
APPLYING STATE-OF-THE-ART TECHNIQUES

FOR EMBEDDED SOFTWARE ADAPTATION

Suman Roychoudhury, Christian Bunse and Hagen Höpfner
International University in Germany, Campus 3, 76646 Bruchsal, Germany

Keywords: Aspect-oriented Programming, Model-driven Engineering, Embedded Systems.

Abstract: Embedded software systems affect critical functions of our daily lives (e.g., software used in automobiles,

aircraft control systems), and represent a significant investment by government, scientific and corporate

institutions. Modern research approaches for software engineering and programming language design, such

as aspect-oriented software development and model-driven engineering have been investigated as effective

means for improving modularization and reuse of software. However, one research trend for embedded

system development has focused primarily on the underlying hardware, neglecting the need of applying

advanced software engineering techniques for the several million lines of code existing in the embedded

domain. In this paper, we evaluate the above mentioned state-of-the-art techniques as a viable solution for

the development, analysis and evolution of embedded software systems.

1 INTRODUCTION

Embedded software plays an important role in

today’s world and is built into electronics in cars,

audio equipment, robots, appliances, toys, security

systems, televisions and mobile phones. Although

there has been a significant amount of research for

software modeling, testing, restructuring and

transformation-based tools in the non-embedded

space, there is a lack of clarity and emphasis for
such tools in the embedded domain. The main

reason for such isolation is the low-level code base

and its greater focus on the underlying hardware

(Day, 2005). This has resulted in the use of more

informal methods in the embedded space. However

with an ever increasing size of embedded software

projects, device manufacturers should realize the

importance of using modern software engineering

tools and techniques that can significantly improve

the development, analysis, and maintenance of such

software. In this paper, we investigate how aspect-
oriented programming (AOP) (Laddad, 2003) and

model-driven engineering (MDE) (Schmidt, 2006),

can be applied for embedded system development

and maintenance.

2 EMBEDDED SOFTWARE

ADAPTATION

In this section, we demonstrate how embedded

software can be adapted using AOP and MDE
techniques. A simple case study application serves

as the core example.

The example illustrates a microcontroller

(ATMega128) enabled racing car that can be

programmed to steer through a predefined track

without colliding with obstacles. The car also

receives navigational data (i.e., GPS data) during the

course of its run. To achieve the desired goal,

several hardware devices and sensors were attached

to the car as shown in the Figure 1. Two ultrasonic

sensors were attached to the front and back of the
car for collision avoidance. A GPS device was

mounted to provide navigational data (e.g., latitude,

longitude, altitude). A photo-interrupter with

encoder wheel provided the speed and direction of

the car. Finally, a wireless communication link was

established between the car and a PC

(HyperTerminal) using a Bluetooth device.

In the next sub-section we show how AOP can

be applied towards configuring the servos, the

sensors and also printing statistics to the

HyperTerminal using aspects.

305

Roychoudhury S., Bunse C. and Höpfner H. (2009).
APPLYING STATE-OF-THE-ART TECHNIQUES FOR EMBEDDED SOFTWARE ADAPTATION .
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 305-308
Copyright c© SciTePress

Figure 1: Microcontroller enabled Race Car.

2.1 Adapting AOP Techniques

In the example shown in Figure 1, two servos are

used. The electronic speed controller servo is used to

control the speed of the car, whereas the steering

servo is used to steer the car. The servos are directly

connected to the microcontroller and consist of a dc

motor, gear train, potentiometer and some control

circuitry. To drive the car, pulses are sent
continuously to the control circuitry of the servo

whose widths vary between 1-2 ms. The

potentiometer transforms these pulses into a voltage

which represents a certain rotation of the shaft.

These values are then compared to average values

and the shaft is rotated until both voltages match

each other.

Figure 2 illustrates the different control

components and the basic interaction functions used

to control the servos. The function SetServoPosition

is used to send a particular pulse value ranging

between 1ms - 2ms to control the speed and
direction of the car. In the above scenario, the

function SetServoPosition is crosscutting and is

being called for every action associated with either

the electronic speed servo or steering servo. This

crosscutting functionality of the servos can be

captured as a single aspect written in AspectC++

(Spinczyk, Gal and Schröder-Preikschat, 2002) as

shown in Figure 3.

Note that to steer the car towards centre or left or

right, the servo shaft is rotated by 90 degrees or 0

degree or 180 degrees respectively. The
corresponding value of the control signal position is

passed as args to the around advice (see Figure 3).

The advantage of using an aspect allows the

servo software to be controlled from one single

location. Moreover, this allows finer control of the

servo shaft, which can now rotate at any angle
between 0-180 degrees instead of predefined

positions (left, right or centre) as depicted in Figure

2. Further, along with flexible servo control

mechanism, basic statistics could be obtained using

Figure 2: Interaction Diagram for Servo Control.

aspect ControlServos {

 unsigned int position;

 pointcut Steer() = void

Steer%(...);

 pointcut StartStopEngine() =

 void %Engine(...);

 advice execution

 (StartStopEngine ()|| Steer())

 && args(position): around ()

 {

 rprintf("Current Servo

position:

%d",GetServoPosition());

 SetServoPosition (position);

 tjp->proceed();

 rprintf("New Servo position:

 %d", position);

 }

};

Figure 3: An Aspect for Capturing Servo Position.

the rprintf function as shown in Figure 3. Note

that the around advice acts as a wrapper to the

existing steering functions.

There are other areas in the car control circuitry

where aspects could be useful. It is often the case
that several devices share the same clock and require

the clock timer to be synchronized. For example, the

photo interrupter and encoder wheel, which is

connected to measure the car speed and direction,

needs to be synchronized with the servo clock timer.

A possible solution is to attach a lock-unlock

handler as an aspect to the clock timer for all such

devices that require synchronization.

Microcontroller

Antenna

Bluetooth

Steering Servo

Electronic Speed Controller

GPS

Utrasonic Sensors

Hyperterminal Microcontroller SteeringServo SpeedServo

StartEngine
SetServoPosition(center)

SetServoPosition(zero)

SteerCenter

SetServoPosition(zero)

SetServoPosition(center)

StopEngine

SetServoPosition(left)SteerLeft

SetServoPosition(right)SteerRight

alt

SetServoPosition(forward)
SteerForward

SetServoPosition(reverse)
SteerBackWard

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

306

2.2 Adapting MDE Techniques

In this section we examine how MDE tools and

techniques can ease the construction of embedded

software systems. We will investigate two possible

directions in that MDE can assist developers in the
embedded domain:

 GUI based domain-specific modeling

languages

 Text based domain-specific modeling

languages

In the first category, we will look into the

Embedded System Modeling Language (ESML)

(Shi, 2004), which is specifically intended for

component-based avionics applications for the

Boeing-Boldstroke. In our view, ESML can be

customized for other embedded domains as well.
ESML allows defining interfaces, events,

components, interactions and configurations in the

form of UML class diagrams (UML, 2009).

Figure 4: Generative Programming for Embedded

Software.

For our case study application, the interface

model (see Figure 4) was used to capture various

interface methods namely, GetGPSData,

GetSonarData, GetEncoderData, and

ReadTimerControl. The interface model also

captures various constraints (e.g., pulses must occur

within an interval of 1ms-2ms). Using ESML, event

types were used to indicate events such as

StartEngine, StopEngine, SteerBackward,

SteerForward, and SteerLeft. Moreover, new events

can be added to the existing metamodel in an event

repository. The ESML model for our case study

application is integrated within the Generic

Modeling Environment (Lédeczi et al., 2001). Model

interpreters were used to generate the underlying

method and event stub code (refer Figure 4).

However, the method and event implementation

code has to be manually added to the system.

The second dimension using text based domain-

specific modeling languages provides another option

for embedded system development. Generally, the

low-level nature of embedded programs makes them

hard to comprehend and difficult to evolve over a

period of time. For every hardware or

communication channel (e.g., processor type, serial

or parallel communication), there is a typical

protocol that one needs to follow. Such requirements

make the area particularly niche and there is less

availability of domain-specific modeling languages

(DSMLs) to aid developers to construct embedded

software.

We believe that instead of considering the entire

embedded domain, sub-domain specific modeling

languages can be used, which can only focus the

core areas of a sub-domain. For example in the case

of our case study application DSMLs can be

developed that focuses on the semantics related to

the automobile domain only. Similarly for a

different sub-domain like mobile systems, a separate

DSML model can be used. We carried out our initial

investigation with a text-based metamodeling tool

suite called ATLAS Model Management

Architecture (AMMA).

package Automobile {

class RaceCar extends LocatedElement

{

 attribute name: String

 reference sensors[*]

 container: Sensor;

 reference controllers[*]

 container:

Controller;

 reference processors[*]

 container:

Processor;

 reference channels[*]

 container: Channel;

 ...

}

class Sensor extends LocatedElement {

 attribute name : String;

}

class SonarSensor extends Sensor {

 attribute distance : String;

}

class TempSensor extends Sensor {

 attribute temperature : String;

}

...

Figure 5: KM3 specification for RaceCar Metamodel.

?

generatestub

conformsTo conformsTo

processModelData

Event

Metamodel

Interface

Metamodel

Event

Model

Interface

model

Model

Interpreter

Interface

Stub Code

Event Stub

Code

Constraints

APPLYING STATE-OF-THE-ART TECHNIQUES FOR EMBEDDED SOFTWARE ADAPTATION

307

Using Kernel Meta-metamodel (KM3, part of the

AMMA tool suite) (Jouault and Bézivin, 2006), a

snippet of the domain-specific metamodel for our

case study application is shown in Figure 5. In this

figure, the RaceCar class is the main class that

defines the abstract syntax of the language. It

consists of sensors, controllers, processors,

communication channels and other hardware

devices. The concrete syntax for the RaceCar model

is written in TCS, however, for brevity is not shown

here.

Using model transformation techniques, the low-

level code required to run the system can be

generated for the RaceCar model. Thus, by focusing

on graphical or textual based DSMLs, domain

engineers can build domain specific embedded tools

that can raise the abstraction level of hardware

centric embedded programs.

3 SUMMARY

AND CONCLUSIONS

The proliferation of embedded software in everyday

life has augmented the conformity and invisibility of

software. As demands for such software increase,

future requirements will necessitate new strategies
for improved modularization, construction and

restructuring in order to support the requisite

adaptations (Masuhara and Kiczales, 2003). Proven

software engineering techniques like AOP and MDE

that occupy a bigger space in the non-embedded

domain must be investigated and disseminated into

the embedded space.

In this paper, we demonstrated how each of these

techniques can improve the construction effort of

embedded software. A greater emphasis must be

given to specialized tools and domain specific
languages that can raise the abstraction level from

hardware centric applications to software centric

models and analysis engines.

A growing challenge in the embedded world has

been to reduce the energy consumption of battery

powered devices. As part of future work, we will

look into software centric static and dynamic

optimizations embedded mobile systems that

combine the power of each of these techniques.

REFERENCES

Day, R. (2005) 'The Challenges of an Embedded Software
Enginee', Embedded Technology Journal.

Jouault, F. and Bézivin, J. (2006) 'KM3: A DSL for
Metamodel Specification', Formal Methods for Open
Object-Based Distributed Systems, Bologna, Italy,
171-185.

Laddad, R. (2003) AspectJ in Action: Practical Aspect-
Oriented Programming, Manning.

Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P.,
Nordstrom, G., Sprinkle, J. and Karsai, G. (2001)

'Composing Domain-Specific Design Environments',
IEEE Computer, vol. 34, no. 11, November, pp. 44-51.

Masuhara, H. and Kiczales, G. (2003) 'Modeling
Crosscutting in Aspect-Oriented Mechanisms',
European Conference on Object-Oriented
Programming, Springer-Verlag LNCS 2743,
Darmstadt, Germany, 2-28.

Schmidt, D. (2006) 'Model-Driven Engineering',
IEEE Computer, February.

Shi, F. (2004) Embedded Systems Modeling
Language,http://www.omg.org/news/meetings/worksh
ops/MIC_2004_Manual/06-4_Shi_etal.pdf.

Spinczyk, O., Gal, A. and Schröder-Preikschat, W. (2002)
'AspectC++: An Aspect-Oriented Extension to C++',
International Conference on Technology of Object-
Oriented Languages and Systems, Sydney, Australia,
53-60.

UML (2009) Unified Modeling Language 2.2,
http://www.omg.org/technology/documents/formal/um
l.htm.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

308

