ON ANALYZING THE DATABASE PERFORMANCE FOR
DIFFERENT CLASSES OF XML DOCUMENTS BASED ON THE
USED STORAGE APPROACH

Hagen Hopfner, Jorg Schad and Essam Mansour
International University Bruchsal, Campus 3, 76646 Bruchsal, Germany

Keywords:

Abstract:

XML Data Management, XML Performance.

With the increasing popularity of XML data also the need for permanent XML document storage grows.

As of today there exist number of different XML storage alternatives ranging from XML enabled relational
database systems over a new class of hybrid database systems providing native storage for XML and relational
data to pure native XML systems. This paper examines how these different storage approaches perform in
respect to the different classes of XML data by devising a new benchmark HYBE with special consideration
to certain features of hybrid database systems. First results indicate that hybrid database systems can deliver
performance which is (almost) equivalent to native XML database systems making them the optimal choice
for small to mid-size companies with the need for both XML and relational data storage.

1 INTRODUCTION

In recent years the amount and usage of XML data
grew rapidly and today it is used for many purposes
such as data transfer, configuration files or to store
information. So, the safe, efficient and reliable stor-
age for such documents becomes more and more im-
portant. Until a few years ago there existed - be-
sides classical file systems - only two options for stor-
ing XML documents: either native XML databases
(e.g. Apache Xindice or Tamino (Schoning, 2003)) or
XML enabled relational databases providing an XML
data type. In the second case XML documents are
either stored as a character large object (clobbing)
or shredded into relational database tables (object re-
lational mapping). Recently large database vendors
such as Oracle or IBM developed another alternative,
the so called hybrid database systems. They store
both, relational data and XML data natively by pro-
viding two separate storage systems. However, all
alternatives have certain advantages and drawbacks.
Choosing the appropriate technique depends on the
application and is a non trivial task. Even though
there exist a number of XML benchmarks they are
usually focused on a specific application domain (e.g.,
financial data) and so far have not considered the ad-
vantages of hybrid systems. Therefore, we here aim
at devising a benchmark considering different char-
acteristics of projects while explicitly including the

Hopfner H., Schad J. and Mansour E. (2009).

features of hybrid systems.

Paper Structure. Section 2 briefly describes related
work. Section 3 discusses the nature of XML data.
Section 4 explains the storage alternatives. Section 5
outlines our newly devised benchmark HYBE. Sec-
tion 6 shows our preliminary results for the different
domains and storage approaches considered.

2 RELATED WORK

As of today there already exists a range of bench-
marks for XML database systems and also a range of
performance analysis has been performed so far.
XBench (Yao et al., 2004) is a family of XML
benchmarks. It generates various types of XML
documents (data-oriented and varying in their size)
and simulates different applications by inserting and
reading data using XQuery. The Michigan Bench-
mark (Runapongsa et al., 2006) runs 45 different
queries (loading, inserting, deleting and updating)
on one large XML document with a recursive struc-
ture. It mostly measures the performance of the
implementation but is not suited to measure across
different systems involving relational databases and
SQL queries. TPox (Nicola et al., 2007) is a do-
main specific benchmark for the financial sector us-
ing FIXML (Cover, 2002). It contains a content gen-

243

ON ANALYZING THE DATABASE PERFORMANCE FOR DIFFERENT CLASSES OF XML DOCUMENTS BASED ON THE USED STORAGE

APPROACH.

In Proceedings of the 4th International Conference on Software and Data Technologies, pages 243-248

DOI: 10.5220/0002252802430248
Copyright © SciTePress

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

erator for different document sizes. The database op-
erations tests include read (XQuery and SQL/XML),
insert, delete and update queries. The systems simu-
lates up to 1,000,000 users to test multiuser perfor-
mance. XMach-1 (Bohme and Rahm, 2001) is an
XQuery based benchmark for native XML databases
and XML-enabled databases focusing on b2b applica-
tions. It simulates a Web application for handling text
files consisting mostly of several document-oriented
XML files. However, as the meta data is handled
in a data-oriented fashion, XMach-1 is not restricted
to document-oriented files only. XMark (Schmidt
et al., 2001) models the database in the back end of
an Internet auction platform. It provides a document
generator for different document types mainly hav-
ing data-oriented characteristics but descriptive text
features include some document oriented features as
well. XMark uses only retrieval queries and does not
include any database updates. As Xmark is executed
as a single user application the execution time of each
query is measured individually but thereby focuses on
the query processing and not the entire database sys-
tem. X007 (Li et al., 2001) is the XML extension of
the 007 benchmark for object-oriented database sys-
tems (Carey et al., 1993). X007 does not model a
specific application. It provides one rather generic
but a customizable (size, complexity, depth) complex
XML file that is fairly regular. So, X007 focuses on
data-oriented features. Issued queries are a means of
retrieving data and do not include update queries.

(Lu et al., 2005; Nicola and Rodrigues, 2006)
analyze the performance with regard to the storage
models and different data requirements. (Nicola and
Rodrigues, 2006) focuses on IBM DB2 and com-
pares its pure XML storage models against shredding
or clobbing. Those studies indicate that clobbing is
best performing if XML documents are always con-
sidered as a whole. Shredding should be used for
fixed schema data as it is often the case with data-
oriented documents. Native XML storage seems to
be the best choice for document-oriented documents
or if the schemata evolve. This view is also supported
by (Serna and Gerrikagoitia, 2005).

3 NATURE OF XML DATA

Different usage scenarios for XML data require
different types of XML documents. They are
classified into document-oriented and data-oriented
(DuCharme, 2004). Some authors also mix these cat-
egories as semistructured XML documents (Bourret,
2005). This differentiation is quite important as each
class poses different requirements to a database and

244

generally different database systems might be ade-
quate for each class. For example, previous research
has shown that data-oriented XML documents can be
stored efficiently in relational database systems while
document-oriented XML documents should be stored
in a native manner (Bourret, 2005). This paper shows
how hybrid database systems fit into this picture.

Data-oriented XML Documents usually focuses
on data for machine processing. Examples include
flight orders or stock quotes. Data-orientation is often
used to transport certain information in a predefined
format. This usually results in a relatively flat ele-
ment hierarchy and regular structure that conforms to
simple schema information. As this schema informa-
tion can be defined precisely for data-oriented XML
data and does not change frequently, it can be easily
mapped into relational database systems.

The focus of Document-oriented XML Documents
is more similar to a document in the usual sense. Doc-
uments often contain much free text. At this, usu-
ally the entire document is of interest. Often they
are made for human consumptions; examples include
books and advertisements (Bourret, 2005). It is usu-
ally less regularly structured. Consequently it is less
precise and frequent schema updates prohibit (or at
least hinder) a mapping into relations. Hence, na-
tive XML database systems are often used for storing
document-oriented XML documents.

Semistructured XML Documents mix the two
other classes (Bourret, 2005). Here part of the doc-
ument is data-oriented while some subparts might
be document-oriented. Access to the data-oriented
segments is still possible for machines while the
document-oriented part might contain additional in-
formation for human readers.

4 XML DATA STORAGE

As mentioned in the previous sections, there exist
various alternatives for storing, retrieving and main-
taining XML documents. A straight forward solution
would be to treat the data as files and storing them in
the normal file system. Collections of different XML
documents could be achieved by a folder hierarchy.
Unfortunately this approach is accompanied by sev-
eral drawbacks such as a complicated search for par-
tial documents or a non appropriate access control.

4.1 Clobbing

Another simple solution is to store the XML doc-
uments as simple streams of characters using a re-
lational database system. For this purpose either a

ON ANALYZING THE DATABASE PERFORMANCE FOR DIFFERENT CLASSES OF XML DOCUMENTS BASED

varchar column could be utilized. Some database
system such as Oracle and DB2 provide an explicit
character large objects (clob) type for storing larger
character streams!. Therefore, the data is outsourced
from the columns itself and just referenced. As clob-
bing interprets XML documents unparsed it faces
similar problems as the file system storage; even
while insertion and retrieval of full documents are
simple and fast, searching or accessing individual el-
ements often requires parsing of the data.

In order to make those operations more feasible,
database developers utilized another idea from rela-
tional databases: indexing (Nicola and Rodrigues,
2006). Those indexes or side tables, as called in DB2,
capture part of the structure of the XML document
and thereby make lookup and search over those ele-
ments independent from re-parsing the data. Unfor-
tunately, those tables require parsing on document in-
sertion. According to (Nicola and Rodrigues, 2006)
this slows down insertions by a factor 1.3. Indexing
also requires additional storage space. In the extreme
case the entire document is indexed?, but this requires
at least double the storage space of the original data.

Update queries (if supported at all) are usually
very slow as often the entire document has to rein-
serted into the database (cf. (Nicola and Rodrigues,
2006; Chen et al., 2007)). When comparing the dif-
ferent XML characteristics we do not expect much
difference for the non-indexed clobbing as there the
schema or characteristics or not fully considered.
For the indexed clobbing we expect the data-oriented
XML documents to deliver better performance as the
index is built based on schema information which is
more regular for data-oriented XML documents.

Despite those issues clobbing is regularly used for
storing XML Data especially in cases where only en-
tire documents are of relevance. Also with clobbing
the original form is preserved which might be re-
quired by company or legal policies.

4.2 Shredding

Shredding is also referred to as object-relational map-
ping or structured storage of XML documents. It is
the practice of converting XML documents into a re-
lational data format. This approach exploits the ex-
isting object-relational database technology and pro-
vides an interface for XML on top. Most commercial
database systems support shredding. Unfortunately, it

lyarchar usually supports data up to 3-5 KB while
clob columns in Oracle and DB2 support up to 2 GB of
data (Chen et al., 2007).

2This would be equivalent to the document being stored
in using an object relational mapping.

ON THE USED STORAGE APPROACH

has some drawbacks as well. It requires a complex
table structure to represent one to many relationships.
A similar problem occurs with nested and/or recursive
XML structures (Nicola and van der Linden, 2005, p.
2). Also it usually requires a fixed schema to derive
the XML to relational mapping which is hard to mod-
ify later. Queries usually involve many time consum-
ing joins to collect all requested data. This directly
influence the performance.

Shredding requires more storage space due to the
representation of sparse XML documents (not all sub-
elements are presented). However, shredding simple
data-oriented XML documents can sometimes even
reduce the storage consumptions as tags are not re-
peated. So, shredding is a suitable storage model for
small, fixed-schema XML documents that result in a
simple relational table mapping. However, it gener-
ally reduces the flexibility of the XML data format
and results in worse performance when compared to
other approaches.

In this setting support for XQuery or XPath
queries requires those queries to be rewritten as SQL
queries on the underlying tables. The result then has
to be re-transformed to XML which is often done, e.g.
in Oracle 11g (Lee, 2007, p. 16 ff.), via SQL/XML
functionality.

4.3 Native XML Storage

As there exists no formal definition for “Native XML
Databases” (XML DB) the term is often used for mar-
keting reason for very different products. It was prob-
ably coined by the German Software AG for their first
release of the Tamino XML Server in 1999 (Schoning,
2003). A widely used and cited definition is the one
by the XMLDB organization. It is based on the (log-
ical) model for an XML document — as opposed to
the data in that document — and stores and retrieves
documents according to that model (Bourret, 2005).
At a minimum, the model must include elements, at-
tributes, PCDATA, and document order. Examples of
such models are the XPath data model, the XML In-
foset, and the models implied by the DOM and the
events in SAX 1.0. An XML DB has an XML docu-
ment as its fundamental unit of (logical) storage, just
as a relational database has a row in a table as its
fundamental unit of (logical) storage. However, it is
not required to have any particular underlying phys-
ical storage model. For example, it can be built on
a relational, hierarchical, or object-oriented database,
or use a proprietary storage format such as indexed,
compressed files. A native XML database can store
XML documents without any limitation to the under-
lying structure and allows performant access to this

245

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

XML structure.

Many of those systems use a hierarchical data
model so for example Tamino (Schoning, 2003) or
DB2 (Nicola and van der Linden, 2005). There-
fore, the XML documents are parsed and the data is
stored according to the underlying structural model.
This natural representation makes it suitable for both
document- and data-oriented XML documents and
provides flexibility regarding the schema information
as this is most often derived from the data itself.

As the derivation of such model requires a parsed
data representation insertion times are often slower as
compared to clobbing without indexing (Nicola and
Rodrigues, 2006, p. 4), but this approach results in
superior query performance.

4.4 Hybrid XML Storage

Hybrid XML storage does not define another ap-
proach for storing XML documents. It is done com-
parably to native XML data storage but actually in-
troduces two separate storage engines into a database
system: One for relational data and another for native
XML storage. This results in a combination, which
is invisible to the user. Often they support different
models specifying how the XML document should
be stored for different needs. Oracle, for example,
supports three different storage models for different
needs. The “Hybrid Idea” was first introduced by Or-
acle with their 10g release® and IBM with DB2 9. As
of today hybrid systems are also available from other
vendors (e.g., Microsoft SQL Server 2007).

The hybrid database architecture is illustrated in
Figure 1. It usually provides distinct interfaces for
XML and for relational data. These are then com-
piled into one common query format which can then
be executed against both the relational and XML stor-
age. There is no translation of XQuery into SQL as
in the case of shredding. Both data formats can be
be queried via both interfaces (e.g., XQuery on rela-
tional data and SQL on XML documents). It is also
possible to join XML documents and relational data
(Nicola and van der Linden, 2005).

The underlying storage is often based on hierar-
chical models to match the XML structure. Here of-
ten the same set of features is supported as in native
XML databases. The XML data type can be used as
a normal data type in table column definitions but the
XML documents are stored separately in a postparsed
representation. Consequently, a parsing at insertion
time is required. However, there is no need to parse
the data at the point of query execution.

3Even though we would not consider the storage concept
of 10g to be native as it utilizes shredding.

246

XQuery
Interface XML

Data ~_
Management
Server ' >

- - I
H >
) [
¢ =3
AN J
Client [
i y > saL Relational

Interface Data
Storage

.

Figure 1: General Hybrid Database Architecture.

S BECHMARKING

To evaluate the performance of the different XML
data storage approaches we devised a new bench-
mark called HYBE. It explicitly includes hybrid
systems in the performance analysis and supports
several query alternatives such as XPath, XQuery,
SQL/XML, XUpdate, W3C XQuery Update Facility.
HYBE consists of two parts: 1) a feature list con-
sidering the general functionality of the storage ap-
proach or database system and 2) a performance anal-
ysis with a fixed set of queries measuring the perfor-
mance. The considered features were: maximal com-
plexity of XML documents, support for schema infor-
mation, support for different query languages, support
for updating queries, and support for combining XML
and relational data.

The query sets used for performance analyses
comprised: inserting 100 documents into the database
(sequentially and batch), retrieving a full document
specified by an ID, retrieving a specified value via
XPath and XQuery expressions (indexed and non-
indexed) and via SQL/XML, updating a single spec-
ified value using XUpdate and W3C Update Facility,
and queries that combine relational and XML data.

For a more detailed description of the features and
query sets of HYBE please consider (Schad, 2008).

Due to the differences in database performance
and requirements of different XML document cat-
egories we considered the two major classes in
our benchmark described in Section 3: data- and
document-oriented XML documents.

The data-oriented documents were generated by
using Toxgene (Barbosa et al., 2002). The generated
documents are highly regular and the corresponding
schema information can simply be derived automat-
ically as the element hierarchy is flat and does not
change between different documents. Each document
has an average size of 25 to 50 Byte and a maximum
element depth of four.

For document-orientation we used the XML gen-
erator of XMark. Still we were not looking for one

ON ANALYZING THE DATABASE PERFORMANCE FOR DIFFERENT CLASSES OF XML DOCUMENTS BASED

very large file containing all the data but rather split
it into 500 smaller documents. Each resulting doc-
ument had a size between 150 and 700 Byte and an
element depth of less than ten elements. Furthermore,
some schema variation (when derived automatically)
is present as not all elements are mandatory, but we
kept the schema variation intentionally low to keep
the results interpretable. However, we assume a per-
formance advantage with more evolving schemata for
hybrid and native systems.

6 PRELIMINARY RESULTS

As the target of this research was to compare the per-
formance of storage alternatives rather than the per-
formance of systems, we decided to use only a sin-
gle DBMS. We choose IBM’s DB2 9.5 as it supports
clobbing, shredding, and the hybrid storage.

//

=

1000000

100000

10000 hybrid storage (data orientec

clobbing (document oriented)
clobbing (data oriented)

pure XML storage (document oriented)
pure XML storage (data oriented)

1000 -
100 - o

10 1 -
1+

Insert
(100
documents)
Retrieve
(100
documents)
Query Xpath
(100
documents)
Update
element
(100
document)

Figure 2: Average time per operation per storage alterna-
tive.

We ran each query of our query set (compare Sec-
tion 5) 100 times and in order to check for and in-
corporate speedup effects over time (i.e., caused by
DBMS optimization and buffering as it is done in real
world applications) we repeated each run. These re-
sulting average times are shown in Figure 2.

To compare the different storage approaches two
different views were used: first the different queries
were compared for each storage option visualizing the
different characteristics proposed above. As a next
step we compared the different storage options for
each query visualizing the performance characteris-
tic for each query type. This is especially interesting
when it known before hand that the main operation
for XML data in a certain project will be inserting.

The analysis of different queries per storage op-
tion shows that the hybrid XML storage has per-
formance characteristics comparable to native XML
storage (c.f., (Schad, 2008)). It performs better
for data-oriented documents (less complex parsing)
but still reasonably well (especially retrieval) for
document-oriented documents. The execution times

ON THE USED STORAGE APPROACH

differed around a factor of 3 to 5 when the entire doc-
ument was considered. For node specific operations
the factor was roughly 1.2. Remember, the document-
oriented data was a factor of 40 larger, which is a com-
mon ratio in real world applications as well.

The XML Extender Shredding storage could not
handle our document-oriented documents as the map-
ping probably resulted in too many table columns.
Therefore, we could not compare execution times of
data and document-oriented data. Still insertion times
were relatively long as they require a parsed repre-
sentation and creation of a (possibly) complex table
structure and full document retrieval consumes the
most time when compared to the other alternatives.
This results from number of join operations which are
required. Still for a number of small data-oriented
documents it performed reasonably well.

For document insertion we could confirm that
non-indexed clobbing is fasted if concerned with full
documents insertion and retrieval. It is about 1.5 to
2 times faster than the hybrid XML storage and al-
most 3.5 times faster than the XML Extender. Still
considering the effort of parsing XML data, this gap
is still considerably well and is the case where we re-
quire parsing in the clobbing setting as well it actually
performs worse than the hybrid XML solution. The
execution times for full document retrieval also left a
similar picture. However, the differences were a lit-
tle lower (between 1.3 and 1.5) when compared to the
hybrid storage but significantly higher for schredding
(around 2 to 3) as here a full document retrieval re-
quires a number of join operations. However, without
indexes XML specific queries such as XQuery con-
sume a lot of time. Due to the XML parsing at query
time XPath queries to a certain node was a factor of
more than 20 times slower when compared to the hy-
brid and shredded storage. Here the hybrid storage
performs best followed by shredding (still around two
times slower). Both approaches can naturally access
individual nodes and therefore the difference between
document and data-oriented documents is here quite
low. Updating of individual nodes shows the same
picture as a parsed representation is required, too.

7 CONCLUSIONS

In this paper we presented a performance comparison
of the currently existing storage alternatives for XML
data in databases. We firstly described the characteris-
tics of the most important XML document classes that
build the basis of HYBE. To the best of our knowl-
edge, HYBE is the first benchmark that evaluates the
hybrid storage approach. It was then used for rela-

247

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

tively measuring the differences between the storage
alternatives regarding different query types.

Our results indicate that it is important to con-
sider the XML storage approach individually for each
project. A main distinction is whether the database
has to “understand” the data or can just consider them
as one large file. Other important points to consider
are, e.g., read vs. write or the update frequency.

Clobbing and shredding are limited to certain
characteristics and more or less suitable for data-
oriented documents. Hybrid systems are a good
choice for document-oriented documents. Also hy-
brid systems offer often more flexibility as they sup-
port a wider range of features especially in cases
where XML and relational data must be combined.

As the focus of this study was the comparison of
different approaches it is interesting to compare dif-
ferent implementations of those approaches by differ-
ent products such as Oracle’s XML DB, IBM’s DB2
and Microsoft’s SQL Server. Furthermore, we plan to
extend the query set and extend the XML data used
(e.g., different document sizes). Another issue is the
evolution of XML schemata when performing update
queries.

Finally, we plan to observe index related perfor-
mances including speed-up and time for index cre-
ation. Here we assume that those results will vary
significantly across different storage options.

REFERENCES

Barbosa, D., Mendelzon, A. O., Keenleyside, J., and Lyons,
K. (2002). ToXgene: An extensible template-based
data generator for XML. In WebDB 2002 Proc., pages
49-54. ACM.

Bohme, T. and Rahm, E. (2001). XMach-1: A Benchmark
for XML Data Management. In BTW 2001 Proc.,
pages 264-273. Springer.

Bourret, R. (2005). XML and Databases. online article.
http://www.rpbourret.com/xml/XMLAndDa
tabases.htm.

Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The
007 Benchmark. ACM SIGMOD Record, 22(2):12—
21.

Chen, W.-J., Sammartino, A., Goutev, D., Hendricks, F.,
Komi, 1., Wei, M.-P., and Ahuja, R. (2007). DB2 9
pureXML Guide. IBM redbooks.

Cover, R. (2002). FIXML - A Markup Language for
the FIX Application Message Layer. Cover pages.
xml.coverpages.org/fixml.html.

DuCharme, B. (2004). Documents vs. Data, Schemas vs.
Schemas. XML 2004, pages 1554—4648.

Lee, G. (2007). Oracle Database 11g XML DB Technical
Overview. Oracle Corportion.

248

Li, Y. G, Bressan, S., Dobbie, G., Lacroix, Z., Lee, M. L.,
Nambiar, U., and Wadhwa, B. (2001). XOO7: apply-
ing OO7 benchmark to XML query processing tool.
In CIKM 2001, pages 167-174.

Lu, H., Yu, J., Wang, G., Zheng, S., Jiang, H., Yu, G., and
Zhou, A. (2005). What makes the differences: bench-
marking XML database implementations. TOIT,
5(1):154-194.

Nicola, M., Kogan, 1., and Schiefer, B. (2007). An XML
transaction processing benchmark. In SIGMOD 2007,
pages 937-948. ACM.

Nicola, M. and Rodrigues, V. (2006). A performance com-
parison of DB2 9 pureXML and CLOB or shredded
XML storage.

Nicola, M. and van der Linden, B. (2005). Native XML
support in DB2 universal database. In VLDB 2005,
pages 1164-1174.

Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y.,
and Al-Khalifa, S. (2006). The Michigan benchmark:
towards XML query performance diagnostics. Infor-
mation Systems, 31(2):73-97.

Schad, J. (2008). XML-Document Management in
Databases — A Performance Evaluation for Hybrid
Database Systems. Bachelor thesis, IU in Germany,
School of IT, Bruchsal, Germany.

Schmidt, A. R., Waas, F., Kersten, M. L., Florescu, D.,
Manolescu, I., Carey, M. J., and Busse, R. (2001).
The XML Benchmark Project. Technical Report INS-
R0103, CWI, Amsterdam.

Schoning, H. (2003). Tamino-Software AG’s Native XML
Server. In XML Data Management, chapter 2.
Addison-Wesley.

Serna, A. and Gerrikagoitia, J. K. (2005). David & Go-
liath: A Comparison Of XML-Enabled and native
XML Data Management Techniques. XML Journal.
xml.sys-con.com/node/104980.

Yao, B. B., Ozsu, M. T., and Khandelwal, N. (2004).
XBench Benchmark and Performance Testing of
XML DBMSs. In ICDE 2004, pages 621-632.

