
AUTOMATIC GENERATION OF USER INTERFACE MODELS
AND PROTOTYPES FROM DOMAIN AND USE CASE MODELS

António Miguel Rosado da Cruz
E.S.T.G., Instituto Politécnico de Viana do Castelo, Av. do Atlântico, s/n, 4900-348 Viana do Castelo, Portugal

João Pascoal Faria
Faculdade de Engenharia da Universidade do Porto/INESC Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Keywords: Model-driven software development, Use case model, Domain model, Automatic user interface generation,
Iterative incremental process, Form-based business applications.

Abstract: The model-driven automatic generation of interactive applications has been addressed by some research
projects, but only few propose the model-to-model generation of a graphical user interface (UI). Existing
solutions generate only part of the interactive application and most of them require as input the full
specification of a UI model. This paper proposes an iterative and incremental approach that enables the
modeler to generate a form-based executable prototype from the constructed models, favouring an
evolutionary construction of models starting with a domain model, proceeding with an extended domain
model and finally complementing it with a use case model. The approach derives a UI model from the
previously referred models and allows its execution by generating an executable description of the UI in a
XML-based UI description language, together with code for the specified logic and for persisting the data
entities. The generated UI description may be further refined and supplemented with style definitions in
order to obtain a final UI.

1 INTRODUCTION

Model-driven software development (MDD)
approaches, like Domain Specific Modeling – DSM
– (Kelly and Tolvanen, 2008), or the OMG’s Model
Driven Architecture – MDA – (Warmer et al., 2003),
are based on the successive refinement of models
and on the automatic generation of code and other
sub-models. This paper presents an approach for the
automatic generation of form-based applications
within a model-driven software development setting.
The approach proposed involves the iterative and
incremental development of a domain model, and
optionally a use case model, by the modeler, and the
testing of an automatically generated executable
prototype.

In order to disambiguate and raise the rigour of
the models, the domain model is enriched with OCL
constraints, from which the generation process takes
advantage to produce validation procedures in the
user interface (UI).

In the next sections, the proposed approach is
presented focusing on the features that are derived in
the generated interactive application or its UI, and
the model characteristics that are explored in order
to derive those features. The relations between the
three metamodels involved in the process are
analysed, namely an extended domain metamodel, a
use case metamodel and a user interface metamodel.
The extended domain metamodel extends the
domain metamodel with derived attributes, derived
classes (views) and user defined operations and
triggers. An example will help to perceive the
differences between a domain-model only approach
to modeling, developed during simple domain
analysis and addressed in (Cruz and Faria, 2008),
and a use case driven approach followed when
eliciting and modeling requirements, within a
Unified Process-like software development process
(Jacobson et al., 1999). In the latter case the use case
model must be constructed in close connection with
the extended domain model, referring to its classes
(base or derived) and operations (user-defined or

169
Rosado da Cruz A. and Pascoal Faria J. (2009).
AUTOMATIC GENERATION OF USER INTERFACE MODELS AND PROTOTYPES FROM DOMAIN AND USE CASE MODELS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 169-176
DOI: 10.5220/0002253501690176
Copyright c© SciTePress

pre-defined CRUD operations – create/retrieve/
update/delete). An example is presented in section 6.

Before concluding the paper, related work is
addressed and compared to the presented approach.

2 GENERAL APPROACH

The goal of our approach, illustrated in Figure 1, is
to allow the automatic generation of user interface
models (UIM) and executable user interface
prototypes (UIP), from early, progressively
enriched, system models.

In the first iterations, a simple domain model
(DM) is constructed, represented by a UML class
diagram, with classes (domain entities), attributes
and relationships. From this DM a simple UI can be
automatically generated (by the EDM2UIM process,
a model to model transformation, and M2C, model
to code transformation, in Figure 1) supporting only
the basic CRUD operations and navigation along the
associations defined.

In subsequent iterations, the domain model is
extended with additional features (to be explained in
more detail in section 4) that allow the generation of
richer user interfaces: OCL constraints, default
values, derived attributes, derived classes (views),
user-defined operations, and triggers. Indeed, lists of
possible field values can be generated from OCL
class invariants, and operations' pre-conditions will
influence what the user is able to do in the generated
user interface. Derived classes allow the generation
of UI forms with a more flexible data structure.

Simultaneously, the modeler may develop a use
case model (UCM), integrated with the extended
domain model (EDM). This UCM will enable the
separation of functionality by actor, and its
customization (e.g.: hiding functionality for some
actors). Corresponding UI models and prototypes are
then automatically generated from both the EDM
and UCM (EDM+UCM2UIM and M2C processes in
Figure 1). As will be explained in section 5, there is
a full integration between the UCM and EDM, as
use case specifications are established over the
structural domain model.

On each iteration, the generated UI may be tuned
by a UI designer in two points of the process: after
having generated an abstract UIM, but before
generating a concrete UI; and, after generating a
concrete UI in a XML-based UI description
language (e.g.: XUL), which allows for the a
posteriori customization and application of style
sheets. A proof of concept tool has been developed
for fully automating the EDM2UIM,

EDM+UCM2UIM and M2C processes. The
prototyped M2C process uses XUL to represent a
concrete executable UI description, JavaScript for
the executable functionality and RDF to persist data.

Figure 1: General approach to UI generation.

3 CONCEPTUAL META-MODEL

Each of the models (EDM, UCM and UIM)
presented in Figure 1 is an instance of a defined
metamodel, of which an excerpt is shown in Figure
2 (EDMM, UCMM and UIMM, respectively).
Elements in the user interface model are traced back
to elements in the UCM or EDM, e.g.:
 A Menu in the UI traces back to a Use Case

(UC) Package in the UCM;
 a Menu Item traces back to a top-level UC in

the UCM, i.e. a UC that directly links to an actor;
 A Form can be traced back to a UC, which is

always related to a base or derived domain Entity;
 An Action Button may trace back to a CRUD

operation that may be identified in a UC, or to a UC
that extends another UC and has an associated user
defined operation.

In the next section the mappings for deriving a
UI model from one or both the other models (EDM
and UCM), as depicted in figure 1, are defined.

A set of rules has also been defined for
transforming an EDM into a default UCM
(EDM2UCM process), but these are not presented

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

170

E.D.M.M. U.C.M.M. U.I.M.M.

Figure 2: Excerpt of the conceptual metamodels and their relations.

due to space reasons. The default use case model has
only one actor that has access to all the system
functionality, and may serve as the basis for
producing the intended use case model, by
eliminating or redistributing functions among actors.

4 EDM FEATURES AND
TRANSLATION TO THE UIM

Besides classes (domain entities), attributes and
relationships, an extended domain model may
contain the following features:
 Class Invariants. intra-object (over attributes

of a single instance) or inter-object (over attributes
of multiple instances of the same or related classes)
constraints defined in a subset of OCL.
 User-defined Operations. Operations defined

in an Action Semantics-based action language,
supplementing the basic CRUD operations (Create,
Retrieve, Update and Delete).
 Derived Attributes. Attributes whose values

are defined by expressions in a subset of OCL, over
attributes of self or related instances. A common
special case is a reference to a related attribute,
using a sequence of dot separated names.
 Default Values. Initial attribute values defined

in a subset of OCL.

 Derived Classes (views). Classes that extend
the domain model with non-persistent domain
entities with a structure closer to the UI needs.
Currently, each derived class must be related to a
target base class, and is treated essentially as a
virtual specialization of the base class, possibly
restricted by a membership constraint and extended
with derived attributes.
 Triggers. Actions to be executed before, after

or instead of CRUD operations, or when a condition
holds within the context of an instance of a class. By
defining triggers, the modeler is able to modify the
normal behavior of CRUD operations, or define
generic business rules.

The main transformation rules for generating a
user interface model from an extended domain
model are summarized in table 1. Rules for
transforming simple domain models were previously
addressed in (Cruz and Faria, 2008).

When the UIM/UIP is generated solely from the
domain model, a special class named System has to
be created and linked to the domain classes that
should correspond to the application entry points. A
more flexible approach is explained in the next
section.

AUTOMATIC GENERATION OF USER INTERFACE MODELS AND PROTOTYPES FROM DOMAIN AND USE
CASE MODELS

171

Table 1: EDM to UIM/UIP transformation rules.

EDM feature Generated UI feature (UIM/UIP)

Domain entity

Form with an input/output field for
each attribute, and buttons and
associated logic for the CRUD
operations.

Inheritance
A field for each inherited attribute in
the form generated for the specialized
class.

To-many
association,
aggregation or
composition

UI component in the source class form,
with a list of the identifying attributes
of the related instances of the target
class, and buttons for adding new
instances and for editing or removing
the currently selected instance.

To-one
association,
aggregation or
composition

Group box in the source class form,
with a field for each identifying
attribute of the related instance. If the
related instance is not fixed by the
navigation path followed so forth, then
a button is also generated for selecting
the related instance.

Enumerated
type

Group of radio buttons for selecting
one option.

Class
invariant

Validation rule that is called when
creating or updating instances of the
class.

User-defined
operation

Button and associated logic, within
the form corresponding to the class
where the operation is defined. Forms
are also generated for entering the
input parameters and displaying the
result, in case they exist. The
operation pre-condition determines
when the button is enabled.

Derived
attribute Output-only field (calculated field).

Default value Initial field value.

Derived class
(view)

Form with an input/output field for
each attribute of the target class, an
output-only field for each derived
attribute, and buttons for the CRUD
logic (over the target class).

Operation-
Action
Trigger

Logic that is executed before, after or
instead of the CRUD operation that it
refers to.

Condition-
Action
Trigger

Logic that is executed every time the
condition holds, after creating or
updating an instance of the class
where the trigger is defined.

5 UCM FEATURES AND
TRANSLATION TO THE UIM

In our approach, a UCM can be defined in close
connection with the EDM, to indicate and organize

the CRUD, user-defined or navigational operations
over base or derived domain entities that are
available for each actor (user role). The data
manipulated in each use case is determined by the
domain entity and/or operation associated with it.
Several constraints are posed on the types of use
cases and use case relationships that can be defined.

Two categories of use cases are distinguished:
 Independent use Cases: use cases that can be

initiated directly, and so can be linked directly to
actors (that initiate them) and appear as application
entry points;
 Dependent use Cases: use cases that can only

be initiated from within other use cases, called
source use cases, because they depend on the
context set by the source use cases; the dependent
use cases extend or are included by the source ones,
according to their nature (optional or mandatory,
respectively).

The types of independent use cases that can be
defined in connection with the EDM are:
 List Entity. view the list of instances of an

entity (usually only some attributes, marked as
identifying attributes, are shown);
 Create Entity. create a new instance of an

entity;
 Call StaticOperation. invoke a static user-

defined operation defined in some entity; this
includes entering the input parameters and viewing
the results, when they exist.

The types of dependent use cases that can be
defined in connection with the EDM are:
 Retrieve, Update and/or Delete Entity. view

(retrieve) or edit (update or delete) an instance of the
entity previously selected (in the source use case);
 Call InstanceOperation. invoke a user-defined

operation over an instance of an entity previously
selected (in the source use case); this includes
entering the input parameters and viewing the
results, when they exist;
 List Related Entity. view the list of (0 or more)

instances of the target entity that are linked to a
previously selected source object (in the source use
case); in case of ambiguity, in this and in the next
use case types, the link type (association) must also
be specified;
 Create Related Entity. create a new instance of

the target entity type and link it to a source object
previously selected (in the direct or indirect source
use case);

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

172

E1

List E1

Create E1

«extend»

«extend»
a) Entity

d) Dependent collection E1 E2 1 *

CRUD
E1

Create
Related E2

«extend»

«extend»

List
Related E2 Retrieve, Update

and/or Delete
Related E2

«extend»

«include»
or

e) Independent collection E1 E2 * *

CRUD
E1

«extend»

«extend»

List
Related E2

Select and
Link Related

E2

«extend»

«include»
or

Retrieve
Related E2

Unlink
Related E2

«extend»

Retrieve, Update
and/or Delete E1

b) Dependent instance E1 E2 1
or 1

CRUD
E1

«extend»

«extend»

Retrieve, Update
and/or Delete
Related E2

c) Independent instance E1 E2 * 0..1

CRUD
E1

«extend»
Select

Related E2

Retrieve
Related E2

Unlink
Related E2

0..1

or 1

«extend»

«extend»

«include»
or

«include»
or

Create
Related E2

Figure 3: Possible types of relationships among use cases
for different domain model fragments (note: aggregations
and compositions are treated similarly to associations).

 Retrieve, Update and/or Delete Related
Entity. view (retrieve) or edit (update or delete and
unlink) the instance of the target entity type that is
linked with a source object previously selected (in
the direct or indirect source use case);
 Select Related Entity. select (and return to the

source use case) an instance of the target entity that
can be linked to a source object previously selected
(in the source use case);

 Select and Link Related Entity. select an
instance of the target entity and link it to the source
object previously selected (in the source use case);
 Unlink Related Entity. unlink the currently

selected instance of the target entity (in the source
use case) from the currently selected source object
(in the source use case).

Table 2: UCM to UIM transformation rules.

UCM feature Generated UI feature (UIM/UIP)

Actor

Button in the application start
window, linking to the actor’s main
window.

Use Case
Package

Menu in the actor's main window,
with a menu item for each use case
that belongs to the package and is
directly linked to the actor.

Use Case of
type List Entity
or List Related
Entity

Form that displays the full list of
instances or the list of related
instances of the target entity, with
buttons for the allowed operations
(according to the dependent use
cases). Only the identifying attributes
are shown.

Use Case of
type Select
Related Entity
or Select and
Link Related
Entity

Form that displays the list of
candidate instances and allows
selecting one instance. Only the
identifying attributes are shown.

Use Case of
type CRUD
Entity or CRUD
Related Entity

Form that displays the object
attribute values, with buttons and
functionality corresponding to the
CRUD operations allowed. In the
case of a related instance, the
identifying attributes of the source
object are shown but cannot be
edited.

Use Case of
type Call User-
Defined
Operation

Forms for entering and submitting
input parameters and presenting
output parameters, when they exist.

Extend
relationship

Button in the form corresponding
the base use case that gives access
to the extension.

Include
relationship

If the included use case is of type
"List...", it is generated a sub-
window. Otherwise, it is generated
a button in the source use case.

The entity, operation(s), and link type (when
needed) associated to each use case are specified
with tagged-values.

The types of relationships that can be defined
among use cases are illustrated in Figure 3.

AUTOMATIC GENERATION OF USER INTERFACE MODELS AND PROTOTYPES FROM DOMAIN AND USE
CASE MODELS

173

Table 2 summarizes the rules for generating UI
elements from the UCM. Their application is
illustrated in the next section.

6 EXAMPLE

This section presents an example of a Library
System that illustrates the approach. Figure 4 shows
the constructed EDM. Such model has been
developed in several iterations; an executable
prototype has been automatically generated and
tested at the end of each iteration. After having a
partial or complete EDM, the modeler may also
develop a UCM. Figure 5 illustrates an extract of a
UCM that was developed for this system. Table 3
shows the entity types and operations associated (via
tagged values) with some of the use cases. By
applying the mapping rules described in the previous
sections, the EDM+UCM2UIM process generates a
UI model and then an executable prototype, part of
which is shown in Figure 6.

Figure 4: Extended domain model (EDM) for a Library
Management System, with an example trigger.

Figure 5: Partial use case model (UCM) for the Library
Management System.

Table 3: Entities and operations associated (via UML
tagged values) with some of the use cases in Figure 5.

Use case Entity Operation(s)
List Books Book List
Add a new Book Book Create
Edit Book Book Update
List BookCopies BookCopy List Related
Add BookCopy BookCopy Create Related
Edit BookCopy BookCopy Update Related,

Delete Related
Select BookCopy BookCopy Select Related
View Details Book Retrieve

Figure 6: Excerpt of the application prototype generated
for a Librarian executing use cases List Books Edit
Book (that includes List BookCopies).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

174

7 RELATED WORK

Few approaches found in the literature allow a
model-to-model generation of a graphical user
interface, within a MDD setting. The XIS profile
and method (Silva, 2003; Silva et al., 2007; Silva
and Videira, 2008), just like the OO-
Method/Olivanova (Pastor and Molina, 2007) and
the ZOOM approach (Jia et al., 2005, Jia et al.,
2007) are able to produce a fully functional
(executable) application, but the demanded input
models are very time consuming and arduous to
build.

The need to attach a stereotype to every model
element, in XIS, makes the models hard to read and
build. Unlike XIS, our approach doesn’t demand the
stereotyping of every model element, as the full
model package is submitted to the transformation
process.

XIS allows two approaches to interactive
systems generation: a dummy approach, where a
domain model, an actors’ model, and a UI model
must be fully specified; and the XIS smart approach,
that enables the derivation of the UIM, called the
user interfaces view, by demanding the construction
of two other models, a business entities model and a
use case model. This approach to the UIM derivation
is simpler than its full construction, but it comes
with the cost of the inflexibility of the generated UI.

XIS business entities select domain entities
relations to provide a lookup or master/detail pattern
to the UI needed for the interaction inside the
context of a use case (Silva, 2003; Silva et al.,
2007).

XIS business entities are similar to our derived
entities. Like in the XIS smart approach, the modeler
must attach to each use case an Entity (base or
derived) from the EDM. The difference is that, in
our approach, relations between entities are inferred
from the EDM, thus not being needed a separate
business entities model to provide higher level
entities to the UCM. The relation’s selection
provided by the XIS business entities model can be
done, within our approach, in the UCM by not
modeling UC for navigating through the relations.

Similarly to XIS and the OO-Method, in our
approach CRUD operations are predefined.

It is not possible, in XIS, to specify complex
behavior - only CRUD operations may be used
attaching it to Business Entities and to the
connection between the UCs and business entities.

In the OO-Method user defined operations
(services and transactions) can be specified by using
OASIS (Pastor and Molina, 2007). Also, for not

demanding the knowledge of OASIS, the OO-
Method has a solution that comes with the cost of
inflexibility: it is possible to specify how each
service changes the object state depending on the
arguments of the involved service and the current
object state, by categorizing every attribute in one of
three categories, and introduce the relevant
information depending on the corresponding
selected category. Possible attribute categories are
push-pop, state-independent, and discrete-domain
valued attributes. The OO-Method permits, as well,
the specification of allowed states and state
transitions within a class. Each state transition may
have attached a control (guard) or triggering
condition. It is also possible to define transactions
involving services of different classes.

In our approach user defined operations may be
specified using an UML Action Semantics-based
language.

Just like our approach, the OO-Method allows
the definition of derived attributes, by assigning a
calculation formula to the attributes.

The ZOOM approach models a system using the
ZOOM language, which is a formal object oriented
extension of Z. Additionally it allows the building of
a graphical model, which is then translated to
ZOOM. The models that are demanded by the
approach, in order to automatically generate an
executable application, are (Jia et al., 2005): a class
model, which models the structure of the system and
contains all the classes of the application; a finite
state machine model that models the system
behavior and is the central communication
mechanism to connect the structural model to the UI
model; and, a UI model, which models the UI
screens by using predefined components that are
organized according to a user defined layout.

Elkoutbi et al. (Elkoutbi et al., 2006) and
Martinez et al. (Martinez et al., 2002) approaches are
able to produce a UI from the structural, use case
and UI behavioral models, but demand the
attachment of UI related information (input/output
fields and/or widgets) to collaboration diagrams and
message sequence charts used to specify use case
behavior. The generated output is only able to
simulate the specified use cases through the
generated UI, with no business level application
behavior.

Forbrig et al. approach (Forbrig et al., 2004) and
Wisdom (Nunes, 2001) are not automatic. Forbrig et
al. base their approach on the manual selection of
patterns, from a repository, that drives the model
construction and transformation towards a final
application. In Wisdom, the Winsketch tool

AUTOMATIC GENERATION OF USER INTERFACE MODELS AND PROTOTYPES FROM DOMAIN AND USE
CASE MODELS

175

(http://apus.uma.pt/~winsketch) helps building and
validating Wisdom models, and supports the tracing
of model elements through the different process
phases. Despite this, no code generation is done.

8 CONCLUSIONS AND FUTURE
WORK

The presented approach enables a gradual
approximation to system modeling, by being able to
derive a default UI and an executable prototype from
the DM alone, an EDM or from the EDM and the
UCM. It is also possible to have these initial models
in different levels of abstraction or rigour, and refine
them in an incremental and iterative manner.

As depicted in section 2, this approach is able to
generate a UI model from the system's non-UI
submodels, helping the modeler in creating a system
model for the final application. The approach
derives a default UI and an executable prototype
from the domain model alone, turning possible to
interactively evaluate the system model with the end
users, and to iteratively evaluate and refine the
model. It also allows to add rigour and model
elements to the system model, generating refined
UIs and refined executable prototypes that support
an evolutionary model-driven development with the
close participation of the end users.

The main contributions of our work are to take
advantage of class invariants and operation pre-
conditions to generate validation routines in the
executable application, enabling the enhancement of
the usability of the generated UI by helping the user
in entering valid data into forms, and by giving
feedback identifying invalid data; and, the use of an
action language to specify the semantic of operations
at class level, and enable the definition of triggers
activated either by the invocation of a CRUD oper-
ation or by the holding of a given state condition.

As future work, we intend to refine the definition
of complex UCs with pre-/post-conditions, that will
enable workflow definitions. Also the validation of
the approach will be further accomplished by using
more representative case studies.

ACKNOWLEDGEMENTS

We would like to thank Rui Gomes, Hugo Sereno,
Filipe Correia and André Restivo for their comments
and suggestions on the first versions of this article.

REFERENCES

Cruz, A. M. R., Faria, J. P., 2008. Automatic generation of
interactive prototypes for domain model validation. In
Proceedings of the Int’l Conference on Software
Engineering and Data Technologies (ICSoft 2008),
vol. SE/GSDCA/MUSE, pp 206-213. INSTICC Press.

Elkoutbi, M., Khriss, I., Keller, R. K., 2006. Automated
prototyping of user interfaces based on UML
scenarios. Journal of Automated Software
Engineering, 13(1):5-40, January 2006.

Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D., 2004.
From models to interactive systems tool support and
XIML. In Proceedings of the First Int’l Workshop
MBUI 2004, vol. 103-CEUR Workshop Proceedings,
Funchal, Portugal. Available at http://ceur-ws.org.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified
Software Development Process. Addison-Wesley.

Jia, X., Steele, A., Liu, H., Qin, L., Jones, C., 2005. Using
ZOOM approach to support MDD. In Proceedings of
the 2005 Int’l Conference on Software Engineering
Research and Practice (SERP'05), Las Vegas, USA.

Jia, X., Steele, A., Qin, L., Liu, H., Jones, C., 2007.
Executable visual software modelling - the ZOOM
approach. Software Quality Control, 15(1):27-51.

Kelly, S., Tolvanen, Juha-Pekka, 2008. Domain Specific
Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press.

Martinez, A., Estrada, H., Sánchez, J., Pastor, O., 2002.
From early requirements to user interface prototyping:
A methodological approach. In Proceedings of the
17th IEEE Int’l Conf. on A.S.E., pp 257-260.

Molina, P. J., Hernández, J., 2003. Just-UI: Using patterns
as concepts for IU specification and code generation.
In Perspectives on HCI Patterns: Concepts and Tools
(CHI'2003 Workshop).

Molina, P. J., 2004. User interface generation with
olivanova model execution system. In IUI '04:
Proceedings of the 9th Int’l Conference on Intelligent
User Interfaces, pages 358-359, NY, USA. ACM.

Nunes, N. J., 2001. Object Modeling for User-Centered
Development and User Interface Design: The Wisdom
Approach. PhD thesis, University of Madeira, July.

Pastor, O., Molina, J., 2007. Model-driven Architecture in
Practice – A software production environment based
on Conceptual Modeling. Springer-Verlag.

Silva, A., 2003. The XIS approach and principles. In IEEE
Computer Society, Proceedings of the 29th
EUROMICRO Conference "New Waves in System
Architecture" (EUROMICRO '03).

Silva, A., Videira, C., 2008. UML, Metodologias e
Ferramentas CASE, vol. 2. Centro Atlântico, 2nd ed.

Silva, A. R., Saraiva, J., Silva, R., Martins, C., 2007. XIS -
UML profile for extreme modeling interactive
systems. In 4th Int’l Workshop on Model-based
Methodologies for Pervasive and Embedded Software
(MOMPES 2007). IEEE, March.

Warmer, J., Bast, W., Pinkley, D., Herrera, M., Kleppe,
A., 2003. MDA Explained – The Model Driven
Architecture: Practice and Promise. Addison-Wesley.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

176

