
A SECURE RUNNING ENVIRONMENT FOR MULTIPLE
PLATFORMS

Reijo M. Savola
VTT Technical Research Centre of Finland, Oulu, Finland

Keywords: Secure operating environment, Security assurance, Security metrics.

Abstract: At present, the security critical operations of terminal devices are often being executed in the operating
system, which may include security vulnerabilities due to implementation faults, for example. These
vulnerabilities leave the system open to data leaks and attacks from viruses or other harmful programs. The
European €-Confidential ITEA research project is developing device-independent, next-generation security
solutions for software platforms. Critical operations are executed on a simple platform where the security
operations are isolated in a separate module, which can be physically located in a terminal device or in a
separate device such as a memory stick. This paper introduces a Secure Running Environment (SRE), in
which the core security management of the platform is located. This contains sensible parts for the security
of the operating system, middleware and applications. The security platform alone does not guarantee an
adequate level of security. Security is a challenging and interdisciplinary field that demands holistic
understanding, and validation of the realization of the security objectives and the solutions advancing them.
The most common methods for security assurance are security analysis, security testing and security
monitoring.

1 INTRODUCTION

Information security systems today encounter
various kinds of information security threats. The
increasing complexity of software-intensive and
telecommunication products, together with pressure
from information security and privacy legislation, is
increasing the need for adequately tested and
managed information security solutions in
telecommunications and software-intensive systems
and networks. The systems are constantly under the
threat as data theft, terrorism and vandalism
increase. Security assurance is increasingly
important in order to ensure the correct operation of
increasingly complex equipment, software and
services. Equipment, services and networks are more
vulnerable to security attacks, as the software of
terminal devices has become more complex and
their interfaces and connectivity have increased.
Even simple vulnerabilities may remain undetected
because of complexity. Most of the information
security threats in the traditional world of PCs also
concern terminal devices.

The €-Confidential (2009) ITEA-Eureka project
proposes a new, promising data security platform

and the use of adaptable information security
assurance methods throughout the entire product and
service life cycles. The most significant aims of
information security – confidentiality, integrity,
availability and non-repudiation – are by nature very
challenging and interdisciplinary fields. Security is a
challenging and interdisciplinary field that demands
holistic understanding and validation of the
realisation of the security objectives and the
technical solutions advancing them.

The main contribution of this study is
introduction of a multi-platform secure running
environment supported with adaptive security
assurance methods. Section 2 presents the operating
environment, Section 3 overviews case studies and
Section 4 introduces relevant security assurance
methods. Finally, Section 5 discusses future work
and Section 6 gives conclusions.

2 A TRUSTED AND SECURE
OPERATING ENVIRONMENT

In the €-Confidential project, a novel secure and
reliable platform has been developed for the needs

129
M. Savola R. (2009).
A SECURE RUNNING ENVIRONMENT FOR MULTIPLE PLATFORMS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 129-134
DOI: 10.5220/0002244201290134
Copyright c© SciTePress

of end users. The platform enables the execution of
critical operations in different types of terminal
devices (mobile phones, laptops, etc.). Examples of
critical operations are authentication, encryption, the
processing of personal data, secure connections to
peripheral devices and secure banking connections.
The trustworthiness and security requirements
should be taken into account as early as the initial
stages of software design and continue throughout
the life of the software and product. The architecture
used should enable the development of reliable
solutions, and be sustainable throughout the life
cycle of the system.

Operating System

Critical or important

application

Security API

Secure Running
Environment

…

Hardware

External Security
Device (USB

memory, smartcard,
etc.)

Security services

Figure 1: The Secure Running Environment (SRE)
includes sensitive parts of an operating system,
middleware and applications (Savola et al., 2008).

The project has developed a reliable and secure
operating environment, Secure Running
Environment (SRE), in which the core security
management of the platform is located, and which is
isolated from other components in the device. SRE
contains sensitive parts for the security of the
operating system, middleware and applications. SRE
and the surrounding processing environment can
exchange data through a secured communication
channel. The role of SRE is to be a proxy between a
user/consumer and a vendor and/or a financial
institution. Fig. 1 shows the role of SRE on a general
level.

SRE includes several external APIs (Application
Programming Interface), see Fig. 2. In an
environment open to attack, SRE-API includes a
TrustZone® API used for communicating and
service management, a management API for SRE
software management, a secure programming
interface for the storage area and a standardised
encryption algorythm programming interface
Cryptoki-API. In a secured environment, the SRE-
API includes a Secure Service Developer Interface
(SSDI) and a Small Terminal Interoperability
Platform (STIP).

2.1 Uncoupling of Applications and
Execution Environment

A key feature of the €-Confidential platform is to
use a virtual machine to implement security services.
The use of a virtual machine has several advantages
from portability, interoperability, certification and
security point of view. First and foremost,
applications and execution environment are
uncoupled. Furthermore, the presence of a virtual
machine allows for a close control of the sensitive
resources of the platform by the security services. It
is easy to filter access to files, communication points
and peripherals when applications cannot access
these resources directly in memory and are obliged
to go through well controlled instructions and APIs.
It must be noted too that the byte code implemented
by the virtual machine can have specific properties
that may help security property checks using
security assurance techniques such as static code
analysis.

2.2 Native and Interpreted Service
Frameworks

Native and interpreted service frameworks allow
security services to access SRE functions or
platform security resources in a platform
independent way. The frameworks include
functionalities for cryptography (authentication,
integrity, confidentiality and non-repudiation), key
storing, persistent storage, trusted time base, external
world access, user interaction and customization.

2.3 Overall €-Confidential Architecture

There are three main layers in the €-Confidential
architecture: at the top Service Layer, Separation
Layer under it and Hardware Layer at the bottom. In
addition, at the very top are several special entities,
environments. The Service Layer provides secure
services and and trust to the environments. The
Separation Layer ensures the separation and strong
isolation between the environments. It provides
memory isolation, safe computing time sharing,
device assignment and an inter-process
communication mechanism.
Finally, the Hardware Layer comprises of peripheral
devices and is dictated by the microprocessor
architecture.

There can be four kinds of environments above
the Service Layer: Legacy Environment, Attestable
Environment, Secure Environment and Trusted
Environment. A legacy environment is a virtual

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

130

execution environment, isolated from other
environments. An attestable environment is used to
run an attested system, be it a specific application
(e.g. banking or DRM player) or a hosting place for
security services. A secure environment is an
environment which has been proved as correct, i.e.
which has received a certification.

The Secure Running Environment (SRE) is part
of the Service Layer and acts as the host for all
sensitive operations required by the Service Layer.

Normal World Secure World

Security

Services

SRE

Secure
Channel

Secure
Storage

API

Cryptoki
API

Management
API

TrustZone
API

SRE EXTERNAL API

Security demanding
applications

SSDI STIP

SRE EXTERNAL API

Secure
Storage
service

Cryptoki
Service

Figure 2: External Application Programming Interfaces of
the SRE.

3 CASE STUDIES

The €-Confidential architecture was implemented in
a server-customer environment. Implementation
made use of case studies, through which the correct
operation of the architecture could be tested and
assured. A Voice over IP (VoIP) with a Help Desk
function was created for the case studies.

The case studies were integrated into the same
environment using SAML modules. SAML
(Security Assertion Markup Language) is XML
(eXtensible Markup Language) standard, which is
intended for authentication and authorisation data
exchange between information security management
areas. In this case, these are the fields of an identity
service and application service provider. SAML
modules were used for the building of an SSO
service.

3.1 Voice over Internet Protocol

In the VoIP scenario, the end user clicks on the ‘Call
Help Desk’ link in the authenticated session. The
user’s session is assured by using Liberty Alliance-
type identity federation and Single Sign-On (SSO).
In the session, use of Help Desk functions and an SIP

(Session Initiation Protocol) server connection or
SIP application are permitted. The SIP application
is connected through a VPN link to the SIP server,
and the customer is authenticated into the VoIP
service using certificates that are in a smart card
connected by USB. Once the SIP control signal has
been formed, the user can call the Help Desk.

3.2 Electronic Banking

In the project, a highly secure electronic banking
application was created, in which the user is able
perform some of the more common banking
operations (like transferring money and requesting a
balance) and use the Help Desk VoIP (Voice-over-
Internet-Protocol) service. The security solutions
include central bank server and user identification,
data encryption and maintenance of connection
integrity. The application can be used on a normal
PC or wireless terminal device.

3.3 Electronic University

In addition to the banking application, an electronic
application for universities was created, where the
student can use his/her user account and the Help
Desk service through the VoIP service. The user
account includes calendar information and
performance data and it is possible to use it to carry
out functions such as registration and choice of
materials. The security solutions included
centralised authentication of the university server
and student software, data encryption and
maintenance of connection integrity. Authentication
was done using electronic certificates, a smart card
and a Spanish electronic ID card.

4 SECURITY REQUIREMENTS
AND ASSURANCE

A secure and trusted environment solution is not a
sufficient security solution by itself. The security
and dependability requirements of a system and
applications should be well analysed and adequate
security assurance methods should be used.

4.1 Security Requirements

Security is clearly a system-level problem.
Consequently, one cannot accurately determine the
information security requirements outside the
context and environment of the system. Building

A SECURE RUNNING ENVIRONMENT FOR MULTIPLE PLATFORMS

131

security requirements is often a process of making
trade-off decisions between high security (S), high
usability (U) and low cost (C). The adequate level of
security typically lies in the center region of the “S-
U-C pyramid” (Savola, 2008). Various stakeholders
are needed in making the tradeoff decisions, such as
managers, developers, security experts and end
users.

A security requirement is a manifestation of a
high-level organizational security policy in the
detailed requirements of a specific system (Devanbu
and Stubblebine, 2000). According to Firesmith
(2004), the most current software requirement
specifications are either (i) totally silent regarding
security, (ii) merely specify vague security goals, or
(iii) specify commonly used security mechanisms
(e.g., encryption and firewalls) as architectural
constraints. In the first case security is not taken into
account in an adequately early phase of design. In
the second case vague security goals (like “the
application shall be secure”) are not testable
requirements. The third case may unnecessarily tie
architectural decisions too early, resulting in an
inappropriate security mechanism.

The goal of defining security requirements for a
system is to map the results of risk and threat
analyses to practical security requirement statements
that manage (cancel, mitigate or maintain) the
security risks of the system under investigation. The
requirements guide the whole process of security
evidence collection. For example, security metrics
can be developed based on requirements: if we want
to measure the security behavior of an entity in the
system, we can compare it with the explicit security
requirements, which act as a “measuring rod”.

All applicable dimensions (or quality attributes)
of security should be addressed in the security
requirements definition. See, e.g., (Avižienis, 2004)
for a presentation of quality attribute taxonomy.
Well-known general dimensions include
confidentiality, integrity, availability, non-
repudiation and authenticity. Quality attributes like
usability, robustness, interoperability, etc, are
important requirements too.

One cannot easily define a security requirement
list that could be used for different kinds of systems.
However, the functional part of Common Criteria
(ISO/IEC 15408, 2004) includes general-level
requirement lists and can be used as guidance. The
actual requirements and role of the security
dimensions heavily depend on the system itself and
its context and use scenarios. The requirements
should embody adequate system design and security
countermeasure design information too.

The definition of security requirements is an
iterative process. The sequence of security
requirement iterations depends on use cases, the
available architectural and other technical
information and the maturity of the system model.
As mentioned before, security requirements cannot
be considered only as non-functional requirements;
they may potentially create new functional
requirements during the iteration of the architectural
and more detailed technical design.

4.2 Security Assurance

If new vulnerabilities already noticed in the systems
or found in testing can be eliminated sufficiently
early in the product development phase,
considerable savings can be made in comparison
with security repairs carried out at a later stage in the
product life cycle. Security assurance methods such
as security analysis, security testing and security
monitoring help in the development of products and
services and in the later stages of their life cycles. In
recent years, the understanding and tools of security
assurance have developed in leaps and bounds,
enabling the functional testing and monitoring of
data security to be part of the normal product
process. Comprehensive security analysis guides
testing and monitoring activity. Security analysis
may include the investigation of threats, the
specification of security requirements, security
modelling, the investigation of vulnerability and the
assessment of security levels using security metrics.

A practical and secure product development life-
cycle model includes the identification of security
objectives in the initial stage, the preparation of
responsibilities and plans and security analysis. At
the stage of specifying requirements, security
standards are gathered together and security
assurance methods, such as security testing, are
planned. At the architecture and system planning
stage, threat and vulnerability models and drawn up,
and security architecture that meets the requirements
is designed. At the implementation and testing stage,
coding and testing recommendations advancing
reliability and safety are observed, and adequately
certified components are introduced. In the testing
stage, the security testing plan is implemented along
with other selected security assurance methods. In
the final stage of product development, a final
security review is performed along with the secure
configuration of the system, and the secure and
trusted distribution of the system is taken care of. In
the maintenance stage, suitable security assurance
measures are carried out, such as monitoring and

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

132

reviewing. Further actions include security training
and promoting security awareness, risk management,
security measurement, vulnerability management
and clear division of roles and responsibilities.

4.3 Security Assurance Approaches

The most common approaches to security assurance
are:
• Risk, threat and vulnerability analysis. Risk

analysis is usually part of risk management.
Threat identification is also closely related
activity to risk analysis. Vulnerability
recognition is a crucial part of practical
technical security analysis. The traditional risk
management puts less emphasis on
vulnerabilities and more on threat analysis.

• Design-level information security analysis.
Design-level analysis pays particular attention
to software architecture, platforms and security
requirements. Analysis techniques include
modelling (e.g. patterns), logical analysis and
interface and constraint analysis.

• Interdependency analysis. Interdependency
analysis identifies the key interdependencies of
software components, physical infrastructures,
networks, standards and technologies that are
possibly security-threatening.

• Source code analysis. Source code analysis can
be done in many different ways: using special
purpose-built tools, code review procedures,
manual checking of source code and coding
procedures supporting checking.

• Security testing can be divided into white box
and black box testing. In the former, the source
code is available whereas it is not in the latter.
White box methods include static and direct
code analyses, property-based testing, source
code fault injection, fault progress analysis,
fault tree analysis and source code dynamic
analysis. Black box methods include fuzzers,
software penetration testing, binary code
security analysis, binary files fault injection,
code scanning and vulnerability scanning.

• Security auditing. Security inspections
(auditing) are regular “health check-ups”, in
which it is checked that the level of system
security corresponds to requirements, and
suggestions are made to correct possible
deficiencies.

• Anomaly detection. Anomalies are abnormal,
possibly hostile behaviour of the system.
Detection can be based on the modelling of the
expected behaviour of the system and on

comparison of the actual behaviour and the
model.

5 FUTURE WORK

The Secure Running Environment developed in the
€-Confidential project can be further developed into
a standardized concept, to be integrated to various
potential platforms. New case studies can include
e.g. mobile communication, ubiquitous computing
and critical infrastructure applications.

A practical security assurance framework
requires a lot of future development. In the
following we list some goals for future work. The
core activity in security assurance and evaluation is
the definition of the security requirements, based on
risk, threat and vulnerability analyses, as well as
technical and architectural information. The current
state-of-the-art practice is limited to a too high
abstraction level.

6 CONCLUSIONS

The €-Confidential platform and its Secure Running
Environment implement a novel minimal Trusted
Computing Base (TCB), ensuring strong isolation
between different functional environments and
providing trusted services to them. Critical
operations are executed on a simple platform where
the security operations are isolated in a separate
module, which can be physically located in a
terminal device or in a separate device such as a
memory stick.

A secure and trusted environment solution is not
a sufficient security solution by itself. The security
and dependability requirements of a system and
applications should be well analysed and adequate
security assurance methods should be used.

REFERENCES

€-Confidential Eureka ITEA Project Website www.itea-
econfidential.org, 2009

Avižienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.
Basic Concepts and Taxonomy of Dependable and
Secure Computing. In IEEE Tr. on Dependable and
Secure Computing, Vol. 1, No. 1 Jan/Mar 2004, pp.
11-33.

Devanbu, P. T. and Stubblebine, S. Security and Software
Engineering: A Roadmap. In 22nd Int. Conf. of
Software Engineering (ICSE), Limerick, Ireland, 2000.

A SECURE RUNNING ENVIRONMENT FOR MULTIPLE PLATFORMS

133

Firesmith, D. Specifying Reusable Security Requirements.
In Journal of Object Technology, Vol. 3, No. 1,
Jan/Feb 2004, pp. 61-75.

ISO/IEC 15408. Common Criteria for Information
Technology Security Evaluation, Version 2.2, 2004.

Savola, R. A Framework for Security Modeling and
Measurement. In IFIP TC 11.1 Annual Working
Conference on Information Security Management,
Richmond, Virginia, 2008.

Savola, R., Röning, J., Sederholm, C., Heinonen, J.,
Uusitalo, I., Wieser, C., Mantere, M., Karppinen, K.,
Karinsalo, A., Karjalainen, K. Tietoturvaa kaikille
raudoille (In Finnish, Information Security for all
Platforms), Prosessori Magazine, No. 12/2008, pp. 30-
31.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

134

