
MOBILE COMMUNICATORS FOR DISABLED PEOPLE

Miguel A. Laguna and Bruno González-Baixauli
University of Valladolid, Spain

Keywords: Software Product Line, Feature Model, Mobile System, Communicator.

Abstract: Software product lines are a proven development paradigm in industrial environments. However, its

application in small organizations is not easy. Our approach uses the package merge mechanism of the

UML 2 meta-model as representation of the variability in the product line. The structure of the variability

models is directly reflected in the relationships between packages in the architectural models, so that the

traceability of configuration decisions is straightforward. A similar strategy is applied at the implementation

level, using packages of partial classes. The combination of these techniques and the conventional IDE tools

make the developments of product lines in small organizations easier as it removes the need for specialized

tools and personnel. This article reports a successful experience with a communicator product line case

study, representative of the mobile systems domain. People with certain communication problems can use

these systems as a low-cost help in their everyday life. As problems vary from a person to another, a

communicator product line is the indicated solution, allowing the adequate personalization of the final

application to the disability of each concrete person.

1 INTRODUCTION

Software product lines (SPL) are a proven reuse

approach in industrial environments, due to the

combination of a systematic development and the

reuse of coarse-grained components that include the

common and variable parts of the product line
(Bosch, 2000). However, this approach is complex

and requires a great effort by the companies that take

it on. The research we carry out in the GIRO

research group aims to simplify the change from a

conventional development process into one that

benefits from the product line advantages in small

and medium enterprises (SME) or organizations. For

this reason, we have proposed, among other

initiatives, an adaptation of the Unified Process to

include specific techniques of Product Line

Engineering in a process parallel to Application

Engineering (Laguna et al., 2003).
As specific SPL development techniques, we

must pay special attention to the variability and

traceability aspects at each abstraction level. We

need models that represent the product line and a

mechanism to obtain the configuration of features

that represent the best combination of variants for a

specific application. Additionally, we must connect

the optional features with the related variation points

of the architectural models that implement the

product line through traceability links. There is wide

agreement about using a model that shows, in an

explicit and hierarchical way, the variability by

means of a feature model in some of their multiple

versions like FODA (Kang et al., 1990) or FORM

(Kang et al., 1998). FODA features are nodes of a

tree, related by various types of edges (Figure 1).

The tree root is called the root feature, or concept.

The edges are used to decompose this concept into

more detailed features. There are AND, X-OR and

optional decompositions. Several extensions have
been proposed, using directed acyclic graphs instead

of simple trees or changing the visual syntax.

Registered

CreditCard
ElectronicCheque

PaymentType

DebitCard

Guest

Payment

Figure 1: A simple FODA feature diagram.

5

Laguna M. and González-Baixauli B. (2009).
MOBILE COMMUNICATORS FOR DISABLED PEOPLE.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 5-12
Copyright c© SciTePress

We have also proposed the use of the goal and

soft-goal concepts (van Lamsweerde, 2001) for the

analysis and definition of the variability in product

lines. In fact, we have built an initial prototype that

permits the optimum set of features to be selected
with respect to the desires of the users, expressed as

a set of goals and soft-goals with different priorities

(González-Baixauli et al., 2004).

The second aspect of the problem focuses on the

connection of the feature model with the design of

the solution or product line architecture, usually

implemented by an object-oriented framework. This

explicit connection allows the automatic

instantiation of the domain framework in each

specific application. In a previous work (Laguna et

al., 2007), we proposed the UML 2 package merge

mechanism to orthogonally represent the SPL
architectural variations, their relationship with the

optional features and finally, using partial class

packages, with the structure of the implementation

code.

 We planned, as a continuation of this work, to

test the proposal in realistic situations. Our group

has agreements with associations of handicapped

people with the aim of developing useful tools for

people with several types of disabilities. This

background has guided the selection of the

application domains. This article is a report of the
practical experiences with these techniques in the

development of a product line of personalized

communicators for people with disabilities, based on

mobile devices, typically personal digital assistants

(PDA).

A distinctive characteristic is the use of

conventional CASE and IDE tools. This is a pre-

requisite imposed by the general objective of our

approach: to simplify the adoption of the product

line paradigm by SMEs. In particular, we have used

.NET and MS Visual Studio as development

platforms. The personnel involved vary from granted
and volunteer postgraduate students to

undergraduates finishing their term projects, but they

are not specialists in SPL development.

The rest of the article is organized as follows:

Section 2 briefly presents the proposed techniques,

based on the package merge relationship of UML 2

and the partial class mechanism. Section 3 is

devoted to the description of the case study. In

Section 4, the related work is analyzed and, finally,

Section 5 concludes the article, states some lessons

learned and outlines future work.

2 SEAMLESS SPL

DEVELOPMENT

Each concrete system in a product line is derived

from a complete architecture, selecting or not the

optional parts, with respect to the particular

functional and non-functional user requirements.

This activity is basically a selection process that
yields a feature sub-model. This sub-model, through

traceability relationships, guides the composition of

the code modules. The key aspect of the process is

the traceability from features to design and from

design to implementation. This traceability is not

easily managed for several reasons (Sochos et al.,

2004). On the one hand, an optional feature can be

related to several elements in a UML model and vice

versa. We must therefore assign the traceability

relationship between elements of the two levels with

a “many-to-many” multiplicity. This fact quickly

complicates the global model, making it poorly
scalable. The second problem is summarized in the

fact that the same basic modeling mechanisms of

variability (the specialization in class diagrams or

the <<extend>> relationship of the use cases

diagrams) are used to express two variability levels:

the design of the product line architecture and the

design of a specific application that also has

variations (for example two valid and alternative

payment forms within a sales system).

The solution to this problem has been achieved

by modifying or adapting the UML structural and
behavioral models, moving from the standard (see

the references of the related work Section). In our

approach, one of the initial restrictions imposed was

to maintain unchanged the UML meta-model, in

order to use conventional CASE tools to model the

product line. Other obligations were:

a) The technique must allow the location, at

one point on the model, of all the variations

associated to each optional feature to

facilitate the management of the traceability.

b) The technique must separate the SPL from

the intrinsic variability of the specific
applications.

c) The selected mechanism must have

continuity with the implementation models

(“seamless development”).

To achieve these objectives, we express the

variability of UML models using the package merge

mechanism, defined in the UML 2 infrastructure

meta-model and used in an exhaustive way in the

definition of UML 2 (Object Management Group,

2003).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

6

<<merge>> <<merge>>

<<merge>>

<<merge>>

<<merge>>

CatalogStructure

Categories ProductInformation

Description

Multilevel

MultipleClasif ication

BaseDescription

Image2D

AssociatedAssets

Image3D

Figure 2: A partial Feature Model and a possible UML design.

The package merge mechanism adds details to

the models in an incremental way. The <<merge>>>

dependence is defined as a relationship between two

packages that indicates that the contents of both are

combined. It is very similar to generalization and is

used when elements in different packages have the
same name and represent the same concept,

beginning with a common base. Selecting the

desired packages, it is possible to obtain a tailored

definition from among all the possible ones. Even

though, in this work, we focus on class diagrams, the

mechanism can be extended to any UML model, in

particular use cases and sequence diagrams (Object

Management Group, 2003).

This mechanism permits a clear traceability

between feature and UML models to be established.

The application to our problem consists in
associating a package to each optional feature, so

that all the necessary changes in the model remain

located (maintaining the UML meta-model

unchanged and separating both variability levels).

The package model is hierarchical, reflecting the

feature model structure. Considering each pair of

related packages recursively, the base package can

be included or not in each specific product, but the

dependent package can only be included if the base

package is also selected. This is exactly how experts

decide which features are included or not during the

configuration process, and is directly reflected in the

final product configuration of packages. Therefore,

the application to SPL consists of building the

architectural model (including structural –class

diagrams-, behavioral -use cases-, and dynamic –

interaction diagram- models) starting from a base
package that gathers the common SPL aspects.

Then, each variability point detected in the feature

model originates a package, connected through a

<<merge>> relationship with its parent package.

These packages will be combined or not, when each

product is derived, according to the selected feature

configuration. Figure 2 shows an example of

application in the e-commerce domain.

Additionally, using partial classes organized in

packages, a direct correspondence between design

and code can be established. The use of partial
classes is a way of managing variability. The aim is

to maintain a one-to-one correspondence from

features to design and from design to

implementation. As an added value, the package

structure of the code for each final product of the

SPL can be obtained automatically (and passed to

the compiler) from the features configuration

(Laguna et al., 2007).

MOBILE COMMUNICATORS FOR DISABLED PEOPLE

7

Table 1: Comparison of different writing methods.

Writing method Speed required Capacity Learning

Swept Very slow Very little Very little

Sweep (with sound) Very slow Very little Very little

Sweep (groups) Slow Very little Little

Diagonals Middle Little High

Repeated pulsations Middle Middle Middle
Databases Rapid Middle Middle

Traits Very rapide High High

Grouped characters Rapid Middle Middle

Vowels Rapid Middle High

3 CASE STUDY:

COMMUNICATORS FOR

PEOPLE WITH DISABILITIES

The case study is not very ambitious if we judge it

by the number of considered variations but presents

interesting problems, due to the constraints imposed

by the specificity of mobile device development.

The domain analysis has been accomplished starting

from the experience with several PDA systems

developed in our laboratory. Each one of these

originally solved the particular problem of a

concrete person with some degree of disability.
These systems have been built in collaboration with

Asprona, a Spanish association that maintains

several schools specialized in children with

medium/severe disabilities of several types. The

main utility of these communicators is that people

with different degrees of disability can compose

messages using text (selecting the different

characters as in a keyboard) or images (that

represent different concepts) in a suitable (and

usually mobile) device. The suitable methods are

compared in Table 1. Once composed, the device
can reproduce the message using a text-to-speech

conversion (or send it to another device). The

product line approach has a clear intention: separate

the common parts of these systems from the

specialized ones, developing these parts as optional

packages. As an immediate result, we have

multiplied the number of different available variants.

3.1 Feature Analysis

All the final applications must reproduce the text

composed by the user. But, due to the different

abilities of the users, it is necessary to consider
different writing methods, adapted to each type of

disability. For example, if the user is not capable of

clicking a button, it is necessary to use a sweeping

method. We have considered several (textual and

image based) writing methods. Some of them are the

Figure 3: Feature model of the communicator product
line.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

8

Figure 4: Feature model tool and the communicator product line, solution, configuration and model views.

following:

 Grouped characters method: the main screen

shows several groups of characters

(AÁBCDE, ÉFGHIÍ, etc.). Selecting a group

enables another screen, where the characters

of this group appear redistributed, one per

cell. The selection of one of them results in

that character being added to the text.

 Vowels method: similar to the previous

method, but the vowels are represented in

independent cells on the main screen,

generally reducing the number of pulsations.

 Categories method: the categories of characters

(consonants, vowels and numbers) are shown

in the initial screen.

Each of the evaluated methods has advantages and

inconveniences for people with different degrees and

types of disabilities, as shown in Table 1. Using the
table as a guide, and adding some complementary

aspects such as color management, phrases
persistence, etc., the feature model of Figure 3 has

been defined.

The feature model has been defined with the

Feature Modeling Tool (FMT, available at GIRO

site), developed in our group with Microsoft DSL

tools as an add-in of Visual Studio. The modeling

tool is completed with the

package generation and configuration utilities, as

explained in the previous Section. For legibility

reasons, the original graphical tree format is

depicted in a compact alternative representation (the

model explorer, bottom right panel of Figure 4 view
of FMT). According to this, each final product can

incorporate several writing methods, but all the

systems will have at least the grouped characters

method. For this reason, the right structure of the

feature model has two main alternative branches. If

more than a writing method is selected, the exchange

MOBILE COMMUNICATORS FOR DISABLED PEOPLE

9

Figure 5: Structure of the configurable user interface of the communicator product line.

Figure 6: Grouped characters, vowels, and sweep modules of the communicator product line.

from a writing method to another must be allowed.

Then the Configure writing method is mandatory.

This type of relationship between features enriches

the model but must be carefully registered in the

feature model.

3.2 Product Line Design

In Figure 4, some of the packages and classes that

make up the product line can be appreciated inside

the original Visual Studio solution explorer (upper

right panel of the image). Each package contains
internally a set of partial classes that the compiler

will integrate if the package is selected (i.e., if the

optional feature is selected in the bottom left

configuration panel of Figure 4).

In this type of applications the need for

persistence is limited (only preferences and

customer phrases are saved), but interface design

requires a greater effort, due to the limitations of the

visualization screen. To deal with these limitations,

XML and XSD files that define the elements of the

interface are used. The variable parts are included in

the different packages. In Figure 5, the design of the
user interface is shown in a diagrammatical way.

The size and number of buttons are variable and the

selected configuration indicates the number of

buttons on each screen, as well as size, position,

functionality and appearance. For example, if the

Textual package is selected, the principal_cat.xml

file defines the welcome screen and creates the

communicator according to the selected writing

method.

3.3 Product Line Implementation

At implementation level, partial classes and

conditional compilation have been used. The
strategy consists of using the same code structure in

all the cases, as a template. The Base package

contains a main class Program.cs, where the code

that loads the common part of the product line is

included. The optional packages contain a class

Program.cs with the methods that add the package,

executed from the source code through conditional

compilation. For example, the package

CompleteOptions has a class with the methods that

add color details and the management of predefined

phrases, updating the menu with the new options.

One of the components that the product line must
include is the text-to-speech utility. In spite of the

available commercial and open-source applications,

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

10

the limitations of the mobile platforms have forced

to an ad-hoc solution, developing a simple syllabic

synthesizer, with the collaboration of the students

who lend their voices.

The product line includes eight thoroughly
functional applications, compiled from different

package combinations (some examples can be

appreciated in Figure 6). Pending integration is an

optional feature already implemented that will allow

wireless and SMS based communication with a

desktop computer.

A first working prototype has been delivered to

the Asprona association specially configured for a

person with speech problems but good manual

coordination, as a result of a traffic accident. In this

case, the grouped characters method is a good

election. The use of the system, fixed to his wheel
chair, is helping him to get a greater level of

autonomy.

Figure 7: A final prototype, configured using the grouped
characters method.

4 RELATED WORK

Though there are many projects that describe

variability management mechanisms in terms of
requirements and designs, few of them include

implementation details. Different authors have
proposed explicitly representing the variation points

adding annotations or changing the essence of UML.
For example, Von der Maßen et al. proposed using

new relationships ("option" and "alternative") and
the consequent extension of the UML meta-model

(Massen & Lichter, 2003). John & Muthig suggest
the application of use case templates to represent the

variability in product lines, using stereotypes (John
& Muthig, 2002), though they do not distinguish

between optional variants, alternative or obligatory.
On the other hand, Halman and Pohl defend the

modification of use case models to orthogonally
represent the variation points (using a triangle

symbol with different annotations) (Halmans &
Pohl, 2003). As for structural models, either the

mechanisms of UML are used directly (through the
specialization relationship, the association

multiplicity, etc.) or the models are explicitly
annotated using stereotypes. The work of Gomaa is

an example of this approach, since it uses the
stereotypes <<kernel>>, <<optional>> and

<<variant>> (corresponding to obligatory, optional,
and variant classes) (Gomaa, 2000). Similarly, Clauß

proposes a set of stereotypes to express the
variability in the architecture models: <<optional>>,

<<variationPoint>> and <<variant>> stereotypes
designate, respectively, optional, variation points

(and its sub-classes), and variant classes (Clauß,
2001). Though this type of approximations permits

the evolution of the variability to be traced at the
different levels, they do not solve the requirement of

a one-to-one correspondence between the different
models.

Another solution proposed by Czarnecki in

(Czarnecki & Antkiewicz, 2005), consists of

annotating the UML models with presence

conditions, so that each optional feature is reflected

in one or, more realistically, several parts of a
diagram (perhaps a class, an association, an

attribute, etc. or a combination of elements). This

technique does not artificially limit the

representation of a variant with a unique element

and even the color code helps to emphasize the

implications of choosing a certain option. However,

this visual help is not scalable when more than a

dozen variants are handled. In all these approaches,

the modification of the UML meta-model (or at least

the use of stereotypes) is required.

A completely different approach, focused on

implementation instead of requirements or design, is
the Feature Oriented Programming (FOP) paradigm

(Batory et al., 2004). The optional features are

implemented as increments (refinements) in a java-

like language. Starting from a base class, these

increments are combined using a set of tools,

provided with the AHEAD tool suite. Other

commercial tools, such as Big-Lever Gears or Pure-

Variants offer functionalities. Though these

solutions are valid, the learning of new modeling or

implementation techniques and the need of

specialized CASE and IDE tools represent barriers
for the adoption of the approach of product lines in

MOBILE COMMUNICATORS FOR DISABLED PEOPLE

11

many organizations; we therefore believe that the

solution presented here improves the

abovementioned proposals.

5 CONCLUSIONS

In this work the viability of a product line

development approach, based on the package merge

and partial class mechanisms, has been shown. The

use of the proposed mechanisms enables the

automated generation of each product from the

features configuration. Furthermore, the use of

conventional CASE and IDE tools can simplify the

adoption of this paradigm, avoiding the necessity of
specific tools and techniques as in previous

alternatives.

The approach has been successfully applied to

the design and implementation of a product line in

the domain of communicators for people with

disabilities, and implemented with mobile devices.

Current work includes the development of other

product lines with industrial or social interest, and

the enrichment of the communicator study. In this

case, the objective is to evaluate the scalability of

the proposal as the optional features increase (which
implies an exponential increase in the number of

final products). On the other hand, the experience

with this type of mobile platform is being used in

other domains that combine information capture

through PDAs and smart phones with delivery to a

central system, configured as a set of Web services.

An example of this is a recently launched product

line project for monitoring health parameters (such

as heart rate, temperature, etc.) in the context of a

senior citizen residence, using a combination of

wireless sensors and mobile devices. The utility of

the product line approach in these domains is
evident, as the variety of sensors, parameters, alarm

signals, and visualization aspects in the central

computer is potentially unlimited.

ACKNOWLEDGEMENTS

This work has been founded by the Junta de Castilla
y León (VA-018A07 project) and Spanish MICIINN
(TIN2008-05675). We also recognize the
collaboration of the ASPRONA association, and the
students involved in the development of these
product lines.

REFERENCES

Batory, D., Sarvela, J., & Rauschmayer, A. (2004).
Scaling Step-Wise Refinement. IEEE TSE .

Bosch, J. (2000). Design & Use of Software Architectures.
Adopting and Evolving a Product-Line Approach.
Addison-Wesley.

Clauß, M. (2001). Generic modeling using Uml extensions
for variability. Workshop on Domain Specific Visual
Languages at OOPSLA.

Czarnecki, K., & Antkiewicz, M. (2005). Mapping
Features to models: a template approach based on
superimposed variants. In proc. of GPCE’05, LNCS
3676, (pp. 422-437). Springer.

Gomaa, H. (2000). Object Oriented Analysis and
Modeling for Families of Systems with UML. IEEE
International Conference for Software Reuse (ICSR6),
(pp. 89–99).

González-Baixauli, B., Leite, J., & Mylopoulos, J. (2004).
Visual Variability Analysis with Goal Models. Proc.
of the RE’2004, (pp. 198-207).

Halmans, G., & Pohl, K. (2003). Communicating the
Variability of a Software-Product Family to
Customers. Journal of Software and Systems
Modeling, 15-36.

John, I., & Muthig, D. (2002). Tailoring Use Cases for
product line Modeling. Proceedings of the
International Workshop on Requirements Engineering
for product lines 2002 (REPL’02). Technical Report:
ALR-2002-033, AVAYA labs.

Kang, K. C., Kim, S., Lee, J., & Kim, K. (1998). FORM:
A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software
Engineering, 143-168.

Kang, K., Cohen, S., Hess, J., Nowak, W., & Peterson, S.
(1990). Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report, CMU/SEI-90-TR-
21, Software Engineering Institute (Carnegie Mellon),
Pittsburgh, PA 15213.

Laguna, M. A., González, B., López, O., & García, F. J.
(2003). Introducing Systematic Reuse in Mainstream
Software Process . IEEE Proceedings of
EUROMICRO'2003, (pp. 351-358).

Laguna, M. A., González-Baixauli, B., & Marqués, J. M.
(2007). Seamless Development of Software Product
Lines: Feature Models to UML Traceability. GPCE 07.

Massen, T. v., & Lichter, H. (2003). RequiLine: A
Requirements Engineering Tool for Software product
lines. Software Product-Family Engineering, PFE,
LNCS 3014 pp , (pp. 168-180).

Object Management Group. (2003). Unified modeling
language specification version 2.0: Infrastructure.
Technical Report ptc/03-09-15. OMG.

Sochos, P., Philippow, I., & Riebish., M. (2004). Feature-
oriented development of software product lines:
mapping feature models to the architecture. En LNCS
3263 (pp. 138-152). Springer.

van Lamsweerde, A. (2001). Goal-Oriented Requirements
Engineering: A Guided Tour., (pp. 249-262).
Proceedings of the 5 IEEE Int. Symp. on
Requirements Engineering.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

12

