
CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING

Christian Kop
Institute of Applied Informatics, Alpen-Adria-Universitaet Klagenfurt, Universitätsstrasse 65-67, 9020 Klagenfurt, Austria

Keywords: Requirements Engineering, Conceptual Modelling, Data Schema Quality, Controlled Language Queries.

Abstract: Since a conceptual database schema is the backbone of data intensive software, the schema must be

continuously checked during the requirements engineering step in order to get the proper quality. One

possibility is to check if the conceptual schema of the database provides the necessary data for retrieval

needs. Talking about the retrieval needs would help but SQL is too technical for that purpose. To solve this

problem, this paper presents an approach which uses controlled language queries for checking a conceptual

schema.

1 INTRODUCTION

Since a database schema is the backbone of data

intensive software, effort must be spent already

during the early design of a conceptual schema (i.e.

during requirements engineering). A conceptual
database schema described in an UML class diagram

or an ORM diagram must be of high quality.

Therefore such a schema must be continuously

checked in order to get the proper quality.

Particularly, the database must be able to manage all

kind of structured information which the software

will need to make retrievals from the data base.

Therefore, a conceptual database schema has a good

quality, if all necessary concepts and their relations

are modelled to offer all retrieval possibilities which

the future software must provide to the end users.
The earlier the designer knows which data will be

retrieved in which way, the better he will be able to

decide if the conceptual schema has already a good

quality. It is also necessary that end users are

strongly involved in this quality checking step. But

how can end users be involved? Some of them are

not willing to read conceptual schemes. Some of

them will try to read the schema but will not be able

to understand the schema. Many others will try to

check the quality of the schema, but without any

additional support, they will not know what to check

and if they do their job well according to the purpose
of quality checking. Thus it might also happen, that

end users ignore those diagrams at all and just rely

that the designers have done their job well. To

overcome this problem one strategy is to generate a

fast prototype or at least user interfaces. However

even here, some assumptions about the data retrieval

must already be made. Another strategy is to offer

the end user a possibility to talk about the data he

needs in his reports and future user interfaces. Then

it can be checked if these information given by the

end users are already fulfilled by the schema. This is

an idea which is worth to look for. However the

problem remains, how can the retrieval and

manipulation of data in a database be expressed?
Using SQL here is not very successful since in SQL

many technical terms are used. Furthermore SQL

operates in a stage where the database is already

created and stable.

Therefore, the query language must be more user

centred than SQL and more related to the conceptual

modelling notions. There are many approaches

which visualize and create SQL by navigating

through the conceptual schema (see section 5).

However, also all these strategies need an already

final and stable schema. In contrary to other
approaches this paper focuses on the idea:

 That the user must not be influenced by the

schema when he expresses his retrieval needs.

 Schema checking must be done as early as

possible and

 A query cannot be applied on a stable schema

since the aim and purpose of the query is the

improvement of the schema.

To fulfil the above stated needs, an approach which

uses controlled language is proposed. A controlled

language is a subset of natural language with a
restricted grammar. Such kind of natural languages

186

Kop C. (2009).
CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 186-193
Copyright c© SciTePress

are in use in approaches that try to extract tuples

from a database or which try to generate SQL.

However they are not used for schema checking.

Therefore, the paper is structured as follows.
Section 2 explains the quality checking process. In

section 3, information is given about the schema

checking with a controlled language. Section 4

continues with an overview of a prototype that was

built for a technical proof of concepts of this

approach. Section 5 describes related work. Finally a

summary and outlook is made in section 6.

2 THE QUALITY CHECKING

PROCESS

In this section, the idea proposed will be embedded

into a defined procedure of continuous quality

checking where all stakeholders can participate.

Continuous quality checking means, that checking
using queries starts as early as possible. This is

visualized in figure 1.

According to initial requirements on the database

(1), a first draft schema is generated (2). This is done

by a designer. These initial requirements already

cover some query needs. However, it cannot be

expected, that these initial requirements already

completely fulfil all the retrieval needs for the

database.

Therefore, together with the other stakeholders,

the additional retrieval needs are generated (3). It is

not necessary that the end users see the conceptual
schema of the database when they generate the

queries. Designers and end users are only talking

what kind of retrievals they need. These needs are

then expressed in controlled language queries. Each

of the queries is then automatically executed on the

schema using a query parser and interpreter (4).

Based on the reports of the parser (5), a discussion

of the schema is made (6). In the reports for each

query, the end users can see which parts of the

schema are affected. If defects are found in the

schema, new requirements can be derived from them
(7a) and the schema is refined (2). The iterative

process is finished if no more new requirements can

be found and the schema becomes stable (7b).

It is also a good practice that at least the designer

checks which concepts in the schema were not

affected by any of the query tests. Thus checking the

quality of the schema together with the end user

becomes an integrated part of the schema modelling

process.

3 SCHEMA CHECKING

WITH CONTROLLED

LANGUAGE

A controlled language is used to prevent the

ambiguities of pure natural language. It is a well

established technique in many disciplines (e.g.

ontology representation (Fuchs et.al, 2005) and is

also used in query languages (Owei et.al, 1997)

(Stratica et.al, 2005). Following the strategy of using

a controlled language has also the advantage that no

additional huge lexicons for words must be used or

even generated. Instead, the conceptual schema

itself is the lexicon.

3.1 Provided Schema Information

The conceptual schema, which is checked by the

queries, is based on a lean model. This model

describes a graph of concepts. Classes and attributes

are all concept nodes in the graph. Hence “course”

as well as “course name” will become concepts in

this model (see section 4, figure 2 for a schema).

This idea was adopted from NIAM/ORM diagrams

(Nijssen et.al, 1989). Especially during the early

phase of modelling where changes often occur, such
models have the advantage that schema changes can

be made easily. Since the checking procedure is

applied to classes and attributes, a mapping from

concepts to classes and attributes and vice versa

exists.

UML class diagrams are transformed in the

following way to the model which is used here:

 Classes as well as attributes become concepts in

the graph.

 The information if this concept is a class or

attribute is kept since it will be used during the
checking procedure.

 If an attribute belongs to a class, then the graph

has an edge between them.

 If two classes are related to each other by a

binary association, then this is represented as an

edge between them in the graph.

 If classes are related by a n-ary association or an

association class, then an artificial concept

(node) is introduced in the graph. This artificial

node represents either the n-ary association or

the association class. Edges connect the
artificial concept with the other involved

concepts.

 If the attribute has already a related value type

(e.g. “Integer”, “String”, “Boolean”) this

CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING

187

(1) state

initial

requirements

(5) get report

(2)

generate

/ refine

schema

(4) apply each query

to check the

schema

(6) discuss

the schema based

on the report

(3) generate

queries

(7a) define further requirements

intermediate

schema

final schema

(7b) finished

(1) state

initial

requirements

(5) get report

(2)

generate

/ refine

schema

(4) apply each query

to check the

schema

(6) discuss

the schema based

on the report

(3) generate

queries

(7a) define further requirements

intermediate

schema

final schema

(7b) finished

Figure 1: Continuous Conceptual Schema Quality Checking.

information is stored in the respective concept node

for the attribute.

Additionally, the approach allows collecting and

storing synonyms and examples of concepts in

additional dictionaries.

3.2 The Requested Result

The idea here is, to use the queries mainly to detect
defects and not to produce an SQL statement.
Looking in detail on the restrictions between the
concepts (classes, attributes) mentioned in a query
and the concepts defined in the schema several types
of defects can be found.

The following typical restrictions must hold
between a query and the schema which is queried:
 If a concept (class, attribute) appears in the

query then the concept itself or at least a similar
concept must also appear in the schema.

 If a concept (especially a class) is found in a
schema then it can be found only once in the
schema.

 If two or more schema classes are involved in a
query, then a path between these classes must
exist.

 If there is a restriction clause in the query (i.e.
WHERE attribute ….) of course the concept
mentioned in the query must also be an
attribute.

 If there is a restriction clause in the query (i.e.
imagine the SQL WHERE Clause: WHERE
attribute >= 100) then the value to which the
attribute is restricted must be of the same type
as it’s value type in the schema.

 If the aggregate functions sum, average,
minimum, maximum are defined on a concept,
then the concept must be an attribute.

 If the aggregate functions sum, average,
minimum, maximum are defined on an attribute,
then the attribute must have a numeric value
(numeric value type in the schema definition).

From that restrictions possible schema defects can
be derived, using a controlled language query:
 Concept in the query cannot be found in the

schema
 Query concept is found more then once in the

schema
 Concepts are not related.
 Mismatch of concept type. A class is used

where an attribute was assumed.
 Mismatch of the value type of an attribute (E.g.

a string was defined in the schema but a number
is expected according to the query).

It is recommended that the designer discusses the
query as well as the schema with the end user if a
schema defect is detected.

3.3 The Query Language

Sentences patterns are used to support the parsing of
the query. Following the typical structure of a simple
SQL query with it’s SELECT clause, FROM clause,
WHERE clause, ORDER BY clause, sentence
patterns must exist for specifying the SELECT,
WHERE and ORDER BY clause. Furthermore
aggregation queries must be allowed. The FROM
clause is not necessary. This information can be
derived by finding a path between the concepts of
the graph. Hence, the following kinds of sentence
patterns must be considered:
 Sentences that reflect the SELECT clause of

SQL (e.g. List the first name, last name and
address, show me …, give me …).

 Sentences that reflect the WHERE clause (e.g.
The age must be greater than 32).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

188

 Aggregation queries: “Count the number of
students” or “Show the minimal price”

 Sentences that reflect the ORDER BY clause
(“The result must be ordered by first name”)

 Interrogatives like “which”, “how many”, “How
much” are also part of the controlled language
(e.g. which student visits the course “xyz” or
which students visit which course).

 Because of the special usage of the queries also
queries must be formulated which have the
additional aspect to query the structure of the
schema. Examples for such queries are: Does a
customer exist? Is the customer a person? Does
a person have a car? Is a student connected
with a course?

These building blocks can be combined as
different sentences in a query text.

3.4 Parsing and Schema Checking

The query parsing and schema checking procedure

consists of five steps: query parsing, concept

matching, concept type and value type checking,

path finding and report generation.

During query parsing, the query text is divided

into sentences and the sentences into tokens. Each
sentence then is firstly scanned by the parser to

classify the sentence pattern to which a query

sentence belongs. After that, the parser parses that

sentence according to the underlying syntax of the

certain sentence pattern.

After sentence parsing, schema concept

candidates are collected from the sentence pattern by

the parser. For the tasks mentioned before, a special

parser was implemented.

In the concept matching step, the selected

concepts are matched with the schema. The best case
is a match for identical names. That means, a

concept in the query (e.g. „first name“) also appears

in the schema. If this cannot be achieved, the query

interpreter tries to find a match on similarity. Similar

concepts are either:

 Concepts found in the query which contain a

schema concept (e.g. graduate student was

found in the query and student appears in the

schema) or

 Concepts found in the query which are only part

of a schema concept (e.g. member was found in
the query but the schema contains university

member).

 Synonyms and similar words with a special

meaning.

If the query concept is more specialized as

described in the first case (e.g. graduate student vs.

student), then collected examples are searched in a

example dictionary to decide if the query concept is

a valid schema concept. It is a usual design task,

that concept examples are also collected during a
conceptual schema design. This strategy is based on

the idea, that a modifier like “graduate” can also

either be an example of a concept itself or an

example of the attributes of that concept (if the

concept is a class).

If the query concept is more general like in the

second case, then the number of schema concepts

that would fit with that query concept is counted.

Here the match is successful if only one schema

concept was found. Otherwise the query was not

well defined since an ambiguous concept was taken
for the query.

If the query concept cannot be found in the

schema using the strategies above, then the list of

synonyms is scanned for the query concept. If the

query notion is a synonym for a schema concept,

then the synonym is replaced by the schema concept.

A synonym check is done by searching in a

synonym dictionary. It is also a usual conceptual

design task, that synonyms of concepts found during

design are collected.

The concept type and value type check provides

additional possibilities to check the schema. Here
the category of a schema concept (class vs. attribute)

is compared with the location of the concept in the

query. For example, if the query concept was found

in an aggregation function (e.g. “List the minimal

price”) or in a restriction sentence (e.g. “The price

must be … “  “WHERE price = … “) then this

schema concept must be an attribute. For the

aggregate functions sum, minimal, maximal, average

the value of the attribute must be numeric. It is a

further defect if it is not! An exception to this rule is

the aggregation function which only counts
something (e.g. the number of cities, number of

customer names etc.)

Furthermore, if a value restricts an attribute in a

restriction sentence (“The age must be greater than

20”), then the value must be compatible with the

value type specified in the schema. A defect is

detected if the value is not compatible. In the given

example the value type specified in the schema for

age must be a numeric type (e.g. Number,

Integer…).

If attributes from different classes were

mentioned in the query, then in the path finding

step the interpreter tries to find a path between these

classes. Therefore for each of the attributes stated in

the query the corresponding class is determined.

Afterwards the interpreter searches for a path

CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING

189

between these classes. This step is necessary since

the user has expressed a query where a connection

(join) between the classes is needed. Thus it has to

be checked if the schema can provide this
connection.

Finally, a report about the “success” of the query
is generated and presented to the user (report

generation). If at least one of the above checks were
not successful, then the designer together with the
end users must analyse the schema as well as the
query. They must decide if something is missing in
the schema.

4 THE PROTOTYPE

For a technical proof of concepts a prototype was
extended. The prototype consists of two parts, an
editor which displays the graph of concepts (see:
figure 2) and the new feature of a query editor (see:
figure 3). In the upper part of the query editor the
query text can be either inserted or loaded from a
file. In the text area at the bottom, the report is
returned, after the query is executed. Following the
process described in section 3 this could look as
follows with the tool. Figure 2 shows a schema
which might be derived from initial requirements in
an university domain.

The discussion group consisting of end users and
designer can now start to find queries that check if
the built schema fulfils their needs. After the queries
in the controlled language are defined by the
discussion group, each of them is applied on the
schema. Figure 3 shows the first query that might be
generated by such a discussion group.

If all the query concepts as well as the path between
them are found in the schema, then the involved
classes derived from the query are marked in red
colour together with the path between these concepts
(see figure 4)1. The current version of the tool only
visualizes the classes which are affected and the
connection between these classes, since they
represent the tables which will be joined in a future
relational database schema. The attributes are not
considered in this visualization. In the first query
shown in figure 3 instead of “type”, “category” was
specified. If category is a defined synonym for
course type then the synonym is replaced by the
original schema concept (see figures 2 and 3).

1 For a better readability in the print out, red coloured

matches are additionally marked manually with a dotted
line in the figure.

Figure 2: A simple university schema.

Figure 3: The query applied on the schema with the query
editor/schema analyzer.

Figure 4: Result - found classes and the path – marked in
red color.

However if one of the queries fails (see figure 5)

then the defect report shows where it failed (see

report message: “Found concept course but course
description cannot be resolved”). Based on the

results of the discussions, new requirements are

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

190

derived which are returned to the designer for a next

schema refinement iteration

5 RELATED WORK

According to (Lindland et.al, 1994) three
dimensions have to be considered for conceptual
modelling quality, namely: syntax, semantics and
pragmatics. If the schema follows the rules and the
grammar defined in its corresponding model, then
the schema has a syntactic quality. Semantic quality
is given, if the schema only contains true statements
of the domain and is complete (no important
concepts or statements are missing). Lastly,
pragmatic quality relates the schema to the
interpretation of the user. A pragmatic quality of a
schema is given, if it is understandable to the user.
There is much research on this topic, either how to
check the quality or how to improve the quality.
However, no extensive research was found about
(controlled) natural language queries and quality
checking.

In order to improve the quality, in (Assenova
et.al, 1996) it is proposed to use well defined schema
transformations. Also a proposal to raise the
comprehensibility of a conceptual schema by
introducing icons and pictures instead of simple
graphical primitives (rectangles, ellipses etc.) are
introduced in (Moody, 1996). An exploratory study
showed that view points are also an important
technique to improve the quality of the schema
(Easterbrook et.al., 2005).

Figure 5: Second query.

The verbalization approaches in (Dalianis, 1992),

(Halpin et.al, 2005) aim at getting a better
understanding of the conceptual schema by

presenting users a natural language translation

(verbalization) of the schema.

In (Moody, 2005) an extensive research of

literature on the quality of models was made. That
author found out that some important factors are

missing and he concluded that conceptual modelling

must shift from an art to an engineering discipline

were quality plays an important role. Any

engineering discipline nowadays aims at continuous

quality checks of products and intermediate

products. Quality is not checked at the end of a

process but throughout the process. Thus the

approach described here is thought to be such a

strategy using controlled language queries for

continuous schema checking.
Since queries are based on natural language,

another important topic for this work is the research

on user centred query languages. User centred query

language approaches all aim to query the schema

with a technique that is more suitable to the user

(e.g. natural language based queries and visual query

languages)

Techniques of natural language querying are

described in (Berger et.al, 2003), (Hofstede et.al,

1996), (Kardovácz, 2005), (Kapetainos et.al, 2005),

(Kao et.al., 1988), (Owei et.al. 1997), (Stratica et.al.,

2005). Some operate on a relational schema, others
on the conceptual schema. Some uses additional

information derived from linguistic lexicons or

ontologies. However, the main objective of all is to

support the generation of a SQL query that can be

executed on the relational schema. In addition it is

recommended, that the schema is already complete

and consistent. It is thus not the task of the query to

validate if something in the schema is missing.

This also holds for visual query tools described in

(Bloesch et.al., 1996), (Jaakola, 2003), (Järvelin

et.al., 2000) which operate on the conceptual
schema. Their main purpose is to produce a good

SQL statement. It is not their purpose to check the

schema, since the schema must be already stable.

Beside these, also form based query languages are

used to generate queries (Embley, 1989) and to use

them for a better understanding of the data in a

database (Terwillinger et.al., 2007).

To summarize the related work: A lot of research

results were proposed in the topic of quality of

conceptual modelling. The approach described here,

is aimed to complement the previous work. It is

seen as an additional support for checking the
quality of a schema during requirements- and

software engineering. Furthermore it is not expected

that the complete and stable schema is already given.

This approach must be applied during the

CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING

191

construction of a schema as early as possible and

then during each refinement iteration step. Therefore

the focus is not a generation of SQL but on checking

the quality of the schema. It is thought as a help, if it
is necessary to check the schema, before any

prototype or user interface form can be built.

Opposite to the graphical query languages where the

query is constructed by navigating through the

schema, the end user must not necessarily be

confronted with the schema during creation of the

queries. This has the advantage that the user is not

influenced by the schema but freely names the

notions which he needs for the query. The query

then helps to check if the designed schema can

handle the notions used in the query.

6 SUMMARY

This work uses controlled language queries for

continuous schema quality checking. Each query is

applied on the schema in order to find defects which

can be a basis for discussion and further refinement

of the schema.

 This strategy was chosen to give both developers
and end users the possibility to communicate about

the end users retrieval needs. It was of interest how

far such a language can be constructed without huge

linguistic lexicons. Instead only information which

is necessary to define a good schema and

information that could support the development of

data intensive software itself was allowed.

In future, the approach might be extended to

transform column names of an EXCEL sheet into a

query. The query language itself might be extended

to formulas.

REFERENCES

Assenova, P. Johannesson, P., 1996. Improving the
Quality in Conceptual Modelling by the Use of
Schema Transformations. In Thalheim, B. (ed.):
Proceedings of the 15th International Conference on
Conceptual Modeling, Cottbus, Germany, Lecture

Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996,
pp. 277 – 291.

Berger, H., Dittenbach, M., Merkl D., 2003. Quering
Tourism Information Systems in Natural Language, In
Godlevsky, M., Liddle, St., Mayr, H.C. (eds).
Informaton Systems Technology and its Applications –
Proceedings of the 2nd Conference ISTA 2003, GI

Lecture Notes in Informatics, Vol. p-30, Koellen
Verlag,, Bonn, 2003, pp. 153 – 165.

Bloesch, A.C., Halpin, T.A., 1996. ConQuer: A
Conceptual Query Language. In Thalheim, B. (ed.):
Proceedings of the 15th International Conference on
Conceptual Modeling, Cottbus, Germany, Lecture
Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996,

pp. 121 – 133.
Dalianis, H., 1992, A method for validating a conceptual

model by natural language discourse generation. In P.
Loucopoulos (Eds.), Proceedings of the Fourth
International Conference CAiSE’92 on Advanced
Information Systems Enginering. Lecture Notes in
Computer Sciences (LNCS) Vol. 594, Springer
Verlag, 1992, pp. 425-444.

Embley, D.W., 1989. NFQL: The Natural Forms Query

Language. In ACM Transactions on Database
Systems, Vol. 14. No. 2., 1989, pp. 168 – 211.

Easterbrook St., Yu, E., Aranda, J. Fan, Y. Horkoff, J.
Leica, M., Quadir, R.A., 2005, Do Viewpoints Lead to
Better Conceptual Models? An Exporatory Case
Study. In Proceedings of the 13th IEEE Conferences n
Requirements Engineering (RE’05). IEEE Press, 2005,
pp. 199 – 208

Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F.,
Schneider G., 2005. Attempto Controlled English: A
Knowledge Representation Language Readable by
Humans and Machines. In Norbert Eisinger N. and
Maluszynski, J. (eds.): Reasoning Web, First
International Summer School 2005, Lecture Notes in
Computer Science (LNCS)mVol. 3564, Springer
Verlag, 2005 pp. 213-250.

Halpin, T., Curland, M., 2006. Automated Verbalization
for ORM 2. In Proceedings, OTM 2006 Workshops -
On the Move to Meaningful Internet Systems 2006,
Lecture Notes in Computer Science (LNCS 4278),
Springer Verlag, 2006, pp. 1181 – 1190.

ter Hofstede, A.H.M., Proper, H.A., van der Weide, Th.P.,
1996. Exploring Fact Verbalizations for Conceptual
Query Formulation. In. van de Riet, R.P., Burg,

J.F.M., van der Vos, A.J. Proceedings of the Second
International Workshop on Applications of Natural
Language to Information Systems, IOS Press,
Amsterdam, Oxford, Tokyo, 1996, pp. 40 – 51.

Jaakkola, H., Thalheim, B., 2003. Visual SQL – High
Quality ER Based Query Treatment”, In. Jeusfeld, M.,
Pastor, O. (eds.) Conceptual Modelling for Novel
Application Domains, Lecture Notes in Computer
Science (LNCS), Vol. 2814, Springer Verlag, Berlin,

Heidelberg, New York, 2003, pp. 129 – 139.
Järvelin, K., Niemi, T., Salminen, A., 2000. “The visual

query language CQL for transitive and relational
computation”. In Data & Knowledge Engineering,
Vol. 35, 2000, pp. 39 – 51.

Kardovácz, Z.T., 2005. On the Transformation of
Sentences with Genetive Relations to SQL Queries. In.
Montoyo, A., Munoz, R., Metais, E. (eds.)

Proceedings of the 10th International Conference on
Applications of Natural Language to Information
Systems (NLDB 2005), Lecture Notes in Computer
Science (LNCS), Vol. 3531, 2005, pp. 10 – 20.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

192

Kapetainos, E, Baer, D, Groenewoud P., 2005.
Simplifying syntactic and semantic parsing of NL-
based queries in adavanced application domains. In
Data & Knowledge Engineering Journal , Vol. 55,
2005, pp. 38 – 58.

Kao, M.; Cercone, N.; Luk, W.-S., 1988. Providing quality

responses with natural language interfaces: the null
value problem”. In IEEE Transactions on Software
Engineering, Volume 14 (7), 1988, pp. 959 – 984.

Lindland, O., Sindre, G., Solvberg, A..: Understanding
Quality in Conceptual Modeling, IEEE Software,
March 1994, pp. 29 – 42.

Moody, D., 1996. Graphical Entity Relationship Models:
Towards a More User Understandable Representation
of Data. In Thalheim, B. (Ed.): Proceedings of the

15th International Conference on Conceptual
Modelling, Cottbus, Germany, Lecture Notes in
Computer Science (LNCS), Vol. 1157. Springer
Verlag Berlin Heidelberg New York, 1996, pp. 227 –
245.

Moody, D., 2005. Theoretical and practical issues in
evaluating quality of conceptual models: current state
and future directions. In Data & Knowledge

Engineering Volume 55, 2005, pp. 243 - 276
Nijssen, G.M., Halpin, T.A., 1989. Conceptual Schema

and Relational Database Design - A fact oriented
approach, Prentice Hall Publishing. Company. 1989.

Owei, V, Rhee, H-S., Navathe, Sh., 1997, Natural
Language Query Filtration in the Conceptual Query
Language. In Proceedings of the 30th Hawaii
International Conference on System Science, Vol. 3.

IEEE Press, 1997, pp. 539 – 550.
Stratica, N., Kosseim, L., Desai, B.C., 2005. Using

semantic templates for a natural language interface to
the CINDI virtual library. In Data & Knowledge
Engineering, Vol 55, 2005, pp. 4 – 19.

Terwillinger, J.F., Delcambre, L.M., Logan, J., 2007.
Queyring through a user interface. In Data &
Knowledge Engineering, Vol. 63, 2007, 774 – 794.

CONTINUOUS CONCEPTUAL SCHEMA QUALITY CHECKING

193

