
MONTE CARLO PROJECTIVE CLUSTERING OF TEXTS

Vladimír Ljubopytnov and Jaroslav Pokorný
Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

Keywords: Document clustering, Projective cluster, Web snippets, Web mining, Monte Carlo method.

Abstract: In this paper we propose a new, improved version of a Monte Carlo projective clustering algorithm – DOC.
DOC was designed for general vector data and we extend it to deal with variable dimension significance and
use it in web search snippets clustering. We discuss advantages and weaknesses of our approach with
respect to known algorithms.

1 INTRODUCTION

Document or text clustering is a field of Information
Retrieval (IR) (Manning, Raghavan, and Schütze,
2008) that optimizes search in custom document
collections as well as World Wide Web. There are
collections of high-dimensional data (and texts are
among them) that inherently tend to group in
subspaces. It is common in IR to store texts as
vectors of numbers indicating the presence or the
number of terms (vector space model of IR). The
dimensions of these vectors correspond to index
terms (words or phrases) and subspaces shared by
multiple texts may define a distinctive and
interesting topic. Unfortunately, clustering suffers
from the curse of dimensionality. This is the
motivation behind using a projective clustering
algorithm.

We chose DOC, a scalable Monte Carlo method
for clustering coordinate vectors introduced by
Procopiuc (Procopiuc et al, 2002). It is linear in the
number entities to be clustered and polynomial in
dimension (the exponent can be changed to
accommodate high-dimension data more easily).
Subspaces recognized by DOC are perpendicular to
the coordinate axes. In text clustering, information
about dimension (word or phrase) significance is
available. Thus, it made sense to extend the
algorithm to include this data in cluster evaluation.

One can observe that clustering of the results
returned by search engines becomes prevailing in
recent times. The goal of our research is to develop a
more efficient clustering Web snippets.

In Section 2 we give a short overview of the
state-of-art algorithms for document clustering,

particularly for cases in which documents are Web
snippets. Then in Section 3 we introduce the basic
DOC algorithm and present our variant – DocDOC
with an application on Web snippets. We also
discuss possibilities of its usage. Finally, we discuss
its position among existing approaches and mention
some other possibilities of its application.

2 RELATED WORKS

Today search engines return with a ranked list of
search results also some contextual information, in
the form of a Web page excerpt, the so called
snippet. Web-snippet clustering is an innovative
approach to help users in searching the Web. It
consists of clustering the snippets returned by a
(meta-) search engine into a hierarchy of folders
which are labelled with a term. The term expresses
latent semantics of the folder and of the
corresponding Web pages contained in the folder.
The folder labels vary from a bag of words to
variable-length sentences. On the other hand,
snippets are often hardly representative of the whole
document content, and this may in some cases
seriously worsen the quality of the clusters.

Remind that search engine result summarizations
is a subcategory of Web content mining. There are
various approaches to snippets clustering in
literature. Zamir and Etzioni presented the Suffix
Tree Clustering (STC) algorithm (Zamir and Etzioni,
1998). It uses suffix tree to identify groups of
documents sharing a common phrase. These groups
are merged if their overlap exceeds given threshold
using a single link method. The phrase awareness of

237
Ljubopytnov V. and Pokorný J. (2009).
MONTE CARLO PROJECTIVE CLUSTERING OF TEXTS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 237-242
DOI: 10.5220/0002247602370242
Copyright c© SciTePress

this algorithm caused a positive jump in quality
when compared to classical algorithms. However, it
may suffer from the chaining effect of the single
linkage in some cases and the cluster scoring is
based on phrase length and cluster size only.

In 2003, Maslowska introduced Hierarchical
STC, which replaces single link merging with
topological ordering of a directed cluster graph
(Maslowska, 2003). The edges between base clusters
are defined by inclusion ratio of respective base
clusters and again, a threshold ratio is given. Fully
overlapping base clusters are merged in advance.
The result is a hierarchy, where those clusters that
are not included by any other are on top.

The Lingo algorithm (Osinski, Stefanowski, and
Weiss, 2004) uses singular vector decomposition
(SVD) to find correlating index term groups and
selects best among them while preferring phrases.
Phrases are discovered efficiently using a suffix
array. Roughly said, found phrases are used to create
cluster labels and documents are assigned to their
best matching label. This approach (description-
first) concentrates on label quality which suffers in
classical algorithms. It is designed for web snippet
clustering where the time costly SVD does not show
itself.

A more advanced algorithm is described in
(Mecca, Raunich, and Pappalardo, 2007). Its main
contribution is a novel strategy – called dynamic
SVD clustering – to discover the optimal number of
singular values to be used for clustering purposes.
Authors apply the algorithm also on the full
documents and justify the idea that clustering based
on snippets has inherently lower quality than on full
documents. The algorithm was used in the Noodles
system - a clustering engine for Web and desktop
searches.

Very efficient online snippet clustering based on
directed probability Graphs is described in (Li and
Yao, 2006)

Web-snippet clustering methods are usually
classified in according to two dimensions: words vs.
terms and flat vs. hierarchical (Ferragin and Gulli,
2006). Four categories of approaches are
distinguished:
1. Word-Based and Flat Clustering
2. Term-Based and Flat Clustering
3. Word-Based and Hierarchical Clustering
4. Term-Based and Hierarchical Clustering

Our considerations concern rather the second
category of methods. A lot of background material
to clustering, including web snippets, can be found
in (Húsek et al, 2007).

3 DocDOC CLUSTERING
ALGORITHM

In this chapter we describe the original DOC
algorithm and its variant appropriate for Web
snippets.

3.1 DOC Algorithm

The DOC algorithm operates with projective clusters
that additionally store information about bound
dimensions (dimensions where all vectors are
sufficiently near with respect to a pre-defined value).
When looking for a cluster, it randomly guesses a
combination of vectors, finds their bound
dimensions, and returns all vectors that share bound
dimensions with those randomly selected. Multiple
guesses are made to ensure optimality of returned
cluster with proven probability. A key feature of this
algorithm is the use of special quality function that
takes cluster size as well as bound dimensions into
account. This function is called β-balanced. In other
words, a β-balanced function is any function

μ: R × R → R
increasing in both parameters, that fulfils two
conditions:

1. μ(0, 0) = 0
2. μ(βa, b + 1) = μ(a, b)

for 0 ≤ β < 1 and any non-negative a and b. For
example, the function defined as

μ(a, b) = a(1/β)b

is β-balanced.
When applied to cluster size |C| and

dimensionality |D| it returns the same quality as for
smaller cluster with size β|C| and dimensionality
increased by one (|D|+1). β specifies a trade-off
between cluster size and dimension and is one of
algorithm parameters. The other – α – sets minimal
recognized relative cluster size. DOC algorithm is
proven to return an optimal projective cluster (or an
approximation of it) with probability at least 50%, if
1/4n ≤ β < 1/2 (n denotes total number of
dimensions) and 0 ≤ α < 1. For full detail see
(Procopiuc et al, 2002).

3.2 Adapting DOC to Text

Here presented extension of DOC, called DocDOC,
was introduced in (Ljubopytnov, 2006). When
adapting DOC to web snippets, some obvious
observations were done:

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

238

 In web search snippets, multiple term
occurrences hardly influence term importance.
Thus, term frequency (tf) was discarded (in
contrast with widely used tf×idf metric),
leaving only dimension bound weighing in
play. This enables use of Boolean model with
weights and efficient bit array representation.

 Only shared presence of term defines bound
dimension as association power of non-present
terms is next to zero. This makes determining
bound dimensions a matter of bitwise AND
operation.

 A change to the quality function that favours
better weighed dimensions should be
employed to make full use of significance
estimates (idf, etc.).

First two points are trivial but the third step
requires further explanation. We mentioned that β
parameter is the trade-off between cluster size and
dimension. Having dimensions of different value, it
is this trade-off that should be set individually for
each dimension to determine projective cluster
quality. If we have a good, preferred dimension, it
should be more costly to throw away. Fewer objects
are required to stay in the cluster to keep its quality
if we try to bind this highly priced dimension. Thus,
we see that for better weighed dimensions we want
smaller β.

In the DocDOC algorithm, dimension weights
are transformed to fit into the interval [1/4n; 1/2) as
required for the β value in DOC and stored in a
function

β’: Dall → [1/4n; 1/2)

where Dall is set of all dimensions. β’-balanced
function is any function

μ : R × P(Dall) → R

increasing in both parameters (in case of second
parameter, natural set ordering is assumed), that
fulfils two conditions:

1. μ(0,Ø) = 0
2. μ(β’(i)a, D ∪ {i}) = μ(a, D)

for 0 ≤ β < 1 and any non-negative a and D subset of
Dall. For example, the function defined as

μ‘(a, D) = a Πi ∈D1/ β’(i)

is β’ balanced.
Proof of correctness of this change is easy. The

key is that we keep the β’ values in required range as
they vary across dimensions. Once we ensure this,
the proof works identically as for original DOC in
(Procopiuc et al, 2002).

Algorithm 1: DocDOC procedure.

Procedure DocDOC(P, dim_score, α, β)
1. r := log(2n)/ log(1/2β);
2. m := (2/α)r ln 4;
3. hash := Ø;
4. best_quality := −1;
5. for i := 1 to 2/α do
 begin
 Randomly select p ∈ P;
 for j := 1 to m do
 begin

Randomly select X ⊆ P, |X| = r;
D := {i| |qi − pi| ≤ w, ∀q ∈ X};
if D ∈ hash
then quality = hash(D);
else begin
 C := Bp,D ∩ P;
 quality := μ’(|C|,D,dim_score);
 hash(D) := quality;
 end
if best_quality < quality
then begin
 best_quality := quality;
 C* := C;
 D* := D;

 end
 end
 end
6. return (C*,D*)

DocDOC parameters remain the same, i.e. β is used
to set the lower bound for β’ values (best dimension
β). The DocDOC Procedure is described by
Algorithm 1.

3.3 Phrase Discovery

Lingo makes use of phrases and evaluates them
using SVD (correlation strength). STC sets the
phrase score according to its length. Although such
pre-processing introduces additional time cost, we
decided to use a more thorough phrase evaluation
scheme based on the LLR-test (Log Likelihood
Ratio) described, e.g. in (Cox and Hinkley, 1974).

We look at all bigrams and trigrams and we
study the hypothesis of them being a random
collocation (their word occurrences are
independent). Using G-test, we determine the
likelihood ratio of this hypothesis:

G = Oi log(Oi/Ei),
where Oi is observed event frequency and Ei is
expected event frequency according to the
hypothesis, i iterates over all possible events. For a
bigram w1w2 we have a contingency table in Table
1 describing a number of situations when w1 does or

MONTE CARLO PROJECTIVE CLUSTERING OF TEXTS

239

Table 3: The best scored phrases for queries “salsa” and “clinton”.

”salsa” (912) score ”clinton” (300) score
salsa danc 18.84 clinton county 25.03
salsa congres 14.09 bill clinton 23.03
salsa recip 12.87 hillary clinton 21.82
salsa festival 12.06 clinton presidential 19.66
salsa lesson 11.71 new york 19.57
danc salsa 10.58 clinton porti 18.23
salsa verd 10.47 united stat 17.42
danc 10.43 barack obama 17.03
salsa music 10.43 clinton lead 16.39
music 10.26 clinton say 16.39
salsa class 9.85 clinton administration 16.39
latin 9.82 whit hous 16.26
salsa dancer 9.78 clinton hill 15.37
salsa club 9.75 clinton memorial 14.37
event 9.45 clinton jumped 14.16
recip 9.23 rodham clinton 14.16
salsa scen 8.99 clinton impeachment 14.16
latin danc 8.82 clinton st 14.16
cha cha 8.76 presidential rac 13.20
san francisco 8.40 chamber of commerc 13.16

does not precede w2 and w2 does or does not
supersede w1.

Table 1: Contingence table for a bigram w1w2.

 w2 ¬w2
w1 n11 n12
¬w1 n21 n22

If we know the bigram w1w2 occurrence

frequency c12, the occurrences of words w1: c1, w2:
c2, and the total bigram count B we can write the
contingency table as it is on Table 2.

Table 2: Improved contingence table for a bigram w1w2.

For the independence hypothesis, expected event
frequencies are

*n nip pjmij B
=

where nip = Σj nij and npj =Σi nij. We execute the G-
test on these values:

log(/)G n n mij ij ij
ij

=∑

The higher the value, the more the probability of
bigram being not random co-occurrence but a
phrase.

For trigrams, the situation is more complicated
as there can be as much as four models of trigram
words independence (one for mutual independence
of all words in trigram and three for independence of
one word on other two that correlate). Contingency
table is three dimensional and sub-bigram
frequencies are needed for its construction.
Hypothesis with best (lowest) score is returned (it is
nearest to reality).

For longer n-grams, the complexity keeps
growing. We settled with bigrams and trigrams only.
If a frequent quadgram is present in the text, it’s first
and second trigram will rank high and they will be
associated together by DocDOC, but only in case,
that there are no stoplist words at their boundaries.
Otherwise, most high ranking phrases contain a stop
word on its boundary, thus being quite useless (e.g.,
”lot of ”, ”in the”).

Scores obtained by G-test tend to grow rapidly,
so we logarithmized them to get a reasonable scale
and combined with inverted document frequency.

Tests presented here have been performed with a
sample of 912 snippets obtained by Google for the
query “salsa” and 300 snippets for the query
“clinton”. The results are presented in Table 3.

3.4 Optimizations

Web snippets demonstrate strong regularities;
dimension (word, phrase) combinations appear

n11 n12 c12 c1 − c12
 n21 n22 = c2 − c12 B − c1 − c2 + c12

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

240

repetitively when trying to guess an optimal cluster.
In contrast with original DOC, we use a hash
structure to store previously calculated dimension
qualities. That saves us a costly data scan per each
cluster quality computation. Hash is indexed by used
dimension combinations.

The benefit of dimension caching may be worth
over 50% of data scans for web snippets. It grows if
the DocDOC procedure is called multiple times on
the same data (i.e. to bump the optimality
probability). The beauty of dimension cache is also
that when sorted, it gives a ranked list of
overlapping clusters that is identical to STC base
clusters, only with 100% overlapping clusters
merged. This is very important, since that makes
DocDOC identical to STC with respect to the result
achieved (when identical postprocessing is done, i.e.
hierarchization).

3.5 Usage and Output

The DOC procedure returns one cluster at a time.
There are three possibilities how to use it:

 greedy – found clusters are removed from
collection, this relies heavily on cluster quality
estimation by the quality function, valuable
information can be lost, must be run several
times to increase the guaranteed 50%+
probability of returning an optimal

 cluster (empirically, the algorithm returns good
clusters all the time, but potentially destroying
the optimal one), runs while there is enough
data (with collection size percentage as
threshold) and its running time may vary
substantially.

 overlapping – every found cluster is
remembered in a list sorted by quality and the
procedure is run few times. This improves
result stability and speed, loses no information
and can be dealt with as with merged STC
base clusters, that is, merging and rescoring
until no clusters overlap enough.

Final task is creating cluster labels from (C, D)
projective clusters. That is done by choosing all or
best ranking dimensions (phrases, words) from D.
As in HSTC, clusters can be topologically sorted to
get a nice cluster hierarchy.

4 COMPARISON
OF ALGORITHMS

We have made the following observations:

 Clusters found by DOC are exactly those
generated by STC, but merged in case of 100%
overlap.

 Suffix arrays are 5 times more efficient with
respect to memory usage than suffix tree.

 DocDOC has a potential for more flexible
ranking than STC.

 The quality function introduced in DocDOC
defines different ordering of clusters than STC.

 DocDOC is better parallelizable and scalable.
 DocDOC need less memory footprint than
Lingo and maybe STC.

 The quality function introduced in DocDOC
defines different ordering of clusters than STC.

5 CONCLUSIONS

We proposed and implemented an improved version
of the DOC algorithm used on Web snippets in our
experiments. We have shown that it has a number of
better properties than other algorithms of this
category.

Since discovering knowledge from and about
Web is one of the basic abilities of an intelligent
agent, an applicability of the algorithm can be found
e.g. in semantic Web services.

Although named DocDOC, the algorithm has far
greater usability than just texts. If used on vector
data (as opposed to the Boolean model, but keeping
the dimension weight information), there are
applications across various disciplines (i.e.
medicine, data mining) that may benefit from this
algorithm.

ACKNOWLEDGEMENTS

This research was supported in part by GACR grant
201/09/0990.

REFERENCES

Cox, D. R. and Hinkley, D. V: Theoretical Statistics,
Chapman and Hall, 1974.

Ferragin, P. and Gulli, A.: A personalized search engine
based on Web-snippet hierarchical clustering. In: Proc.
of 14th International Conference on World Wide Web
2005, Chiba, Japan, pp. 801-810.

Húsek, D., Pokorný, J., Řezanková, H., Snášel, V.: Data
Clustering: From Documents to the Web. Chapter 1 in
book Web Data Management Practices: Emerging
Techniques and Technologies, A. Vakali and Pallis
Eds., Idea Group Inc., 2007, p. 1-33.

MONTE CARLO PROJECTIVE CLUSTERING OF TEXTS

241

Li, J., Yao, T.: An Efficient Token-based Approach for
Web-Snippet Clustering. In: Proc, of the Second
International Conference on Semantics, Knowledge,
and Grid (SKG'06), 2006, 6 pages.

Ljubopytnov, V.: Webmining. Master thesis, Charles
University, Prague, 2007 (In Czech).

Manning, Ch., D., Raghavan, P., and Schütze, H. (2008).
Introduction to Information Retrieval. Cambridge
University Press, 2008.

Mecca, G., Raunich, S., and Pappalardo, A.: A new
algorithm for clustering search results. Data &
Knowledge Engineering. Volume 62, Issue 3
(September 2007) pp. 504-522, 2007

Maslowska, I.: Phrase-based hierarchical clustering of web
search results. In: Advances in Information Retrieval –
ECIR 2003, LNCS, vol.2633, Springer-Verlag Berlin,
2003, pp. 555-562

Osinski, O., Stefanowski, J., and Weiss, D.: Lingo: Search
results clustering algorithm based on singular value
decomposition. In: Proceedings of the International
Conference on Intelligent Information Systems
(IIPWM), 2004, pp. 369–377.

Procopiuc, C, Jones, M., Agarwal, P., and Murali. T.: A
Monte Carlo algorithm for fast projective clustering.
In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data,
New York, NY, USA, ACM Press, 2002, pp. 418–427.

Zamir O. and Etzioni, O.: Web document clustering: A
feasibility demonstration. In: Proceedings of ACM
SIGIR Conf. on Research and Development in
Information Retrieval, 1998, pp. 46-54.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

242

