
A SERVICE DIFFERENTIATION ALGORITHM
For Clusters of Middleware Appliances

Mursalin Habib, Yannis Viniotis
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.

Bob Callaway, Adolfo Rodriguez
IBM, Research Triangle Park, NC 27709, U.S.A.

Keywords: Middleware, Service Oriented Architecture, Service Differentiation, Closed Loop Feedback.

Abstract: Service oriented architectures (SOA) and XML-based Web Services have become the technology of choice
in enterprise networks. These networks support multiple services and are typically architected in multiple
computing tiers, with a main service tier for the business logic and a separate, “offload” tier, for, say, the
CPU-intensive XML processing. The offload tier is typically populated by clusters of middleware appliances,
usually hardware-assisted devices that are optimized for their tasks. Service differentiation refers to the generic
problem of managing the enterprise network resources in order to achieve desired performance objectives on a
per service basis. In this paper, we define a SAA/SDA (Service Activation Algorithm/Service Deactivation Al-
gorithm) that manages the CPU allocation in the appliance tier, in order to provide service differentiation. The
main design objective of SAA/SDA is to overcome the disadvantages of the present known, static solutions.
We analyze the performance of SAA/SDA via simulations.

1 INTRODUCTION

Service oriented architectures (SOA) have become
the technology of choice for satisfying many busi-
ness goals in terms of flexibility, software reuse, and
addressing complexity (Erl, 2004), (Michael Huhns,
2005). A way of adopting SOA is through exposing
functionality as Web Services. These services lever-
age the ubiquitous nature of XML as a universal mes-
sage format; however, this choice often imposes in-
creased computational overhead due to XML pars-
ing. For this reason, enterprise network administra-
tors deploy specialized, hardware- assisted appliances
for XML processing. These appliances, called mid-
dleware appliances or SOA appliances, are positioned
on the edge of the enterprise network, as a separate
tier “in front of” the service tier. They are generally
deployed in multiples to provide sufficient process-
ing power and to meet high availability requirements.
Figure 1 depicts an abstraction of such an environ-
ment that emphasizes the clustering of appliances and
servers into two separate computing tiers.

1.1 Service Differentiation

Typically, an enterprise network supports multiple
classes of service requests (also known as service do-

mains) (Menascé et al., 2001), (Chandrashekar et al.,
2003). For the purposes of this paper, and at a high-
level, a service domain corresponds to a deployed ap-
plication or related applications. Service differentia-
tion refers to the generic problem of managing the en-
terprise network resources in order to achieve desired
performance objectives on a per domain basis. For
example, resources may include the CPU processing
power at the appliance tier and/or the service tier; per-
formance may be defined in terms of throughput for
one service domain or average delay for another.

It is up to the enterprise network administrator to
properly manage (that is, configure and provision) the
system resources together as a collective whole, to
achieve service domain differentiation. In this pa-
per, we focus on the issue of managing the “island”
of middleware appliances. More specifically, we con-
sider the problem of Unqualified Service Differenti-
ation that can be stated as follows: “allocate a de-
sired percentage of the CPU power of the appliances
to a given service domain”. For example, assuming
only three domains SD1, SD2 and SD3, and two ap-
pliances with one unit of CPU each, a desired alloca-
tion of processing power may be 50%, 30% and 20%
respectively.

13
Habib M., Viniotis Y., Callaway B. and Rodriguez A. (2009).
A SERVICE DIFFERENTIATION ALGORITHM - For Clusters of Middleware Appliances.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 13-20
DOI: 10.5220/0002254300130020
Copyright c© SciTePress

1.2 Mechanisms for Service
Differentiation

A variety of mechanisms can be used to effect this
allocation. For example, one such mechanism is
“priority-based” CPU scheduling of service domains
(see for example, (Parekh and Gallager, 1993)). This
mechanism requires per domain buffering and is typ-
ically used in the server tier. Another one, used
more often in inexpensive appliance devices with-
out built-in intelligence (e.g., FIFO buffering for all
domains) and without CPU scheduling, is “activa-
tion/deactivation” of service domains at the gateway:
if more CPU resources are needed to achieve its goal,
a service domain can be activated at additional appli-
ances; or, more instances of the domain can be acti-
vated at the same appliance. Similarly, a service do-
main can be deactivated from a subset of the appli-
ances if it exceeds its performance goal. In that sense,
activation/deactivation of service domains can be seen
as an attempt to alter the rate at which requests are
allowed to enter the system from the gateway. Allo-
cation of CPU resources is controlled indirectly, since
is is well-known that a service domain with rate λ and
average service time ES will achieve a utilization of
λ ·ES (in a stable system).

To the best of our knowledge, there are two known
solution approaches for providing differentiated ser-
vices via activation/deactivation actions, as we de-
scribe in section 2.1. In summary, both known ap-
proaches result in (a) inefficient use of appliance re-
sources, and, (b) the inability to provide service dif-
ferentiation. We address both issues in this paper. We
describe how we could effect dynamic provisioning of
service domains amongst a cluster of appliances. This
way, unlike the known solutions, service domains are
not statically bound to a particular (subset of) appli-
ances.

In summary, the main contribution of our research
is an algorithm that, unlike the presently known solu-
tions, has the following advantages: (a) it is capable
of providing arbitrary allocation of CPU resources to
service domains, thus achieving true service differen-
tiation, (b) it utilizes appliance resources in an effi-
cient manner, and thus it leverages processing white-
space across all appliances, (c) it increases service lo-
cality, and, (d) it does not require manual configura-
tions.

The paper is organized as follows. In Section 2,
we provide the system architecture and formulation
of the problem. In Section 3, we outline the proposed
algorithm. In section 4, we summarize the simulation
results and answers to the research questions raised.

Figure 1: Abstract architecture of a two-tier enterprise sys-
tem.

2 PROBLEM FORMULATION

The overall architecture of the system under consider-
ation is depicted in Figure 1. Service Requests from
clients arrive, via a generic transport network, to be
processed in the system. A Gateway is the first en-
try point of the system we are going to consider. The
gateway distributes requests to the appliances. Ser-
vice Domains represent the grouping of different ser-
vice requests. Servers process service requests be-
longing to different service domains. The servers are
organized in a “service tier”, in the shown architec-
ture. (Middleware) Appliances are responsible for
pre-processing service requests from different service
domains.

The appliances have the capability of buffering re-
quests, in order to accommodate bursty traffic; we
assume that they process service requests in a FIFO
manner and without preemption1.

In this paper, we focus on the issue of managing
the “island” of middleware appliances. More specifi-
cally, we consider the problem of Unqualified Service
Differentiation that can be stated as follows:

Unqualified Service Differentiation: Pro-
vide Service domain m with upto a certain
percentage, Pm, of CPU cycles in the appli-
ance cluster.

In typical, commercial SLAs, the percentages may
differ, based on whether the system operates un-
der normal or overload conditions. For simplicity,
we consider the case of a single condition, hence
the name unqualified. We propose an algorithm for
achieving Unqualified Service Differentiation in sec-
tion 3. We present some prior work next.

1Even with the presence of a CPU scheduling algorithm
inside the appliance, when the number of service domains
exceeds the number of buffering classes, service requests
within a buffering class are still processed in a FIFO man-
ner.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

14

2.1 Prior Work

As discussed in section 1.2, we consider mechanisms
that solve the Unqualified Service Differentiation
problem via activation/deactivation actions only. Our
motivation for focusing on such mechanisms comes
from two reasons: (a) the fact that existing, commer-
cially available appliances utilize this method, and,
(b) in systems with large numbers of service domains,
multiplexing multiple domains onto the same buffer
forces FIFO scheduling. To the best of our knowl-
edge, there are two known solution approaches; both
assume the existence of a gateway device (typically an
HTTP router/IP sprayer, HRIS) to distribute service
load to the appliance cluster. HRIS is a device with-
out deep-content inspection intelligence that simply
routes on, say, a URL, and uses IP spraying to send
traffic to appliance replicas.

In the first approach, the administrator groups all
appliances in a single group and enables them all to
process service requests for any given service (Zhu
et al., 2001). The fronting IP sprayer would forward
a service request to each of the appliances, routing
the request to the appropriate service port for service-
specific processing. This approach suffers from a
number of drawbacks. First, in enabling all service
domains on every appliance, it is much more diffi-
cult to effect differentiated services across service do-
mains competing for the same appliance resources.
While an IP sprayer can effectively spread the load
(based on policy) amongst the different appliances, it
cannot gauge the effect of a specific service request
on CPU and thus cannot provide differentiated ser-
vice amongst the competing service domains. For
example, if the administrator wishes to allocate up
to 50% of total CPU to a particular service domain,
the system as whole can only hope to evenly spread
across the appliances, which, under overload con-
ditions, leads to each service domain receiving 1/3
(33%) of the total CPU. A secondary problem is that it
becomes nearly impossible to effect any spatial local-
ity with this solution (Zhu et al., 2001),(Wang et al.,
2008).

In the second approach, the administrator may
statically allocate a portion of the appliances to each
of the service domains. In this case, each appliance
is assigned a specific service domain(s) that it will
serve. In this way, service requests for a specific ser-
vice domain are concentrated on specific appliances,
thus achieving spatial locality. Further, the adminis-
trator can allocate appliances for service domains pro-
portional to the intended capacity (and to some extent
priority) for each individual service, thus achieving
some level of differentiated service. However, this
approach also has a few drawbacks. First, it is diffi-

cult to leverage the white space of appliances serving
one service for satisfying requests intended for over-
loaded appliance and its service. That is, under cer-
tain conditions, many of the overall system resources
may go under-utilized. Second, the allocation pro-
cess is manual and cannot adapt to changing request
rates and prevailing conditions. This could lead to in-
efficient resource partitioning and ultimately violate
intended differentiated service goals (Sharma et al.,
2003),(Ranjan et al., 2002),(Zhang et al., 2008).

3 ALGORITHM DESCRIPTION

SAA/SDA is a closed-loop, feedback-based reactive
algorithm. It collects periodic performance measure-
ments from the appliances and uses them to alter the
rate of the incoming traffic to meet the differentiation
goal. To describe the algorithm we need the defini-
tions provided in subsection 3.1.

Figure 2: Decision Instances Tk.

3.1 Definitions

The Provisioning Agent (PA) is responsible for de-
ciding on activation/deactivation of service domain
instances in the appliance cluster. This agent can be
implemented as a centralized or distributed applica-
tion, residing on one or more appliances or a separate
compute node. How PA collects the measured statis-
tics from the appliance cluster is out of the scope of
this paper.

Decision Instant (Tk) is the kth decision instant
at which PA activates/deactivates service domain in-
stances based on the algorithm outcome. As denoted
in Fig. 2, at Tk, all the measurements collected in
the time interval (Tk−1,Tk) are evaluated; activation
and deactivation of service domains are enforced. In
our simulations, Tk is assumed to form a periodic se-
quence, for simplicity.

Target CPU % (Pm) is the desired percentage of
CPU resources to be allocated to the mth service do-
main. Achieved CPU % (Xm(Tk)) is the percentage
of the cluster CPU resources obtained by the mth ser-
vice domain until time Tk.

A SERVICE DIFFERENTIATION ALGORITHM - For Clusters of Middleware Appliances

15

Down and Up Tolerances DTm and UTm: in or-
der to avoid unnecessary oscillations and overhead,
when the Achieved CPU % is “close enough” to the
Target CPU %, i.e., when

Pm−DTm < Xm(Tk) < Pm +UTm (1)

the service domain is excluded from activa-
tion/deactivation.

Utilization Matrix (Unm) is the achieved resource
utilization (e.g., total CPU time used) by the mth ser-
vice domain in the nth appliance, in the time interval
(Tk−1,Tk).

Instantiation Matrix (Bnm) is the number of in-
stances of the mth service domain that should be ac-
tivated in the nth appliance during the time interval
(Tk−1,Tk). This is the main decision variable that the
PA computes. The mechanism of signalling HRIS
about the values of Bnm and how PA collects the mea-
sured statistics from the appliance cluster is out of the
scope of this paper.

N is the total Number of Appliances in the clus-
ter. M is the Number of Service Domains supported
by the system.

Groups A and D denote the ranking of service
domains. When service domain m is not achieving its
Target CPU % (Pm), the PA selects it to be activated
in the next decision instant in one or more appliances
and thus includes it in Group A. Similarly, when ser-
vice domain m is allocated more than its Target CPU
% (Pm), the PA selects it to be deactivated in the next
decision instant in one or more appliances and thus
includes it in Group D.

3.2 Algorithm Summary

At each decision instance, at time Tk, k = 1,2, . . .

1. Collect measurements (Unm) from the N appli-
ances.

2. Calculate the actual percentile of allocated re-
sources for the M service domains using the iter-
ative equation:

Xm (Tk) =
1

kN

N

∑
n=1

Unm +
k−1

k
Xm (Tk−1)

This equation is a recursive way of calculating the
long-term time average of the CPU utilization.

3. Calculate Thresholding operations according to
Eqn. 1.

4. Evaluate and Rank Performance to check if the
goal is met. Intuitively, the lower |Xm(Tk)−Pm|
is, the “better” the performance of that particular
service domain. The service domain is placed in
Group A or D as follows. When

Xm(Tk)−Pm ≥ 0

the service domain meets or exceeds its target and
is thus included in Group D. When

Xm(Tk)−Pm < 0

the domain misses its target and is thus included
in Group A.

5. Apply Deactivation Algorithm to deactivate in-
stances of all service domains in Group D as per
algorithm SDA (defined in subsection 3.3).

6. Apply Activation Algorithm to activate in-
stances of all service domains in Group A as per
algorithm SAA (defined in subsection 3.3).

7. Feedback these decisions (expressed as values of
the matrix Bnm) to the gateway.

The intuition and hope is that, during the next in-
terval (Tk,Tk+1), the rate of service requests for a do-
main m will be favorably affected. Activating “more”
instances of a service domain will, hopefully, increase
the rate at which requests enter the appliance tier.
Thus, the domain will see an increase in its share
of the cluster CPU resources; note that the increase
may not be obtained during the “next” cycle, due to
the effects of FIFO scheduling. Similarly, deactivat-
ing instances of a service domain will, hopefully, de-
crease the rate at which requests enter the appliance
tier. Thus, the domain will eventually see a decrease
in its share of the cluster CPU resources.

3.3 SAA/SDA Activation and
Deactivation Algorithm

There is a myriad of choices in how activation and
deactivation of service domains can be enforced. We
briefly outline only one choice here; due to the lack of
space, we omit specifications of what actions should
be taken in certain “special cases”. For more choices
and a more detailed description of implementation
ramifications, see (Habib, 2009).

1. (SDA) Deactivate one instance of every service
domain in Group D in appliances which run ser-
vice domains in Group A to free up CPU cycles
utilized by domains in Group A.2

2. (SAA) Using the instantiation matrix Bnm, ac-
tivate one instance of every service domain in
Group A, in appliances which run service domains
of Group A.

2One of the omitted special cases specifies that deactiva-
tion of a domain should not take place if this action leaves
the service domain with zero instances active.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

16

Note that both SDA and SAA will result in a
change of the values stored in the matrix Bnm. As
an example, suppose that we have 4 appliances and
5 service domains with target CPU percentages set at
{35%,25%,15%,10%,5%} . Suppose that the initial
value for the instantiation matrix is given by

B =

 1 0 10 1 4
10 3 1 2 4
0 5 8 4 1
0 0 2 4 10


Suppose that the collected Unm values result
in actual CPU percentages Xm(Tk) equal to
{11%,8%,19%,11%,19%}. The tolerances for
thresholding are set at 2%, so the algorithm cal-
culates group A = {1,2} and group B = {3,5}.
Therefore, we must activate domains 1 & 2 and
deactivate domains 3 & 5. Now based on the
algorithm described (SDA), there is no instances of
domains 1 and 2 activated in appliance 4, so there
is no need to deactivate instances of domains 3 & 5
in that appliance. However, as there are instances
of domains 1 and 2 running in appliances 1, 2 and
3, there will be deactivations of domains 3 and 5 in
these appliances. Note that, because there is only
one instance of domain 3 activated in appliance
2 and only one instance of domain 5 activated in
appliance 3, these two entries will be kept unchanged.
Because of the deactivation, as some of the CPU
resource utilized by domain 3 and 5 is freed up,
under-utilized domain 1 and 2 can take advantage of
that and activate one more instance of domain 1 and
2 in appliance 2, domain 1 in appliance 1 (domain 2
cannot be activated in appliance 1 as it is not already
activated there) and domain 2 in appliance 3. So,
after SDA, we will get (changed values are in bold
face),

B =

 1 0 9 1 3
10 3 1 2 3
0 5 7 4 1
0 0 2 4 10


and after SAA, we will get instantiation matrix as fol-
lows (changed values are in bold face),

B =

 2 0 9 1 3
11 4 1 2 3
0 6 7 4 1
0 0 2 4 10



4 SIMULATION AND ANALYSIS

4.1 Simulation Goals and Assumptions

Despite the strong engineering intuition, we have no
theoretical proof that the SDA/SAA algorithm will
be able to satisfy any arbitrary, desired values of
CPU allocations. Therefore, in order to verify the
proposed algorithm, we evaluated the multi-service
multi-appliance system by developing a discrete-
event simulator in C. We focused our analysis in this
paper on the following three sets of questions:

Q1. Does SDA/SAA “work” (i.e., can it meet the Pm
service differentiation goals?) Figures 4 and 5 are
representative results in this regard.

Q2. Is SDA/SAA indeed “better” than the other open-
loop, static approaches (i.e., does it have the ad-
vantages described in section 2.1)? Figure 6
(partly) answers this question.

Q3. How do algorithm parameters (i.e., UTm/DTm, N,
M, {Pm}, initial Bnm values) affect the behavior
of SDA/SAA? Figures 7 through 12 partly answer
this question.

Figure 3: Simulator Design

The simulation model is depicted in Figure 3. The
service requests arrive at the system in a random fash-
ion. The gateway arrival process for service domain
m is modeled for simplicity as a Poisson process3

with arrival rate λm. The CPU service time for re-
quests from domain m is a uniform random variable
with average value ESm. For simplicity, all appliances
are considered homogeneous. They employ a single,
infinite-capacity FIFO buffer for all domains activated
in them; their CPU capacity is normalized to 1 unit.
Therefore, the CPU utilization of (and thus the CPU
allocation to) a service domain m would be λm ·ESm.

3Since the system is controlled in a closed-loop fashion,
the nature of the randomness in the arrival (and service time
process) is not that critical.

A SERVICE DIFFERENTIATION ALGORITHM - For Clusters of Middleware Appliances

17

4.2 Simulation Results and Analysis

Due to lack of space, in this paper we only include
representative results. A more comprehensive set of
results and analysis (including confidence intervals)
are provided in (Habib, 2009).

Figure 4: Utilization Xm(Tk) vs time.

To answer question Q1, we varied the number of
appliances, N from 1 to 10; the number of service
domains, M from 1 to 20. For the results depicted
in Fig. 4, we set N = 4, M = 3, the desired goals
are {Pm} = {44%,33%,22%} with 2% up and down
threshold tolerances. All domains have the same ser-
vice times and arrival rates. We initialized the in-
stantiation matrix to the same values in all four ap-
pliances; in order to create an “unfavorable” situation
for the algorithm, the number of instances initialized
were {2,5,10} for the three domains respectively, as
opposed to the desired ratios of 44/33/22 respectively.
Fig. 4 shows that the SDA/SAA algorithm meets the
desired goal despite the unfavorable initial instantia-
tion in the entire cluster. In this simulation, the total
arrival rate was chosen high enough to keep the CPUs
busy, hence the total utilization (also shown in Fig. 4)
approaches 100%.

Figure 5: Variation in Bnm values, appliance 1.

In Fig. 5, we observe how the algorithm alters
the number of instances of service domains in the ap-

pliances to achieve the goal. In all figures that de-
pict activated instances, values for appliance 1 are
shown (graphs are similar for other appliances). The
algorithm causes oscillation in the beginning as for
lower value of k, Xm(k) changes abruptly which in
turn causes oscillations in the values of Bmn.

Figure 6: Utilization Xm(Tk) vs time.

We demonstrate advantages (c) and (d) mentioned
in section 2.1 in detail in (Habib, 2009). In this paper,
to answer question Q2, observe that desired Pm goals
depend heavily on the actual arrival rates (which may
not be known in a real system). For example, suppose
we specify {P1,P2,P3} = {44%,33%,22%} and the
arrival rates and the average service times for the three
service domains are equal. A static allocation, in this
case, would allocate CPU times in the ratios 44% :
33% : 22%, wasting 11% for SD1, depriving SD3 of
33-22=11% and leaving a 22% “white space” (unused
CPU resource). Figure 6 shows how SDA/SAA could
achieve an equal allocation of CPU resources in this
scenario, with a total CPU allocation of 100%, which
would eliminate the white space altogether.

Figure 7: Variation in Bnm Values, in Appliance 1, for N = 1
Appliances.

To answer question Q3 involves varying the al-
gorithm parameters N,M, UTm/DTm, Pm, initial Bnm.
In all our experiments, the behavior of the algorithm
(i.e., the nature of variations in the Bnm values) as well
as its performance (i.e., the achieved percentages) did

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

18

Figure 8: Utilization Xm(Tk) vs time, in Appliance 1, for
N = 10 Appliances.

not change as we varied the number of appliances N
or the number of service domains M. In the interest
of saving space, we show in figures 7 and 8 some re-
sults only for the “boundary cases” N = 1 and N = 10
we tried. The experiments had the same setting as
the one used in question Q1. As expected, the results
agree with those depicted in Fig. 4.

Figure 9: Utilization Xm(Tk), effect of strict tolerances.

Figure 10: Variation in Bnm, effect of strict tolerances.

The effect of the tolerance parameters UTm/DTm
is typical of the “oscillatory” behavior depicted in Fig.
10. The figure was produced with (a rather strict) set-
ting of UTm = DTm = 0.1% for all domains; the rest of
the experiment setup is the same as the one depicted
in the scenario of question Q1. In general, stricter tol-
erances cause more oscillations in both the goals and
the instantiation matrix values (compare Fig. 9 to Fig.

4 and Fig. 10 to Fig. 5). Throughout the experiment,
an initial value of Bnm = 10,∀n,m was used.

Figure 11: Utilization Xm(Tk), “non-achievable” Pm goals.

In general, the Pm parameter can be set by the
system administrator in one of two possible ways:
“achievable” or “non-achievable”. In the first, the ar-
rival rate λm and average service times ESm of the
domain are such that λm ·ESm ≥ Pm; in other words,
there is enough traffic to take advantage of the allo-
cated CPU resource. Figure 4 is an example of this
case. In the second, we have that λm · ESm < Pm;
in this case, the domain does not have enough traf-
fic to take advantage of the allocated CPU resource.
As with all feedback-based algorithms, this situation
may “mislead” the algorithm into always activating
additional instances of the domain, causing “instabil-
ity” and eventually affecting other domains too4.

Figure 12: Potential for instability, “non-achievable” Pm
goals.

Figure 11 exemplifies what can happen when
“non-achievable” goals are set. In this experiment,
we set again {P1,P2,P3} = {44%,33%,22%}. The
arrival rate for SD1 was set low, so that this domain
would never reach a 44% CPU utilization, even if it
was given full access of the CPUs; its maximum uti-
lization will eventually approach λ1 ·ES1≈ 6% in this

4This is one of the “special cases” we alluded to in sec-
tion 3.3.

A SERVICE DIFFERENTIATION ALGORITHM - For Clusters of Middleware Appliances

19

experiment. The other two domains produced enough
traffic to fully utilize their desired percentages. As
Figure 11 shows, these two domains (over)achieve
their desired percentages. Figure 12 explains why.
The algorithm keeps activating instances for SD1, the
“underachieving” domain, at the expense of the other
two domains, which are left with only one activated
instance each; this explains why these two domains
get an equal share of the CPU. The total CPU utiliza-
tion stays at 100%, as shown in Fig. 11, eliminating
any white space.

5 CONCLUSIONS

In this paper, we proposed SAA/SDA algorithm, a
closed-loop, feedback-based algorithm that provides
service differentiation based on CPU utilization mea-
surements in a cluster of middleware appliances. The
appliances employ FIFO buffering and thus differen-
tiation is controlled by activation/deactivation of ser-
vice domains. The algorithm achieves the differen-
tiation goals by controlling the rate at which service
requests are sent to individual appliances in the clus-
ter; it does not rely on a priori knowledge of service
domain statistics. It has the following advantages: (a)
it is capable of providing arbitrary allocation of CPU
resources to service domains, thus achieving true ser-
vice differentiation, (b) it utilizes appliance resources
in an efficient manner, and thus it leverages process-
ing white-space across all appliances, (c) it increases
service locality, and, (d) it does not require manual
configurations. We have demonstrated such advan-
tages with extensive simulations.

REFERENCES

Chandrashekar, J., li Zhang, Z., Duan, Z., and Hou, Y. T.
(2003). Service oriented internet. In Proceedings of
the 1st ICSOC.

Erl, T. (2004). Service-Oriented Architecture : A Field
Guide to Integrating XML and Web Services. Prentice
Hall PTR.

Habib, M. (2009). Provisioning algorithms for service dif-
ferentiation in middleware appliance clusters. Mas-
ter’s thesis, North Carolina State University.

Menascé, D. A., Barbará, D., and Dodge, R. (2001). Pre-
serving qos of e-commerce sites through self-tuning: a
performance model approach. In EC ’01: Proceedings
of the 3rd ACM conference on Electronic Commerce,
pages 224–234, New York, NY, USA. ACM.

Michael Huhns, M. P. S. (2005). Service oriented comput-
ing: Key concepts and principle. IEEE Internet Com-
puting, IEEE Computer Society, pages 75–82.

Parekh, A. K. and Gallager, R. G. (1993). A general-
ized processor sharing approach to flow control in
integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking, 1(3):344–
357.

Ranjan, S., Rolia, J., Fu, H., and Knightly, E. (2002). Qos-
driven server migration for internet data centers. In
Proc. Tenth IEEE International Workshop on Quality
of Service, pages 3–12.

Sharma, A., Adarkar, H., and Sengupta, S. (2003). Manag-
ing qos through prioritization in web services. In Pro-
ceedings on Fourth International Conference on Web
Information Systems, pages 140–148.

Wang, X., Du, Z., Chen, Y., Li, S., Lan, D., Wang, G., and
Chen, Y. (2008). An autonomic provisioning frame-
work for outsourcing data center based on virtual ap-
pliances. Cluster Computing, 11(3):229–245.

Zhang, C., Chang, R. N., Perng, C.-S., So, E., Tang, C.,
and Tao, T. (2008). Leveraging service composition
relationship to improve cpu demand estimation in soa
environments. In SCC ’08: Proceedings of the 2008
IEEE International Conference on Services Comput-
ing, pages 317–324, Washington, DC, USA. IEEE
Computer Society.

Zhu, H., Tang, H., and Yang, T. (2001). Demand-driven ser-
vice differentiation for cluster-based network servers.
In In Proc. IEEE INFOCOM, pages 679–688.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

20

