ing replica, in order to include other writesets coming
from other replicas which the recovering will discard.

Concurrently to this, the recovering replica will
store all writesets delivered from primary replicas
in an additional queue calledpending WS where they
may be compacted (Pla-Civera et al., 2007). It is not
necessary that another replica stores the committed
writesets and discards the ones that have to abort (e.g.
after a certification process), since in our proposal de-
livered writesets are always supposed to have to com-
mit. Once all missed updates transferred by the recov-
erer have been applied at the recovering, it will finally
apply the compacted writesets stored inpending WS
and, thus, finish the recovery. From then on, recover-
ing replica will process thetowork queue as usual. As
it may be seen, we have followed a two phase recov-
ery process very similar to the one described in (Ar-
mendáriz-Iñigo et al., 2007).

5 EXPERIMENTAL RESULTS

To verify the validity of our approach we per-
formed some preliminary tests. We have implemented
the proposed protocol on a middleware architecture
called MADIS (Muñoz-Escoı́ et al., 2006), taking ad-
vantage of its capabilities provided for database repli-
cation. For the experiments, we used a cluster of
4 workstations (openSUSE 10.2 with 2.6.18 kernel,
Pentium4 3.4GHz, 2Gb main memory, 250Gb SATA
disk) connected by a full duplex Fast Ethernet net-
work. JGroups 2.1 is in charge of the group com-
munication. PostgreSQL 8.1 was used as the under-
lying DBMS, which ensured SI level. The database
consists of 10 tables each containing 10000 tuples.
Each table contains the same schema: two integers,
one being the primary key. Update transactions mod-
ify 5 consecutive tuples, randomly chosen from a ta-
ble of the database. Read-only transactions retrieve
the values from 1000 consecutive tuples, randomly
chosen from a table of the database too. The Post-
greSQL databases were configured to enforce the syn-
chronization of write operations (enabling the fsync
function). We used a load generator to simulate dif-
ferent types of workloads depending on the ratio of
update transactions (10%, 50%, 90%). We simulated
12 clients submitting 500 transactions each one with
no delay between them. The load generator estab-
lished with each working replica the same number of
connections than simulated clients. Transactions were
generated and submitted through connections to repli-
cas according to their role: update transactions to pri-
mary ones and read-only transactions to both primary
and secondary ones. Note that, as these are prelimi-
nary tests, we have not paid much attention to the way
transactions were distributed among the replicas and

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

104



(a) Primary-copy approach of the system. (b) Update-everywhere operation. (c) Balancing the system configuration.

Figure 5: Throughput for different analyzed workloads and configurations.

therefore results are not the best ones.

Experimental results are summarized in Figure 5.
In the first two tests, we have tested the perfor-
mance of our proposal working as a primary-copy and
an update-everywhere approach respectively. Thus,
starting from a primary replica (needed in both cases),
we have increased the number of replicas depend-
ing on the evaluated approach: primaries for the
update-everywhere operation and secondaries for the
primary-copy one. As shown in Figure 5a, increasing
the number of secondaries permits the system han-
dling better read-only predominant loads (10% up-
dates). However, in this primary-copy approach, it
is impossible to enhance its performance when work-
ing with loads with a great number of updates (50%
or 90% updates). In these cases, increasing the num-
ber of secondaries means no improvement, since addi-
tional secondaries do not increase the system capacity
to process update transactions. In fact, all the update
transactions are executed in the primary replica, and
this overloads the replica.

On the other hand, the update-everywhere opera-
tion provides better results (see Figure 5b) than the
primary-copy approach with loads including many
update transactions (50% and 90% updates). In these
cases, increasing the number of primaries allows to
handle a greater number of update transactions and
therefore the performance is improved. However, all
the replicas are able to execute update transactions
that may overload them and this may lead to higher
response times when executing read-only transactions
in these replicas. Besides, the coordination of the pri-

mary replicas involves also a greater overhead in their
protocols than in a secondary protocol. For these rea-
sons, the performance of the update-everywhere ap-
proach is poorer than the primary-copy one when the
system works with a great number of read-only trans-
actions.

We have seen that each approach behaves better
under different loads. Hence, it is interesting to test
how an intermediate approach (mixing several pri-
maries and secondaries) performs. We have tested
the behavior of mixed compositions, considering a
fixed number of replicas. As shown in Figure 5c,
mixed configurations with 4 replicas provide in gen-
eral near the same and usually better results for each
load considered in our tests. In particular, for a 10%-
update load the best behavior (192TPS) is not pro-
vided by a pure primary-copy approach but by 2 pri-
maries and 2 secondaries. This happens because us-
ing a single primary that concentrates all update trans-
actions penalizes a bit the read-only transactions in
such single primary replica, but with two primaries
none of them gets enough update transactions for de-
laying read-only transaction service. Once again, for
a 50%-update load the best throughput (76TPS) is
given by 3 primaries and 1 secondary, outperforming
a primary-copy configuration (51TPS) and an update-
everywhere one (69TPS). This proves that intermedi-
ate configurations are able to improve the throughput
achievable.

ON EXTENDING THE PRIMARY-COPY DATABASE REPLICATION PARADIGM

105



6 CONCLUSIONS

This paper has presented a new database replication
approach, halfway between primary-copy and update-
everywhere paradigms. The result is an improved
performance, which is obtained since the protocol
can change its configuration depending on the load.
Moreover, it also allows to increase the fault-tolerance
of primary-copy protocols. This is feasible thanks to
the use of a deterministic database replication proto-
col that takes the best qualities from both certification
and weak-voting approaches. This protocol estab-
lishes a unique schedule in all replicas based on pri-
maries identifiers, which ensures that broadcast write-
sets are always going to be committed.

We have also discussed how this protocol can
adapt itself dynamically to different environments (by
turning secondaries into primaries to handle heavy-
update workloads or primaries into secondaries when
read-only transactions become predominant). Finally,
we have performed some preliminary experiments to
prove the feasibility of this approach, showing how
system can provide better performance adapting its
configuration to the load characteristics, although we
have still to make a great effort to achieve more sig-
nificant results.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Govern-
ment under research grant TIC2006-14738-C02-02.

REFERENCES

Armendáriz-Iñigo, J. E., Muñoz-Escoı́, F. D., Juárez-
Rodrı́guez, J. R., de Mendı́vil, J. R. G., and Kemme,
B. (2007). A recovery protocol for middleware repli-
cated databases providing GSI. InARES, pages 85–92.
IEEE-CS.

Berenson, H., Bernstein, P. A., Gray, J., Melton, J., O’Neil,
E. J., and O’Neil, P. E. (1995). A critique of ANSI
SQL isolation levels. InSIGMOD, pages 1–10. ACM
Press.

Birman, K. P. and Joseph, T. A. (1987). Exploiting vir-
tual synchrony in distributed systems. InSOSP, pages
123–138.

Chockler, G., Keidar, I., and Vitenberg, R. (2001).
Group communication specifications: a comprehen-
sive study.ACM Comput. Surv., 33(4):427–469.

Cristian, F. (1991). Understanding fault-tolerant distributed
systems.Commun. ACM, 34(2):56–78.

Daudjee, K. and Salem, K. (2006). Lazy database repli-
cation with snapshot isolation. InVLDB, pages 715–
726. ACM.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order
broadcast and multicast algorithms: Taxonomy and
survey.ACM Comput. Surv., 36(4):372–421.

Elnikety, S., Pedone, F., and Zwaenopoel, W. (2005).
Database replication using generalized snapshot isola-
tion. In Symposium on Reliable Distributed Systems,
Orlando, FL, USA, pages 73–84. IEEE-CS.

González de Mendı́vil, J. R., Armendáriz-Iñigo, J. E.,
Muñoz-Escoı́, F. D., Irún-Briz, L., Garitagoitia, J. R.,
and Juárez-Rodrı́guez, J. R. (2007). Non-blocking
ROWA protocols implement GSI using SI repli-
cas. Technical Report ITI-ITE-07/10, Instituto Tec-
nológico de Informática.

Gray, J., Helland, P., O’Neil, P. E., and Shasha, D. (1996).
The dangers of replication and a solution. InSIGMOD
Conference, pages 173–182. ACM.

Kemme, B. and Alonso, G. (2000). A new approach to de-
veloping and implementing eager database replication
protocols. ACM Trans. Database Syst., 25(3):333–
379.

Kemme, B., Pedone, F., Alonso, G., Schiper, A., and Wies-
mann, M. (2003). Using optimistic atomic broad-
cast in transaction processing systems.IEEE TKDE,
15(4):1018–1032.

Lin, Y., Kemme, B., Patiño-Martı́nez, M., and Jiménez-
Peris, R. (2005). Middleware based data replication
providing snapshot isolation. InSIGMOD Confer-
ence, pages 419–430. ACM.

Muñoz-Escoı́, F. D., Pla-Civera, J., Ruiz-Fuertes, M. I.,
Irún-Briz, L., Decker, H., Armendáriz-Iñigo, J. E., and
de Mendı́vil, J. R. G. (2006). Managing transaction
conflicts in middleware-based database replication ar-
chitectures. InSRDS, pages 401–410. IEEE-CS.

Pla-Civera, J., Ruiz-Fuertes, M. I., Garcı́a-Muñoz, L. H.,
and Muñoz-Escoı́, F. D. (2007). Optimizing
certification-based database recovery. InISPDC,
pages 211–218. IEEE-CS.

Plattner, C., Alonso, G., and̈Ozsu, M. T. (2008). Extending
DBMSs with satellite databases.VLDB J., 17(4):657–
682.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast.IEEE TKDE, 17(4):551–566.

Wu, S. and Kemme, B. (2005). Postgres-R(SI): Combin-
ing replica control with concurrency control based on
snapshot isolation. InICDE, pages 422–433. IEEE-
CS.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

106


