
GENERIC WEB SERVICES
Extending Service Scope while Preserving Backwards Compatibility

Vadym Borovskiy, Juergen Mueller, Oleksandr Panchenko and Alexander Zeier
Hasso Plattner Institute for Software Systems Engineering, Germany

Keywords: Generic web service, Generic interface, Web service evolution, Signature relaxation, Service extensibility,
Service compatibility.

Abstract: In this article the challenge of extending the functionality of a Web service while guaranteeing backwards
compatibility with old client applications is addressed. The authors contribute with a new interface design
technique called ”Generic Web Services”. Using the technique service providers can extend the scope of Web
services without breaking compatibility with existing clients. The goal is achieved by applying signature relax-
ation and interface balancing techniques to a current Web service interface. Furthermore, the authors discuss
the advantages and disadvantages of generic Web services and give an example that applies the aforementioned
techniques to a Web service from SAP Enterprise Services Workplace.

1 NEED FOR FLEXIBILITY

Modern businesses operate in an ever changing envi-
ronment. Fast adaptation to the environment is there-
fore of vital importance. Since most of activities in
a company are supported by IT-systems, the prereq-
uisite of being flexible holds true for the systems too.
For service-oriented systems the challenge of flexibil-
ity can be interpreted in two ways: (i) ability to substi-
tute different services if they provide the same func-
tionality to allow provider independence; (ii) ability
to substitute different versions of the same service to
allow the extension of services.

The former interpretation leads to standardization
of services. Provider independence is achieved by
employing common standards during the develop-
ment of services (Krafzig et al., 2004). For this reason
SOA assumes the usage of agreed-upon open source
protocols (e.g. HTTP, SOAP, XML) (Erl, 2005). The
standardized communication and data representation
protocols significantly lower the effort of switching
service providers. However, the effort is still con-
siderable, since different providers most likely use
different business protocols (Ryu et al., 2007). This
means that the same business entities (e.g. customer,
sales order, address) and business processes (e.g. pur-
chasing, invoicing, billing) from an application do-
main are represented differently. This in turn cre-
ates a formidable barrier to switching between ser-
vice providers. The Figure 1 illustrates the situation

of such incompatibility. A client cannot switch its
provider by simply redirecting calls to another one
because the interfaces of ChargeCreditCard Web ser-
vice offered by others are different.

To overcome this problem service providers must
adhere to not only the agreed-upon technical, but also
the business protocols. This creates the need of com-
mon business process standards. The standardization
allows trading partners to conduct electronic com-
merce in a mutually understood way - both syntac-
tically and semantically (Damodaran, 2004).

The most notable initiatives in the area of busi-
ness process standardization are shown by Roset-
taNet1, OASIS2 and UN/CEFACT3. All three are
non-profit consortia trying to establish common e-
business standards to facilitate the automation of
cross-organizational transactions. By involving key
industry players and stakeholders, conducting exten-
sive surveys and verifying all prospect standards in
real-life business situations the consortia specify the
business processes and associated documents for data
exchange.

The second interpretation of the flexibility chal-
lenge leads to Web service evolution management.
Any successful software product inevitably goes
through a series of changes during its lifecycle

1www.rosettanet.org
2www.oasis-open.org
3www.unece.org/cefact/

127
Borovskiy V., Müller J., Panchenko O. and Zeier A. (2009).
GENERIC WEB SERVICES - Extending Service Scope while Preserving Backwards Compatibility.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 127-132
DOI: 10.5220/0002242001270132
Copyright c© SciTePress



Figure 1: Incompatible service interfaces

Figure 2: Incompatible service versions

(Brooks, 1987). Service providers must constantly
revise their portfolios in order to follow customers’
needs and add features to their services. While adding
new functionality to services, providers must ensure
that none of existing client applications faces incom-
patibilities caused by functionality updates.

In general, the challenge is to ensure the substi-
tutability of service versions, i.e. correct functioning
of all ongoing client applications relying on the old
version of a service after the version has been sub-
stituted with a new one. Because none of currently
available design methodologies guaranties preserving
backwards compatibility mismatches between Web
services and client applications will likely to happen
over the lifecycle of services (see Figure 2). Therefore
service providers must develop techniques helping to
avoid or at least minimize the problem.

In this article we concentrate on the service evolu-
tion management and aim at finding a way of extend-
ing a Web service with new functionality while pre-
serving backwards compatibility. We propose a new
concept of generic Web services (GSW). In its essence
the concept is an interface design technique that al-
lows service providers to extend the functionality of
services without breaking backwards compatibility.

The rest of the article is structured as follows. The
section 2 defines the concept of generic Web services
with the help of the notion of signature relaxation,
which is introduced in the subsection 2.1. The sub-
section 2.3 discusses the advantages and disadvan-
tages of GWS. An example of GWS is presented in
the subsection 2.2. The subsection 2.4 addresses the
challenge of defining appropriate granularity level of
an interface. Related work is discussed in the section
3. The section 4 concludes the article and outlines the
future directions of the research.

1.1 What Causes Incompatibility

When two parties exchange information they mutu-
ally follow rules prescribed by their communication
protocol (Hohpe and Woolf, 2004). The more rigid
the rules the more efficient the communication can be.
Each party assumes that its counterpart follows these
rules. However, many assumptions make the commu-
nication sensitive to any kind of change. Thus, in-
compatibility can be understood as a mismatch in the
assumptions communicating parties make about each
other and the common protocol.

The next question to answer is why incompatibil-
ities occur. In Web service architecture the roots of
incompatibilities can be found on the message level.
Messaging is the core of communication mechanism
in service-oriented systems (Dahan, 2006). To work
with a service client applications need only the ad-
dress of the service and the XML schema of request
and response messages. This information forms the
description of a service and is included in a WSDL
file that is published on the Web.

Successful communication assumes that the client
and the service exchange with messages of specific
content and format. This assumption in turn creates
a dependency between the client and the service. If
the assumption is broken, the communication is jeop-
ardized and incompatibilities are likely to occur. The
reason for this possible failure is that the client will
produce messages according to the older version of
the communication contract. The operation calls de-
serialized from these messages will not match the sig-
nature of the service’s operations.

In this paper we present a new concept of generic
Web services that brings service providers closer to
the solution of incompatibility problem. In its essence
the concept is an interface design technique that al-
lows service providers to extend the functionality of
Web services while ensuring backwards compatibil-
ity.

2 GENERIC WEB SERVICES

Service providers face the challenge of extending ser-
vices with new features while preserving backwards
compatibility. To avoid incompatibility a provider
should prevent changes to the interfaces of their ser-
vices. On the other hand adding new functionality
may require changing the interfaces. How to freeze
an interface and add features at the same time? To an-
swer this question we introduce the notion of generic
Web services.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

128



We define a generic Web service through the no-
tion of signature relaxation as follows: A generic Web
service is a Web service having at least one operation
with relaxed signature. Signature relaxation, in turn,
is the reduction of an operation’s signature rigidity.
In other words, the semantics of an operation with re-
laxed signature is not statically defined at design time
but determined dynamically at runtime through the
values of input parameters. The next subsection ex-
plains the concept in detail.

2.1 Signature Relaxation

A Web service is a set of operations accessible via
specific end point. Each service operation is charac-
terized with a signature. A signature is a collection of
an operation’s name and two sets of types, instances
of which are accepted and returned as input and out-
put parameters respectively(Gamma et al., 1995).

By analogy with (Gamma et al., 1995) the defini-
tion of a service’s interface can be derived. The set
of all signatures defined by a service’s operations is
known as the interface to the service. A service’s in-
terface defines the complete set of request messages
that can be sent to the service. To identify and dis-
tinguish interfaces developers use types. A type is a
name used to denote a particular interface (Gamma
et al., 1995).

The signature of an operation is not only a syntac-
tic characteristic but also a semantic one. Semantics
of an operation can be defined as the implied mean-
ing of the operation and is used to define its role
in a system. The relationship between the seman-
tic and syntactic aspects of signature comes from the
way software is developed. To simplify code compre-
hension and maintenance developers try to come up
with signatures (especially with names) that are self-
describing and easy to understand. Thus, the seman-
tics of an operation greatly influences the operation’s
signature.

The signature of an operation imposes restrictions
upon the types and values of the operation’s parame-
ters. This characteristic we will call the rigidity of an
operation’s signature. Having defined the term rigid-
ity we would like to come back to the term signature
relaxation. It can be defined as the loosing of signa-
ture rigidity (i.e. the loosing of restrictions that the
signature places on the types and values of parame-
ters). Thus, signature relaxation is the extension of
parameters’ connotation and the set of their possible
values.

Signature relaxation can be achieved by introduc-
ing a special sort of input parameters that will be used
to define the meaning of other parameters. In this

case the later parameters become controlled param-
eters and the former ones - controlling or identity pa-
rameters (they identify the semantics of other param-
eters).

We will call an operation with relaxed signature
a generic operation. A generic interface, in turn, is
an interface that has at least one generic operation.
A generic Web service is a service with at least one
generic operation.

The next question to answer is how one can de-
termine if a given operation is generic. A generic op-
eration can be recognized via its identity parameters.
Therefore, one should carefully examine the parame-
ters of the operation. If there is at least one parameter
that defines or extends the semantics of another, then
the operation is generic. If an operation does not have
identity parameters it is conceived to be fine-grained.

2.2 Using GWS in Practice

In this section we present an example of how an in-
terface could be relaxed and transformed to a generic
one. This is demonstrated with the set of operations
that were taken from Material Management SAP ES
Workplace service interface:
1. Find Material by GTIN4

2. Find Material by ID and Description
3. Find Material by Search Text
4. Find Material By Customer Information
5. Find Material by Elements

The operations perform the same kind of function-
ality. They all search the backend system for materi-
als. Each operation, however, uses different criteria.
The operation 5 has the most advanced functionality.
It supports the criteria of all other operations. The rest
of the operations perform specific search based on cri-
teria that are reflected in the name of a corresponding
operation.

One may conclude that the operation 5 is the most
generic and the rest operations are fine-grained ones.
This, however, is not true, because the operation has
no identity parameters. As can be seen all search cri-
teria are hard coded as the operation’s input parame-
ters5.

Find Material by Elements (
string MaterialID,
string MaterialDescription,
string GTIN (StandardID),
string MerchandiseTypeCode,
string TypeCode,...)

4Global Trade Identification Number
5Other operations follow the same principle, but have

fewer parameters.

GENERIC WEB SERVICES - Extending Service Scope while Preserving Backwards Compatibility

129



Since no operation has identity parameters, the se-
mantics of all parameters is defined at design time.
Therefore, none of the operations has relaxed signa-
ture.

As will be mentioned in the subsection 2.3 such an
interface will have difficulties with extending func-
tionality. To support more search criteria SAP must
either add a new fine-grained search operation or add
more parameters to the operation 5. In both cases
changing the signature of the interface is required.
This limitation could be overcome if the interface was
generic.

To turn this interface into a generic one we must
relax the signature of at least one operation. The best
candidate for relaxation is Find Material by Elements.
The method can be relaxed in three ways.

1. Find Material by Elements (
string attribute,
string text)

In this case the search can be performed only on a
single criterion.

2. Find Material by Elements (
string[] attribute,
string[] text)

This version of the operation searches on all at-
tributes that a client specifies at runtime. All the
criteria are used with a default predicate, for ex-
ample and. A client application must guarantee
that both input arrays are of equal size, otherwise
a runtime error will be reported.

3. Find Material by Elements (
string[] attribute,
string[] text,
predicate[] predicate)

This is the most relaxed version of the suggested
ones, because every text[i] parameter is controlled
by two identity parameters attribute[i] and pred-
icate[i]. As in the previous case a client applica-
tion ensures the consistency of the input parame-
ters.

The next question is which of the three versions
to include in the interface. Of course, all of them can
be included. However, this is not necessary. We can
include only the last two versions or even only the last
one. The rest of the operations could be represented
as overloads of the selected master methods.

There is also one interesting detail to be men-
tioned. The number of input parameters of Find Ma-
terial by Elements has been reduced. Now a client ap-
plication only supplies the attributes on which search
must be performed, whereas in the non-relaxed ver-
sion all parameters must be supplied no matter if they
are used or not.

2.3 Advantages and Disadvantages of
GWS

Over time a service provider needs to add new fea-
tures to services they offer. Not always do new fea-
tures fit into the existing interfaces of fine-grained ser-
vices. In this situation the provider has several op-
tions.

Firstly, the provider can introduce another version
of the service being changed. In this case old clients
will continue working with the previously designed
version and will not face incompatibility. Clients will-
ing to utilize new functionality will need to work with
the new version of the service. In this scenario the ser-
vice provider will need to employ a versioning mech-
anism and maintain all versions of the service. The
disadvantage of this approach is the increase in main-
tenance costs.

Secondly, the provider can change service without
maintaining backwards compatibility. In this scenario
old clients will need to migrate to the new version
of the service. Thus, the clients will incur additional
costs.

Thirdly, the provider may introduce an adapter or
a converter that will compensate the difference be-
tween the versions of the service. This approach is
described in detail in (Kaminski et al., 2006) and
(Borovskiy et al., 2008).

If a service has generic interface adding new
features does not require changing the interface6.
Adding new features is supported by design via in-
troducing new values of identity parameters. An im-
portant detail is that adding a new feature does not re-
quire changing the signature of the operation. This is
exactly the value of generic interfaces. Service archi-
tects can greatly benefit from the fact that a generic
operation can add functionality by simply extending
the domain7 of its identity parameters. Thus, generic
interfaces allow adding new functionality while keep-
ing the signature stable and preserving backwards
compatibility.

The downside of GWS is the ambiguity of con-
trolled parameters. The more vales an identity pa-
rameter has, the greater the ambiguity of a parameter
which it controls. This can result in less understand-
able service interface.

2.4 Defining Right Granularity Level

Because of the ambiguity of controlled parameters
generic Web services are more difficult to use than

6At least that often as in case of a fine-grained service.
7The set of all possible values of a parameter is called

the domain of the parameter.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

130



fine-grained ones. The more generic an operation
is, the harder it is to understand its semantics at de-
sign time. Therefore service providers must balance
services’ granularity and the ease of use. This cre-
ates a dilemma: flexibility versus usability. Services
must be generic enough to allow adding new features,
but not too ambiguous and confusing to service sub-
scribers.

In general, service providers can include to in-
terfaces as many operations as they want with any
granularity level each. However, this will create sev-
eral problems at the later stages of services’ lifecy-
cle. Firstly, the interface can grow. There can be
several operations that perform the same functional-
ity, but with slight difference. In such situations users
can be confused and will not know which operations
they should call. Secondly, once an operation has
been included to an interface, a service provider can-
not change (or even depreciate) it easily, since there
can be clients using it.

Thus, it is in the interests of service providers to
keep their interfaces as slim as possible. At the same
time the interfaces must be convenient to use, mean-
ing that the number of parameters must be reasonable
and the purpose of each one must be not difficult to
understand.

When there are not many operations (as in the ex-
ample of the previous subsection) service architects
can decide on their own (without any formal method)
what granularity level each operation in an interface
should have. In case there is a high number of opera-
tions a formal approach is needed. Such a technique
we will call interface balancing, since it balances an
interface’s granularity level and its usability. For now
we have not found a sound formal method of defin-
ing the appropriate degree of relaxation of an inter-
face. This will be one of the future directions of the
research.

3 RELATED WORK

In (Erlikh, 2000) Erlikh estimated that 90% of soft-
ware costs are evolution costs. The importance of the
evolution requires a systematic approach of manag-
ing an evolving software system. This is the task of
configuration management discipline (Zeller, 1997).

The most frequently used approach in the area of
software evolution is versioning. Versioning is used
to distinguish different versions of components and
libraries that are simultaneously running at the same
machine (Sommerville, 2007). The way how a ver-
sion is identified and which characteristics are in-
cluded into the computation of version identifier are

defined by a particular versioning model (Conradi and
Westfechtel, 1998).

A number of versioning methods has been prac-
tically implemented. None of them, however, has
solved the challenge of consistent software evolution
(Stuckenholz, 2005). Moreover, versioning is not the
mechanism of incompatibility resolution and does not
facilitate software substitutability. It is rather a way
to make software changes detectable from client ap-
plications. To figure out if two versions of the same
component are substitutable an approach offered in
(Lobo et al., 2005) could be used.

The works of Ponnekanti and Fox (Ponnekanti and
Fox, 2004), Hohpe and Woolf (Hohpe and Woolf,
2004) and Kaminski, Litoiu and Mueller (Kamin-
ski et al., 2006) address the incompatibility problem.
(Kaminski et al., 2006) suggests to pass calls of older
clients through a chain of adapters that compensates
the difference between the versions of a service in
terms of other operations available in the newer ver-
sion. This is a powerful solution, but it is limited to
the service side and might result in a serious perfor-
mance hit in case of long chain. (Ponnekanti and Fox,
2004) suggests a similar technique that reconciles in-
compatibility inside a client-side proxy. Instead of a
standard proxy a ”smart” proxy that bridges the gap
between the older client and the newer version must
be used. The approach is limited to the client side
and requires changing the older application. (Hohpe
and Woolf, 2004) presents message conversion as a
pattern of enterprise integration. The work is fairly
abstract without any implementation guidance.

From the business protocol standpoint the evo-
lution of a Web service is described in (Ryu et al.,
2007). The article suggests an approach to man-
age the protocol instances running according to the
old protocol version. Firstly, a protocol manager se-
lects the active instances that can migrate to the new
protocol. This is done by analyzing the protocol it-
self (static analysis) and each individual instance of
the protocol (dynamic analysis). All migrateable in-
stances can be safely switched to the newer protocol
version. Secondly, for non-migrateable instances an
adapter must be developed. In case the development
of an adapter is not feasible an individual temporary
protocol must be introduced to the instance to meet
new requirements without cancelling the ongoing in-
stance.

4 CONCLUSIONS

Over the lifecycle of a Web service its provider will
want to change it in order to keep the one up to date

GENERIC WEB SERVICES - Extending Service Scope while Preserving Backwards Compatibility

131



with customers’ needs. This creates a challenge of
maintaining the integrity of old client applications us-
ing the service. In case a change to a service happens
the provider must ensure backwards compatibility be-
tween the new and the old service versions.

This article contributes with the notion of generic
Web service defined with the help of terms signa-
ture relaxation and identity parameter. Based on
these notions an interface design technique was sug-
gested. Using the technique service provides can de-
sign generic Web services which have more stable and
extensible APIs. In short the technique includes three
main steps: (i) Signature relaxation - a service archi-
tect finds operations that must be relaxed and relaxes
them through the introduction of appropriate iden-
tity parameters; (ii) Interface balancing - the architect
selects the minimal number of operations effectively
representing the functionality of the interface; (ii) Op-
eration overloading - the service architect can rep-
resent excluded operations as overloads of included
ones.

The biggest value of generic Web services is that
they allow for adding functionality by simply extend-
ing the domain of their identity parameters and with-
out changing the signature of operations. The down-
side of generic Web services is the ambiguity of con-
trolled parameters.

The future research will concentrate on defining a
formal method of computing the granularity level of
operations. Furthermore, the theoretical results of the
research will be validated on a broader set of indus-
trial Web services.

REFERENCES

Borovskiy, V., Zeier, A., Karstens, J., and Roggenkemper,
H. U. (2008). Resolving incompatibility during the
evolution of web services with message conversion.

Brooks, F. (1987). No silver bullet - essence and accidents
of software engineering. IEEE Computer, 20(4).

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management. ACM Computing
Surveys, 30(2):232–282.

Dahan, U. (2006). Autonomous services and enterprise en-
tity aggregation. The Architecture Journal, (8):10–15.

Damodaran, S. (2004). B2b integration over the internet
with xml - rosettanet successes and challenges. In
Proceedings of the 13th international World Wide Web
conference, pages 188 – 195.

Erl, T. (2005). Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall.

Erlikh, L. (2000). Leveraging legacy system dollars for e-
business. IT Professional, 2(3):17–23.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Hohpe, G. and Woolf, B. (2004). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley.

Kaminski, P., Litoiu, M., and Mueller, H. (2006). A design
technique for evolving web services. In Proceedings
of the 2006 Conference of the Center for Advanced
Studies on Collaborative Research.

Krafzig, D., Banke, K., and Slama, D. (2004). Enterprise
SOA: Service Oriented Architecture Best Practices.
Prentice Hall.

Lobo, A. E., Guerra, P., Filho, F. C., and Rubira, C. (2005).
A systematic approach for the evolution of reusable
software components. In ECOOP’2005 Workshop
on Architecture-Centric Evolution (Glasgow, UK, 25-
29th July 2005).

Ponnekanti, S. R. and Fox, A. (2004). Interoperability
among independently evolving web services. In Pro-
ceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, volume 78, pages 331 –
351.

Ryu, S. H., Saint-Paul, R., Benatallah, B., and Casati, F.
(2007). A framework for managing the evolution of
business protocols in web services. In Proceedings of
the 4th Asia-Pacific Conference on Comceptual Mod-
elling, volume 67, pages 49 – 59.

Sommerville, I. (2007). Software Engineering. Addison-
Wesley, 8 edition.

Stuckenholz, A. (2005). Component evolution and version-
ing state of the art. ACM SIGSOFT Software Engi-
neering Notes, 30(1).

Zeller, A. (1997). Configuration Management with Ver-
sion Sets - a Unified Software Versioning Model and
its Applications. PhD thesis, Technische Universitaet
Braunschweig.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

132


