
ARCHITECTURAL STYLES QUALITY EVALUATION AND
SELECTION

Smeda Adel and Alti Adel
LINA, University of Nantes

2 Rue de la Houssinière, BP 92208
44322 Nantes Cedex 03, France

Keywords: Evaluation of the software architecture, Quantitative architecture factors, OCL, Metamodel.

Abstract: Today, many architectural styles have been proposed and many others are being defined. An architectural
style provides a domain-specific design vocabulary and a set of constraints on how that vocabulary is used.
Given the increasing complexity of architectural styles, designing a sound and appropriate architectural
style becomes an important and intellectually challenging task. In order to analyze architectural styles
quality factors at architecture level and meta level are needed. In this article we propose a metamodel for
quality evaluation and selection of architectural style. Our metamodel includes a set of metaclasses; these
metaclasses are constrained with formal OCL rules. These constraints allow us to improve the verification
of the properties’ quality of the architectures by modelling styles of the software system. With this
metamodel, all the properties’ quality of the final production are granted by the software architecture.

1 INTRODUCTION

Today, all of the software developers are regarding
the quality of their productions as their own main
purpose. The experiences have showed that
whenever it is necessary to design a product with
high demotion and complexity, a general view that is
called "architecture" is needed. The meaning of
architecture is to provide a formal model of the
system in terms of components and connectors and
how they are composed together. Architecture gives
us an overall point of view of the whole system.

One of the important cornerstones of modern
software architecture is the use of architectural
styles. An architectural style defines a family of
related systems, typically by providing a common
vocabulary for architects, allowing the reuse of
architectures across many products. Consequently
more and more architectural styles are being defined
every day (Buschman, Henney and Schmidt, 2007;
Zudan and Avgeriou, 2008). They became so divers,
that their evaluation becomes problematic.
Unfortunately, despite significant progress in
analysis of the architectures for software systems,
there is relatively little work in styles evaluation and
selection.

This work proposes a novel metamodel called
ArchRQMM (ARCHitecture Requirement Quality
MetaModel) for the evaluation of properties’ quality
of architectures on modelling styles for software
system. The contribution consists in extending the
core concepts of Architecture Description
Languages (ADLs) to integrate the concepts of
quality requirements and quality standards. Our
proposal offers an automatic evaluation and
selection of styles that best meet architects’ needs
and allows a rigorous evaluation to prove the quality
of architectural styles at the architecture level.

The proposal work presented here is the result of
our previous work on using profile transformations
for integrating software architecture concepts into
the Model Driven Architecture (MDA) platform
(Alti, Khammaci, Smeda and Bennouar, 2007). We
identified the need to specifically select an
appropriate style that meets quality expectations.
Our integration process needs a generic metamodel
for the evaluation of architectural styles more
precisely and more objectively.

The rest of this article is organized as follows:
Section 2 presents our motivation and glances at
other related works. Section 3 describes the
ArchRQMM metamodel. Section 4 illustrates the
applicability of the previous metamodel both for

74
Adel A. and Adel S. (2009).
ARCHITECTURAL STYLES QUALITY EVALUATION AND SELECTION.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 74-82
DOI: 10.5220/0002253100740082
Copyright c© SciTePress

evaluation and for selection of an architectural style.
Finally, section 5 concludes this article and presents
some future works.

2 MOTIVATION AND RELATED
WORK

2.1 Management of Software
Architecture Qualities

Tibermacine et al. (Tibermacine, Fleurquin &
Sadou, 2006) assisted quality in component- based
software evolution. They used a generic architecture
metamodel ArchMM for architecture design and
used ACL (Architecture Constraint Language) as
means for formally describing architectural choices.
This work concentrated on architecture evolution,
while our proposed approach focuses on
architectural styles available in different ADLs. Our
approach is similar to Tibermacine et al. In our
proposal, quality is placed on top of the system,
which drives the rest of the development process,
plays a central role that defines the structure of our
concrete model’s architecture, and decides which
architectural styles are considered and which are not.
Also closely related to our research is the work on
evaluation of ADLs for their support to model
architecture patterns (Grau and Franch, 2007a).
Their works is focused on the use of patterns to
design software architecture. They explored the
suitability of UML and five ADLs (ACME, Wright,
Aesop, Unicon and xADL) for modeling architecture
patterns. They chose syntax, visualization,
variability, and extensibility as criteria for selecting
ADLs that can represent architecture patterns. They
concluded that most of the ADLs specify strong
notational, analysis and tool support to design
software architectures but they still have
considerable drawbacks like supporting styles.
Recently, (Grau and Franch, 2007b) proposed a
goal-oriented approach for the generation and
evaluation of alternative architectures based on
existing architectural styles. Its approach allows a
well evaluation of architectural styles but lacks a
catalogue of architectural styles and a formal
evaluation of architectural styles. More recently, in
(Zudan and Avgeriou, 2008) presented a new
catalog of architectural primitives for modeling each
architectural style and provides a suitable base to
explicit and formally modeling styles in UML 2.0.
Its approach helps in designing correct styles but
suffered from a formal evaluation of complex

architectures based on multiple styles for achieving
an efficient framework.

2.2 Uses and Reasons of Software
Architecture Importance

To investigate the importance of software
architecture from the technical point of view, for
three reasons (Klein, Clements, Kazman, 2002):

- Possible reusability in architecture:
Patterns and styles are a way to reuse
software development knowledge on
different levels of abstractions. So it is
possible that a given system described with
different styles. Style selection has specific
importance in developing software systems.

- Early decision making of designation:
Software architecture includes high level
decisions and trade–off that leads to
produce a software system and define its
characteristics. The studies show that the
expense of correcting a discovered error
along the requirements recognition phase or
in the architecture phase is more less than
correcting that error when the testing phase.

- Architecture as a means of relation
between the system stakeholders: Software
architecture system can be a common view
of all stakeholders. If they have the same
idea regarding the developed software, they
can have a common base for discussion and
evaluating the system.

2.3 Objectives and Motivations

Currently, the software architecture was designed
with an arbitrary ADL and arbitrary architectural
style and integrated into a given MDA platform.
However, a rigorous quality evaluation of
architectural styles is not considered by the model-
driven software architecture integration. This results
to basic drawbacks:

- The poor architecture quality results from
employing wrong architectural style for
quality improvement,

- Difficulty in meeting quality designs such
as efficiency and maintainability,

- The quality software management depends
on their architectural styles and
implementation platforms.

These disadvantages can be tided, if we
introduce architecture evaluation concerns in the
model-driven software architecture as configuration
inputs and apply a formal quality evaluation at the

ARCHITECTURAL STYLES QUALITY EVALUATION AND SELECTION

75

architecture design step and not as an afterthought
during the transformation for the final system.

3 PROPOSED METAMODEL

In order to build a solid system, it is essential to
systematically take into account all the reflections
regarding the system at the architecture design step
and not as an afterthought during the transformation.
From this point of view, we can not describe
software systems with an arbitrary architectural style
but we must select one style among various. Of
course, style provides guidance for building a broad
class of architectures in a specific kind of system,
but what are the benefits that the software system
gains? An architectural style, answers the
architecture design needs and its quality
characteristics. Therefore, we suggest placing the
architecture quality evaluation as control-center for
designing software architecture systems.

3.1 Description of ArchRQMM

In order to support the evaluation of quality of
architectural artifacts produced in architectural level,
we have defined mainly three complementary
models. We use software architecture model to
describe architectures based on the core concepts in
each ADL, we use requirement model to represent
architect’s needs and the quality goals and we use
architecture quality model to evaluate and analyse
the quality of the whole software system as well as
its architectural artifacts. The key-idea of the
proposed metamodel is the combination of
measurable standards at the level of architecture
with OCL constraints, resulting to the overall
software system quality increase and conformance.

3.1.1 Software Architecture Model

The core elements of the software architecture
model are components, connectors and
configurations; each of these elements has an
interface to interact with its environment as shown
in Figure 1. Besides, the abstract class Artifact
gathers all the structural and behavioral information
that is shared by components, connectors, and
configurations and therefore does not have
conceptual correspondence in traditional
architectural models. Architecture may be composed
of many artifacts. Components are potentially
composite computational encapsulations that support
multiple interfaces known as ports. Ports are bound

to ports on other components using first-class
entities called connectors, which have the so-called
roles that are attached directly to ports.

Configurations are the abstractions that represent
graphs of components and connectors. Attachments
define set of port/role associations. Bindings connect
two interfaces of the same type (two ports or two
roles). Architectural styles define sets of types of
components, connectors, properties, and sets of
constraints on how they can be combined. The
software system can be described by an architecture
with different styles. We have selected four styles
Layers, Pipe-Filter, Blackboard, and Client-Server
(Buschman, Henney and Schmidt, 2007) because
they are the most commonly used in practice and
they represent a number of different domains and
concerns. Layers demands grouping of components,
Pipe-Filter handles streams of data, Client-Server is
frequently used in distributed systems, and
Blackboard is for dynamic configurations. Although,
we limit ourselves to only four styles, we emphasize
that our metamodel is not meant to be exhaustive.

3.1.2 The Requirement Model

The architect’s needs (Requirement class) should
fulfil particular architecture artifacts (Artifact class
in the model). Usually the necessities of a software
system are divided in to two groups: Functional
requirements and Non-Functional requirements.
Functional requirements define the functional and
executive purpose of the system. Non-functional
requirements mostly focus on how a software system
works and performs. In our case, functional
requirements derived from the architect’s needs and
non-functional requirements are more related to the
problem’s environment or context such as the
system’s operational environment and the problem’s
real word. Non-functional-requirements are
associated with a quality goal (QualityGoal class)
that must be satisfied to ensure the accomplishment
of the functionality in the final software product.
The non-functional-properties (Non-Functional-
Prop class), which are related to quality
requirements are formalized using the standard ISO-
9126 (ISO-IEC, 2001). Based on final quality aims,
the developed architecture for a given software
system can be evaluated to satisfy quality goals.

3.1.3 Software Architecture Quality Model

The model defines the quality of the whole software
system as well as its architectural artifacts in terms
of quality factors and associated metrics that are
formal measured attributes of the software. An

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

76

Figure 1: The ArchRQMM meta-model.

instance of QualityFactor class is the root of quality
factors and sub-factors, and represents a given
quality perspective. Each quality factor is associated
with quality criteria (QualityCriteria class); it shows
the technical concepts that must be investigated at
the level of architecture to ensure quality. Each
quality criteria is associated with quality metrics
(Metric class), which represents values of metric for
a given architectural artifact.

Such model covers the factors and sub-factors
based on the quality standard ISO-9126 (ISO-IEC,
2001). Based on the norm ISO-9126, Losavio et al.
(Losavio, Chirinos, Lévy, Ramdane-Cherif, 2003)
defines six characteristics: functionality, reliability,
usability, efficiency, maintainability and portability.
They address the specification of software
architecture requirements and its quality
characteristics. However, this model has number of
limitations including: many of the factors suggested
by this model are not directly related to the specific
issue of integration contributed to the malfunction
modes of software architecture, it separates the
concepts of modularity and coupling whereas the
modularity of software architecture is related to the
components depending. Making software
architecture more modular is not sufficient if it has
uncouple functions, which will provide low

modularity conditions.
To overcome these limitations we propose a

model that is based on the factor “criteria and
metrics” as shown in Figure 2. The sub-factors of
software architecture may be decomposed into two
quality sub-factors: modularity and analyzability.
Each sub-factor may be further expressed by a set a
set of lower level quality metrics, which are directly
measurable. Although, we limit ourselves to only
three criteria’s, we emphasize that our software
architecture quality model is not meant to be
exhaustive.

 Maintainability

Modularity

Coupling Cohesion

Analyzability

Complexity

Coupling Metric Cohesion Metric Complexity Metric

Factors

Sub-Factors

Criteria

Metrics

Figure 2: Software architecture integration framework.

Architecture Modularity. The sub-factor can be
evaluated by controlling the modularity level of the
system. The architecture modularity depends on the

ARCHITECTURAL STYLES QUALITY EVALUATION AND SELECTION

77

configuration, component and connector modularity.
Indeed an architecture whose configuration has a
good modularity if its components and its connectors
have good modularity. If the system has been
divided correctly to suitable modular, the software
system can be analyzed more easily.

At the architecture level, this factor can be
measured with criteria, named coupling and
cohesion. In paper (Jihuna, Zhenbo, Zhao, Zhenhua
and Ruijin, 2007.) these two metrics are proposed
for measuring architecture stability. We adopted
these metrics and used in our model. The coupling
of the architecture is a global property relative to the
exchanges between two components. Consider T the
set of different artifacts types of the style S, and n is
it’s the set size. The artifact type Ti ∈T (i = 1,...n) is
instantiated into the set Ai = {ai,1, … ai,m}, and m is
its the set size. The weight of the type Ti is its impact
on the architecture reconfiguration by hiding
dependencies at different layer of abstraction. We
use the ROC (Rank Order Centroids) concept to
measure a weight of the artifact type Tk:

() niTweightType n

kik)1()(∑ =
= (1)

The weight of an artifact ak,j is its degree in the
architecture defined as follows:

mTweightTypeaweight kjk /)()(, = (2)

The architecture-based coupling metric for the
style S is defined as follows:

SS

TTCop
StyleCop STT

−
=

∑
∈∀

2
,

21),(
21

(3)

where Cop (T1, T2) is the coupling of the artifact type
T1 to the artifact type T2 defined as follows:

∑
∈∀∈∀

=
2,21,1 ,

,2,121),(),(
AaAa

ji
ji

aaCopTTCop
(4)

and Cop (a1,i , a2,j) is the coupling of an artifact
instance a1,i to an artifact instance artefact a2,j
defined as follows:

∑

∑

=

== h

l
jil

l

k
ik

ji

aaassoc

aassoc
aaCop

1
,2,1

1
,1

,2,1

),(

)(
),(

(5)

Attachments/bindings associations (assoc)
connect port and role of the different/same types are
assigned same weights (weights = 1). Components,
connectors, configurations stand for artifacts a1 and
a2 instantiated of respective types T1 and T2. At the
architecture level, low architectural configuration
coupling is considered to be a desirable quality for a
modular software system.

The cohesion expresses the number of
components that depend on other components in a
given architecture. The architecture-based cohesion
metric for the style S is defined as follows:

S

TCoh
StyleCoh ST

i
i

)(∑
∈∀= (6)

where Coh (Ti) is the cohesion of the artifact type Ti
defined as:

∑
∈

×=
iji Aa

jijii aCohaweightTCoh
,

)()()(,,

(7)

and Coh (ai,j) is the cohesion of the artifact instance
ai,j defined as:

∑

∑

=

== w

l
jil

h

k
jik

ji

aassoc

aettassoc
aCoh

1
,

1
,

,

)(

)(arg_
)(

(8)

Attachments and bindings represent different
associations (assoc) that join different artifacts
instances together (resp. components instances,
connectors instances, configurations instances) and
assoc_target is the number of provided ports (resp.
provided roles) of an artifact instance "a" connected
as Target ports (resp. Target roles) of
attachments/bindings associations with all other
artifacts in the architecture.

High cohesion and low coupling are the main
facts to take into account for achieving modular
architecture when applying styles. Apply these basic
principles can makes a design understandable,
maintainable, and of higher quality. High cohesion
and low coupling are the main facts to take into
account for achieving modular architecture when
applying styles. Apply these basic principles can
makes a design understandable, maintainable, and of
higher quality.

The architecture-based modularity sub-factor for
the style S is expressed as follows:

StyleCopStyleCohStyleMod = (9)

Architecture Analyzability. Analyzability
emphasizes on possible recognition of manners and
deficiencies of an architecture. This sub-factor also
tries to define the parts that must be corrected. The
complexity indices for conforming style
understandability and analyzability. It is believed
that high complexity architecture should have high
analyzability. The proposed measure of architecture
complexity is based on the criteria, named structural
dependency measures inspired by complexity metric
dedicated to Component-Based Architecture (Böhme
and Reussner, 2008). We adopted this metric and

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

78

used in our model. The structural dependency
measure for each artifact ai in the architecture is
obtained as follows:

∑∑
==

==
n

j

n

j
i jiDepTjiDepaSDM

1
max

1
),,(),()(π (10)

Where components instances, connectors
instances, configurations instances stand for artifact
ai. The measure of the strength of association
established by a path (i.e. direct and transitive
connection) from an artifact ai to all other artifacts in
the system is defined as its structural dependency
measure. Attachments and bindings represent direct
dependency edges. Consequently, the sum of
weighted structural dependency measures of all
artifact instances of the type Ti is defined as:

∑
∈∀

×=
ij

ji
Ia

jii aSDMaweightTSDM)()()(
,, (11)

Finally, the style structural complexity,
StyleComp, is defined as the mean SDM of all
artifacts types:

S

TSDM
StyleComp ST

i
i

∑
∈∀=

)(
 (12)

The architecture-based analyzability sub-factor
for the style S is the architecture-based complexity
metric defined as follows:

StyleCompStyleAna = (13)

According to the choice made of the factors of
quality and their measurement, we define the
function Quality which measures the quality of the
architecture for a given architectural style as a linear
combination of each evaluated measure function.
The weight associated with each function allows the
software architect to modify the importance of each
quality sub-factor. The final quality of the style S is
defined as follows:

StylehAnaStyleModQuality ∗+∗= 21 αα (14)

With such evaluation, an architectural style that
needs to be revised and improved can be determined
and then given a suitable attention.

3.2 OCL Constraints

In order to assess the quality of software architecture
models on modeling architectural styles in the
context of all requirements as well in the context of
selected requirements or factors, we use OCL 2.0
(Object Management Group, 2005) language to
specify the properties and verify the model.

The focus of rigorous architecture quality
analysis is to prevent the non-required affections

after the design step before the early phases of
system development. For example, the configuration
modularity, architectural style stability and
maintenability are given by the following
constraints:

A configuration provides an acceptable
modularity if all its subcomponents and its
subconnectors present a high level of cohesion and a
low level of coupling.
Context ArchRQMM:Configuration inv: --Constraint C1
self.qualityfactorArtifact.subfactors.qualitycriteria
 ->exists->(sf|sf.name= #Modularity) implies
 (self.subcomponents.qualityfactorArtifact.
 qualitycriteria->select(c.criterianame=#Cohesion
 implies c.result >=0.5) -> notEmpty() and
 select(c.criterianame= #Coupling
 implies c.result <=0.66) -> notEmpty()) and
 (self.subconnectors.qualityfactorArtifact.
 qualitycriteria->select(c.criterianame=#Cohesion
 implies c.result >=0.5) -> notEmpty() and
 select(c.criterianame= #Coupling
 implies c.result <=0.66) -> notEmpty())

An architectural style is stable if all its
architectural artifacts present a high level of
cohesion (i.e. 1)
Context ArchRQMM:Style inv: -- Constraint C2
self.architecture->forall(a|a.artifacts
 ->forAll(a|a.qualityfactorArtifact.qualitycriteria->
 select(c|c.criterianame=#Cohesion implies
 c.result=1)->notEmpty())) implies
 self.architecture.qualityfactor->includes(#Stability))

An architectural style that provides an acceptable
maintainability must have structural complexity less
than predefined threshold (the result exceeds such a
threshold, a decision should be made about to
elaborate a different (better) architectural style).
Context ArchRQMM:Style inv: -- Constraint C3
self.architecture->forall(a|a.artifacts
 ->forAll(a|a.qualityfactorArtifact.qualitycriteria->
 select(c|c.criterianame=#Complexity implies
 c.result<=c.threshold)->notEmpty())) implies
self.architecture.qualityfactor->includes(#Analyzability))

3.3 The Evaluation and Selection of
Architectural Styles

The process of the evaluation and selection started
with designing the architecture model conforms to
the software architecture ArchRQMM metamodel,
next producing the quality model conforms to the
software architecture quality metamodel by
measurement done for each architectural artifact for
a given factor in the context of associated
requirement, for a given criteria with associated
metric. After that, the model is evaluated by the
semantic constraints defined by the ArchRQMM
metamodel. An important feature of the
ArchRQMM metamodel is the possibility of
architecture model(s) checking. This is verified by
OCL constraints that can be checked for a given
requirement, criterion, artifact, and for the whole
software architecture (i.e. set of artifacts). The

ARCHITECTURAL STYLES QUALITY EVALUATION AND SELECTION

79

results can influence the quality of architecture
model. Two ways of using the ArchRQMM are
possible:

- Formal Verification: The ArchRQMM
metamodel is used for evaluating an
architecture model. The architecture model
is tested and validated with the semantic
constraints defined by the metamodel. If the
verified architecture model gets bad marks
then the design process can be stopped or it
returned to the previous stage either to
change requirements or to elaborate a
different (better) architectural style.

- Quality Evaluation and Selection: The
ArchRQMM metamodel is used for
selecting the best architectural style from
different choices. In this case the values of
a metric are used classifying the models. In
this case a metric formula gives a note for
the architecture with each of the given
styles. The values of the metric function are
used to classify the models and to choose
the suitable one. After that, the selected
architectural style is evaluated by the OCL
constraints to remove any violation.

4 CASE STUDY AND
EVALUATION

In order to validate the proposed metamodel, we
developped ViSAQE: (Visual Software Architecture
Quality Evaluator) prototype in Eclipse 3.2. The
prototype tool supports creating and managing
architectures with different styles, allows graphical
representation of architectures and interoperability
of models using different ADLs through standard
XMI, enables the automatic evaluation of
architectural metrics and offers to the architects the
possibility to elaborate quality models and to
validate its semantics with ArchRQMM.

In current version, it translates the ACME
models (Klein, Clements, and Kazman, 2002)
supported by three styles: Client-Server, Pipes-
Filters, Pipes-Filters and Client-Server and provides
a common language for describing formal semantics
with OCL. To illustrate the application of the
ViSAQE for both evaluation and selection of an
architectural style we use the CaPiTaLiZe system
(Abi-Antoun, Aldrich, Garlan, Schmerl, Nahas, Tseng,
2005) as an example. The following architect
requirements are considered:

- Recording, rewriting, updating source data
and creating respective target data.

- The system should be easy maintained.
The first requirement is functional requirement

while the second is non-functional. According to
ArchRQMM all these requirements should be
associated with a respective architecture quality
model with selected quality factors. In our case
study, for illustration only non-functional
requirements is taken into account. The architect
developer selected to use the maintainability factor
with analyzability and modularity sub-factors. For
the CaPiTaLiZe system, the model is designed with
the prototype tool using three styles, as shown in
Figure 3, Figure 4 and Figure 5. We have evaluated
each kind of XMI-based models with similar
measurements of the whole architecture of the basic
metrics described in a previous section. The
evaluation results are given in Table 1. According
to the results given in Table 1, Pipe-Filter style turns
out to be the best choice (scored better for coupling
and complexity). This result is practically significant
as well related to maintainability effort, e.g. low
level of coupling, dependencies among all artifacts
are losse, high number of reused artifacts (ex.
number of Pipe connector instances = 4).
Architecture complexity can be simplified by hiding
dependencies at different layers of abstraction. An
example of that is the combination of two
architectural styles: Pipe-Filter and Client-Server.

Table 1: Architectural Styles Evaluation Results.

Metrics C-S Pipe-Filter C-S and
Pipe-Filter

Coupling 0.748 0.482 0.606
Cohesion 0.450 0.341 0.402

Complexity 0.513 0.362 0.447

From a maintenance perspective, this allows
maintainers to modify and change components
behind other artifacts types (e.g. Connector Pipe)
with minimal impact on the rest of the system.

The selected architectural style (i.e. Pipe-Filter)
for the final mapped system as shown in figure 6 is
tested and validated with the semantic constraints
defined by the ArchRQMM metamodel.

5 CONCLUSIONS

This paper defines ArchRQMM: a metamodel for
evaluating and selecting an appropriate architectural
style and formally evaluating architectural styles.
We have also illustrated the usefulness and
importance of non-functional requirements and
quality criteria in selecting architectural style. We

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

80

 IN OUT

InstanceOf

 PipesAndFilters_Style

 AcceptedData: String

LowerT
Upper OUT

MergeT

 Upper

 Lower Upper
UpperT

Lower

FilterT
 IN OUT

 Lower IN
SplitterT

 Upper

{?} All the connectors used in Pipe and Filter Systems must conform to the PipeT connector type.
 Context Configuration inv: self.subconnectors ->forAll (c|c.oclIsKindOf(PipeT))

{?} A filter cannot be connected to a pipe through more than one IN/OUT port, nor can
 connected filters form a loop.

 PipeT

Source Target

Lower

Context PipeT inv:
self.source->notEmpty() and
self.target ->notEmpty()

Context FilterT inv:
self.IN->notEmpty() or
self.OUT ->notEmpty()

OUT

Source

InputData OutputData

 Capitalization_1: PipesAndFilters_Style

:SpliterT Upper

IN

Source

 :MergeT
 Lower

 :PipeT

Lower
: UpperT

Upper

Lower
: LowerT

Upper

 Lower

 Upper

Source

Source

Target Target

Target

Target

 :FilterT
Target

OUT

Source :FilterT
 Target Source

IN

 :PipeT

 :PipeT :PipeT

 :PipeT :PipeT

Figure 3: Capitalize System of Client-Server Architectural
Style in ArchRQMM.

InstanceOf

[1] One configuration can be defined for the
Server Component
Context Component inv: self.details ->size <=1

Up: ServerT

 : ServerT

 : SpAndMg

 Capitalization_2: ClientServer_Style

: ClientT
: RPC

Lw: ServerT

 Server-Configuration

rcvResult

 sendData getData

rcvData

sendResult

setResult

setData

getResult

sendResultrcvData

sendResultrcvData
t

sendResultrcvData

rcvData

sendResult

setData

getResut

getData

setResut

getLowersetResult

getDatasetResult

getResult

setData

:RPC

:RPC

 DemandData: String

 ClientServer_Style

ClientT
rcvResult

sendData

Request
ServerT

rcvData

 sendResult
Response

Context Client inv:
self.Request->notEmpty()

setData RPC

setResult

getData

getResult
Input Output

*

{?} A client’s sendData provided port is connectable to the RPC’s getData required role, and its
 required port rcvResult is connectable to a RPC’s setResult provided role.

{?} RPC’s setData provided Role is connectable to a server’s rcvData required port and its
required role setResult is connectable to a server’s sendResult provided port.

Context RPC inv:
self.output.size() = 1

Figure 4: Capitalize System of PipesAndFilters
Architectural Style in ArchRQMM.

 Capitalization_3: PipesAndFilters_and_ClientServer_Style

:SpliterT

 :P
ipeT

:Low
erT

 :P
ip

eT

:MergerT

 :P
ipeT

:U
p
perT

 :P
ip

eT

 SplitterMerge_PipesAndFilters_Configuration

: RPC

: ServerT

rcvResult

sendData

setResult

getData

getResultsendResult

InputData

 OutputData

IN

OUT

 Upper

 Upper Lower

setDatarcvData

 Lower

Source
Target

 Upper

Source
Target

Source
Target

Source
Target

 Lower Upper

 Lower
: ClientT

Figure 5: Capitalize System of PipesAndFilters and Client-Server Architectural Style in ArchRQMM.

presented an illustrative example to show the
applicability of the proposed architecture quality
metamodel. The results of the experiments (based on
the Capitalize system with two known styles through
ACME ADL) are encouraging. Since most ADLs

provide important capabilities to express most
structural aspects of software systems but lack
support for architectural styles verification, having a
semi-automated tool to assist in quality evaluation
and selection of architectural styles is very important

ARCHITECTURAL STYLES QUALITY EVALUATION AND SELECTION

81

Figure 6: Validating Capitalize system of Pipe-Filter in
ArchRQMM with ViSAQE.

in software architecture research area.
The limitation of our current approach is the fact

that it only deals with structural properties of
architectural styles and, therefore, it does not support
architectural behavior, automatic generation of
alternatives application models. These are open
issues for our future works.

RFERENCES

Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B.,
Nahas, N., Tseng, T., 2005. Modeling and
Implementing Software Architecture with Acme and
ArchJava. In the 27th International Conference on
Software Engineering, pp.663-669, St Luis, USA.

Alessandro G., Thais, A.B., Awais, R.S., 2006. Driving
and managing architectural decisions with aspects.
ACM SIGSOFT Software Engineering Notes, Vol. 31
No. 5, pp. 30-37.

Alti, A., Khammaci, T., Smeda, A., Bennouar, D., 2007.
Integrating Software Architecture Concepts into the
MDA platform. In ICSOFT’2007, 2nd Int. Conf. on
Software and Technologies, Barcelona, Spain.

Böhme, R. Reussner, R. 2008. Validation of Predictions
with Measurements three Dependability Metrics.
Springer-Verlag, LNCS 4909, pp.14-18.

Buschman, F., Henney, K., Schmidt, D., 2007. Pattern-
Oriented Software Architecture, on Patterns and
Patterns Languages. Wiley Series in Software Design
patterns, Vol.5, August 2007.

Garlan, D., Monroe, R.T., David, W., 2000. ACME:
architectural description of component-based systems.
In Foundations of component based systems, pp. 47–
67. Cambridge University Press.

Grau, G., Franch, X., 2007a. An Evaluation of ADLs on
Modelling Patterns for Software Architecture. In
RISE’07, 3rd Int. Workshop on Rapid Integration of

Software Architecture Engineering, Luxemburg,
LNCS 4063, Springer-Verlag, pp. 24-26.

Grau, G., and Franch, X., 2007b. A Goal-Oriented
Approach for the Generation and Evaluation of
Architectures Alternatives. LNCS, pp. 139-155.

ISO-IEC., 2001. ISO/IEC 9126-1 in Software
Engineering– Part 1: Quality model.

Jihuna, L., Zhenbo, G. Zhao, Z., Zhenhua, Z., Ruijin, P.,
2007. Towards Quantitative Evaluation of UML based
Software Architecture. In 8th ACIS International
Conference, pp.663-669.

Klein, M., Clements, P., and Kazman, R., 2002.
Evaluation Software Architectures: Methods and Case
Studies, Addison Wesley.

Losavio, F., Chirinos, L., Lévy, N., Ramdane-Cherif, A.,
2003. Quality characteristics for software architecture.
Journal of Object Technology, Vol. 2, No.2, pp.133-
150.

Object Management Group., 2005. UML OCL 2.0
Specification: Revised Final Adopted Specification.
http://www.omg.org/docs/ptc /05-06-06.pdf.

Tibermacine, C., Fleurquin, R., and Sadou, S., 2006. On-
Demand Quality-Oriented Assistance in Component-
Based Software Evolution, In the 9th ACM SIGSOFT
CBSE'06, Västeras, Sweden, pp. 294 - 309, LNCS
4063, Springer-Verlag.

Zudan, U., Avgeriou, P., 2008. A Catalog of Architectural
Primitives for Modeling Architectural Patterns,
Information and Software Technology, Vol. 50, pp.
1003F - 1034.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

82

