
QUALITY ANALYSIS OF A CROSS-DOMAIN
REFERENCE ARCHITECTURE

Liliana Dobrica
Faculty of Automatic Control and Computers, University Politehnica of Bucharest

Spl. Independentei 313, Romania

Eila Ovaska
VTT Technical Research Centre of Finland, Oulu, Finland

Keywords: Cross Domain Reference Architecture, Service, Quality, Analysis Methods, Scenarios.

Abstract: The content of this paper addresses the issue of how to perform in a systematic way quality analysis of a
cross domain reference architecture using scenarios. The cross domain reference architecture is designed
based on the domains requirements and features modelling and it includes domains core services and
constraints on how these services should be combined. We apply a method based on scenarios to analyse
modifiability at the architectural level. In order to handle complexity in analysis we propose categories of
change scenarios to be derived from each problem domain. Our main concerns are core services changes in
the scenarios interaction step.

1 INTRODUCTION

Nowadays many systems are used as subsystems in
various application domains. Due to the escalating
complexity level and the higher competition in the
world market, a coherent and integrated
development strategy is required. It becomes a
research priority the creation of a generic
architecture and a suite of abstract components with
which new developments in different application
domains can be engineered with minimal effort.
Generic architecture can be based on a core
architectural style. Given a core architectural style,
different components are created for different
application domains, while retaining the capability
of component reuse across these domains. The goal
of architectural analysis is to get measures of
compliance with regard to requirements
specification (Dobrica and Niemela, 2002). It is very
important to identify which are the relevant
properties of each domain and how analysis
techniques and methods could be applied to a cross
domain reference architecture (RA). There are two
categories of properties related to software systems,
the general one, like performance, satisfaction of
real-time requirements, reliability, etc. and specific
to development process (Bosch, 2000). Among the
specific properties that deserve special attention are

kinds of variation which can be covered by the
architecture and properties that are preserved for all
variants of an architecture in specific domains,
stability of services interfaces with respect to
evolution in products.

The open problem of an architectural analysis
method is how to take better advantage of
architectural concepts to analyze for quality
attributes in a systematic way (Bass et al., 1998).
The RA must be generic and adaptable to the
multiple composed domains. One objective of the
evaluation is to minimize possible changes in
functionality required by various domain specific
services. It is also very important to identify
potential risks and to verify that the quality
requirements of the embedded systems domains
have been addressed in the RA design (Graff et al.,
2005). Analysis could be associated with the design
in an iterative improvement of the RA when the
system of systems is initiated from requirements
specification, or for the re-engineering of an existent
complex embedded system due to the evolution
process.

Modifiability is one of the main quality drivers
for cross-domain RA design. The analysis of this
quality attribute could be combined with other run-
time quality requirements (performance, reliability,
security, etc.) of the domains. In this paper we

157
Dobrica L. and Ovaska E. (2009).
QUALITY ANALYSIS OF A CROSS-DOMAIN REFERENCE ARCHITECTURE .
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 157-162
DOI: 10.5220/0002246001570162
Copyright c© SciTePress

evaluate modifiability of a cross-domain reference
architecture for embedded systems applications. In
the next section we define the cross domain
approach for architecture development, then we
discuss about an appropriate quality analysis
method. Finally we explain our view on a concrete
example and we perform modifiability analysis. Our
aim is to associate design with analysis in an
iterative improvement of the complex systems
architecture. We argue with experiences in the
software architectures design and analysis for
various domains (Dobrica and Niemela, 2008)
(Dobrica and Ovaska, 2009) and other researchers’
recent studies that will be revealed during the paper.

2 BACKGROUND

A system is a collection of cooperating services that
deliver required functionality. These services may be
executed in a networked environment and may be
recomposed dynamically. A cross domain approach
consists of three levels for architecture development
of a software system (Dobrica and Ovaska, 2009)
(Figure 1). The RA level includes core services and
focuses on commonality analysis. Also the RA
includes rules or constraints on how core services
should be combined to realize a functional goal.
Domain architecture level includes domain specific
services and requires variability management
concerns. The last level is for product architectures.
On this level rules for product derivation and
configuration are included.

Reference Architecture
(cross domain)

Core Services

Domain Architecture

Domain Specific Services

Variability
management

Product Architecture

Concrete Services

Rules for product
derivation and
 configuration

Commonality

Figure 1: Architecture development approach.

A feature model is a prerequisite of design
(Dobrica and Ovaska, 2009). This model is essential
for both variability management and product
derivation, because it describes the requirements in
terms of commonality and variability, as well as
defining dependencies. Features may be mandatory,
optional, alternative or optional alternative. The
features model specifies dependencies called
composition rules. The requires rule expresses the

presence implication of two features and the
mutually exclusive rule captures the mutual
exclusion constraint on feature combinations.

Reference Architecture

Styles and
Patterns

Core Services

Quality
Attributes

Service
Taxonomy

Figure 2: Reference architecture realization.

RA is defined by quality attributes, architectural
styles and patterns and abstract architectural models
(Figure 2). Quality attributes clarify their meaning
and importance for core service components.
Services have to meet many quality attributes.
Interdependencies and tradeoffs also exist between
them. The styles and patterns are the starting point
for architecture development. Architectural styles
and patterns are utilized to achieve qualities. A style
defines a class of architectures and is an abstraction
for a set of architectures that meet it. A pattern is
architectural when it is a documented description of
a style or a set of styles that expresses a fundamental
structural organization schema applied to high-level
system subdivision, distribution, interaction, and
adaptation (Buschman et al., 1996). In this way the
RA creates the framework from which the
architecture of new products is developed. It
provides generic architectural services and imposes
an architectural style for constraining specific
domain services in such a way that the final product
is understandable, maintainable, extensible, and can
be built cost-effectively. Potential reusability is
highest on RA level. Core services and the
architectural style are reused in every domain. RA is
build based on a service taxonomy, that defines the
main categories called domains. Root features that
have been abstracted from requirements characterize
services. A service taxonomy guides the developers
on a certain domain and getting assistance in
identifying the required supporting services and
features of services.

3 ANALYSIS METHOD

Scenario-based assessment is particularly
appropriate for qualities related to software
development. Software qualities such as
maintainability, reusability, modifiability,
adaptability and portability can be expressed very
naturally through change scenarios. The use of
scenarios for evaluating architectures is
recommended as one of the best industrial practices

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

158

(Kazman, 2000). Our method is based on the SAAM
(Kazman et al., 1996), but improved through the
introduction of guidelines for analysis. The method
consists of five important steps. These are:

1. Deriving of Change Categories from the
Problem Domain. Figure 3 presents five categories
of the change scenarios derived from the problem
domains. It may be possible that a change scenario
related to one of these categories requires other
changes in the other categories. It is recommended
to consider this possibility in the scenario
development process. Usually it occurs when the
problem domain is organized so that it is easy to
identify the main sources for the addition of
subsequent features in the domain.

Software
technology

Domain-specific
Hardware

Functional
requirements

Non-functional
requirements

General- purpose
Hardware

Problem domain of
an

 embedded system

CHANGES

Figure 3: Categories of scenarios.

2. Scenarios Identification. Scenarios should
illustrate the kinds of anticipated changes that will
be made to the system. A common problem of the
scenario development is when to stop generating
scenarios. Using a set of standard quality attribute-
specific questions we ensure proper coverage of an
attribute by the scenarios. The boundary conditions
should be covered. A standard set of quality-specific
questions allows the extracting of the information
needed to analyze that quality in a predictable,
repeatable fashion. For analyzing the modifiability
we must look for possible changes in the problem
domain defined requirements.

3. Architecture Description could be performed in
parallel with the previous one. Architecture
description may use multiple views. For a common
level of understanding a small and simple lexicon
could be used in describing structures.

4. Evaluate the Effect of the Scenarios on the
Architecture Elements. The effect is estimated by
investigating which services are affected by that
scenario. The cost of the modifications associated
with each change scenario is predicted by listing the
services that are affected and counting the number of
changes. The objective is to get a measurement of
the quality of the core and domain services with
respect to the anticipated variability in functional or
non-functional characteristics.

5. Scenario Interaction. The result of the effects
evaluation represents the input for this step. The
activity is to determine which scenarios interact,
meaning that they affect the same service. High
interactions of unrelated scenarios indicate a poor
separation of concerns. Also if any of the scenarios
affect a core service this is no more part of the RA,
but a domain specific.

4 THE CASE STUDY

An analysis method is very difficult to discuss on an
abstract level. Instead, one needs a concrete
example. In this section we present a case study of
cross domain reference architecture. Our example is
abstracted from our experiences with the
architecture design of a scientific on-board silicon
X-ray array (SIXA) spectrometer control software.

Parameters
Start
Stop Measurement

Controller

Command
Interface

commands

Physical devices
(Detectors)

Science data

data reports

Figure 4: Context view of the required system.

Figure 4 introduces the context view of a
measurement controller. External elements that
interface with our measurement controller are a
command interface and physical devices (detectors)
representing sensors and actuators. The system is
programmed and operates using a set of commands
sent from a command interface. The role of the
spectrometer controller is to control the following
measurement modes: (a) Energy Spectrum (EGY),
which consists of three energy-spectrum observing
modes: Energy-Spectrum Mode (ESM), Window
Counting Mode (WCM) and Time-Interval Mode
(TIM). (b) SEC, which consists of single event
characterization observing modes: SEC1, SEC2 and
SEC3. Each mode could be controlled individually.
A coordinated control of the analog electronics is
required when both measurement modes are on. The
analysis of requirements for domain engineering has
a result in a features model, that has been structured
in packages (Figure 5). The abstract features
encapsulated in three main abstract domains
MeasurementController, DataManagement and
DataAcquisition, are completely reused in all the
derived products. The AbstractSpectrometerFeatures
package has the highest degree of reusability but
also the highest degree of dependability. The

QUALITY ANALYSIS OF A CROSS-DOMAIN REFERENCE ARCHITECTURE

159

abstract features depend on the commonality
between EGY and SEC features. A change in the
problem domain of one of the three products is
mostly reflected in the degree of reusability of the
abstract domain features.

Figure 5: Mapping features into packages.

The sets of products that could be derived from
the domain specific services during application
engineering are: (1) P1 – EGYController includes
specific services of a standalone control of EGY
mode; (2) P2 – SECController includes specific
services of a standalone control of SEC mode; (3) P3
– SECwithEGY Controller includes specific services
of coordinated control.

The architecture model is documented around
multiple views describing conceptual and concrete
levels, for each view a static and dynamic
perspective being offered. Architecture
documentation addresses specific concerns for
measurement control, data acquisition control and
data management. The views are illustrated with
diagrams expressed in UML-RT, a real-time extension

<<Domain>>
Measurement

<<Domain>>
MeasurementControl

<<Domain>>
DataManagement

<<Domain>>
DataAcquisitionControl

<<Service>>
CC

<<Service>>
EGY_DM

<<art ifact>>
VariabilityManagementTool

EGY_Controller

SEC_Controller

SECwithEGYController

<<artifact>>
RepositorySchema

<<Service>>
EGY_DAC

<<Service>>
SEC_DAC

<<artifact>>
RulesFor
Product

Der ivation
And

Configuration

<<Service>>
SAC

<<Service>>
SEC_DM

Figure 6: Measurement cross domain RA.

of UML. The conceptual level considers a functional
decomposition of the architecture into domains. The
concrete level considers a more detailed functional
description, where the main architectural elements
are packages, capsules, ports, protocols. Conceptual
View is the result of a functional-based
decomposition, and it includes relations between
different domains. The architectural components are
large functional (domain) entities, and the
connectors are “uses”, “command” or ”passes-
data-to” relations. This structure is useful for
understanding the interactions between entities in
the problem space, for understanding the cross-
domain perspective, and hence thereafter, the
possibilities for creating a system of systems. It
includes: (1) Measurement Controller Subsystem
(MCS) which has the main role in controlling
acquisition and dumping science data. (2)
Housekeeping (HK) forms the reports and sends
them to command interface when requested the
command interface subsystem. It uses services
provided by PMS. (3) Command Interface
Subsystem (CIS) hides the hardware buses’
interfaces from the rest of the software. (4) On-board
clock (OBC) maintains an on-board clock used for
time-stamping spectra in data files. It includes
services for timing the start/stop of spectra and
targets and other timing related services. (5).
Memory Management Subsystem (MMS) provides
services for handling the storages in RAM and
EEPROM areas. (6) Parameter Management
Subsystem (PMS) provides services for initiating,
changing and reading the on-board parameters in
EEPROM. (7) StartUp implements the power up and
watchdog timer start-up. (8) Communication buffer
management (BUFMAN) provides services for
allocating/deallocating transmit buffers. (9) CPU
specific services provides highly optimized high
speed assembly language services (high speed word
copy, interrupt enable/disable). (10) Hardware
encapsulation modules control specific hardware
(analog electronics, watchdog timer).

In a detailed functional decomposition view the
main elements are packages, components, ports and
protocols. The static relations between components
are association, specialization, generalization, etc.
Considering the dynamic relations, statechart
diagrams and sequence diagrams are also part of this
view. In this view abstract components are included
based on a recursive control architecture style (Selic,
1998). The MeasurementControl domain includes
services that are responsible for starting and
stopping the operating mode for data acquisition
according to the commands received from the
command interface, and according to the events

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

160

generated in other parts of the software. The
DataAcquisitionControl domain includes services
that collect events (science data) to the spectra data
file during the observation of a target. This domain
includes as well as hides data acquisition details.
DataManagement domain includes services that
provide interfaces for storing science data - opening/
closing/writing the data files, hiding data storing
details. This domain also provides services for
controlling the transmission of stored data to the
command interface.

5 MODIFIABILITY ANALYSIS

One of the most important quality attribute for our
system from a developer viewpoint is modifiability.
Thus we have applied the analysis method
introduced above for modifiability evaluation of the
RA. We have defined change scenarios for different
categories of changes. For each category we’ll
exemplify in the following with a scenario. The
effect of the scenarios on the service components
and the required views of the architecture are
analyzed.

5.1 Change Scenarios Effects

1. General Purpose Hardware Changes Scenario.
“Change the central processing unit (CPU)”.

Effect on the architecture: CPU specific services
provide highly optimized high speed assembly
language services (high speed word copy, interrupt
enable/disable, etc.) The services are not applicable
at the level of description.

Result: Not applicable to the available views.

2. Domain-specific Hardware Changes Scenario.
“Add a hard disk for SEC product”.

Effect on the architecture: The SEC_controller
and SECwithEGY_controller contain a hard disk for
data storage. This scenario requires a lot at the
architectural level, most of them related to the Data
Management domain.

Result: Multiple changes in detailed functional
decomposition, localized in the SEC_DM specific
domain service.

3. Technology Changes Scenario. “Change the
generator polynomial (different from CCITT
polynomial) for 16 bit CRC sum of errors handlers”.

Effect on the architecture: MMS consists of
service functions for managing the storage RAM and
EEPROM. It also includes a state for refreshing

RAM and the memory error exceptions handlers
(double and single bit).

Result: Modification in one component in the
conceptual view.

4. Functional Requirements Changes Scenario.
“How is the architecture affected when the operation
mode is changed?”

Effect on the architecture: The operation modes
is one of the variability among domains. This is
encapsulated into DataAcquisition and
DataFileManagement. The measurement control
domain is decoupled from the operation mode of
different products, which is encapsulated into the
DataAcquisition domain.

Result: No change to the RA – abstract concrete
or features of measurement control.

5. Non-functional Requirements Changes. “How
is the average SRG-bus speed of 744kbit/sec on
reading data from disk, which is time critical,
maintained? “

Alternative solutions: (1) Change the hard disk:
Use Fast disk: Optimal disk interleaving factor and
storing the data file in sequential sectors on the disk.
(2) Send filler blocks to the bus while waiting for the
disk – a sufficient number of filler blocks could be
reserved in the vector word sent in advance to BIUS.
(3) Use a busy bit of SRG-bus. (4) Optimize disk
driver – If the disk drive has been changed, the
software has to be tuned separately for the new disk.

Result: Not applicable to the available views.

5.2 Scenarios Interaction

A good architecture design must provide a good
localization of changes. Most of the changes
required by scenarios were applied to one service
component, which indicates a good decoupling of
concerns. The most important change was the
addition of the hard disk, a variability among
domains. This scenario required changes to the
domain specific services. By structuring the RA in
abstract services, which encapsulate abstract features
of the domains and concrete components, which in
turn represents specialization of the variable
features, the effects of the change scenarios are
minimized and localized.

6 RELATED WORK

At this moment various architecture analysis
methods, such as scenario-based architecture
analysis (SAAM) (Kazman et al. 1996), architecture

QUALITY ANALYSIS OF A CROSS-DOMAIN REFERENCE ARCHITECTURE

161

tradeoff analysis (ATAM) (Kazman et al., 1998),
architecture level analysis of modifiability
(ALMA)(Bengtsson et al., 2004), or software
architecture reliability analysis using failure scenario
(SARAH) (Tekinerdogan, 2008). Our study of the
existing state-of-art research into the quality analysis
methods reveals that the methods are distinguished
by taking into account the evaluation techniques
(qualitative or questioning, such as scenarios;
quantitative or measuring, like metrics, etc.), the
number of considered quality attributes and their
interaction for tradeoff decisions, the stakeholders’
involvement, and how detailed the architecture
design is at the moment the method is applied to the
architecture-based development process. Our
method is based on the SAAM (Kazman et al., 1996)
and ALMA, but improved through the introduction
of guidelines for analysis. This is because the
analysis is performed iteratively with design towards
improvement. Another important novelty of our
approach is that the method is specifically focused
on a cross domain RA quality analysis that is on the
first abstraction level of architecture development.
Our main concerns are core services changes in the
scenarios interaction step.

7 CONCLUSIONS

For the moment, only scenarios could be used in RA
analysis for modifiability. One problem with
scenario-based analysis is that the result and the
expressiveness of the analysis are dependent on the
selection of the scenarios and their relevance for
identifying critical assumptions and weaknesses in
the architecture. There is no fixed minimum number
of scenarios whose evaluation guarantees that the
analysis is meaningful. According to this, we tried to
use five categories of possible changes in general
hardware, specific hardware, functionality, non-
functional requirements and software technology. A
helpful strategy in scenario elicitation is the analysis
of commonality and variability. This is not a part of
the analysis method, but it is considered a pre-
condition of it. One aim of the analysis should be to
show how flexible a RA is in order to handle the
anticipated changes provided by the variability of
domains. Another aim is to analyze which is the
potential of the RA to be adapted to changes in
common features.

The results of the analysis depend not only on
the views of the architecture, but also on the level of
detail of the services descriptions. By using only the
conceptual view the effects of the change scenarios
are reduced. On the detailed functional

decomposition view, which has been developed with
the help of a CASE tool, the effect is more relevant.
The interaction of unrelated scenarios is lower and it
reveals a good separation of concerns when the
domains decomposition is detailed.

ACKNOWLEDGEMENTS

This work is supported by the Romanian research
grant CNCSIS IDEI no. 1238/2008.

REFERENCES

Bass L., P. Clements, R. Kazman. 1998, Software
Architecture in Practice. Addison-Wesley.

Bengtsson PO., J. Bosch, 2004, Architecture Level
Modifiability Analysis, Procs of the ICSR5.

Bosch J, 2000, Design and Use of Software Architectures
- Adopting and Evolving a Product-Line Approach,
Addison Wesley.

Buschmann F., R. Meunier, and H. Rohnert, 1996,
Pattern-Oriented Software Architecture:A System of
Patterns. John Wiley and Sons.

Dobrica L., E. Niemelä, 2002, A Survey on Software
Architecture Analysis Methods, IEEE Trans on Soft.
Eng, vol 28(7).

Dobrica L., E. Niemelä, 2008, Quality and Value Analysis
Method for Product Line Architectures, Procs of
ICSOFT 2008, 64-71.

Dobrica, L., Ovaska E., 2009, A service based approach
for a cross domain reference architecture development,
Procs of the 4th International Conference on
Evaluation of Novel Approaches to Software
Engineering (ENASE), 9-10 mai, 33-44, 2009,
INSTICC Press.

Gamma E., R. Helm, R. Johnson, and J. Vlissides, 1994,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley.

Graaf B, vanDijk H, van Deursen A., 2005, Evaluating an
embedded software reference architecture – industrial
experience report, CSMR 2005, 354-363.

Kazman R., G. Abowd, L. Bass, P. Clements, 1996
Scenario-based Analysis of Software Architecture.
IEEE Software, pp. 47-55.

Kazman R., S. J. Carriere and S. G. Woods, 2000, Toward
a Discipline of Scenario-Based Architectural
Engineering, Annals of Software Engineering, Vol. 9.

Selic B., Recursive control, in: R. Martin, et al. (Eds.),
Patterns Languages of Program Design—3, Addison-
Wesley, 1998, pp. 147–162.

B., Sozer H., and M. Aksit. 2008, Software Architecture
Reliability Analysis using Failure Scenarios; Journal
of Systems and Software, 81, 558-575.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

162

