
GEOWIN
A System for Creative Pattern Generation based on Rules

Joaquim A. M. dos Reis
ISCTE, Dept. Ciências e Tecnologias de Informação, Av. das Forças Armadas, 1600 Lisboa, Portugal

Keywords: Rule-Based Systems, Shape Grammars, Design, Creativity.

Abstract: GEOWIN, a computational system based on rules for generating visual patterns is being developed and this
paper describes the work done so far. Rules are used to implement shape grammars to represent styles of
visual composition. This work is a continuation of previously published work addressing the construction of
a system employing shape grammar rules grouped to emulate styles of visual composition, in order to
support the behavior of different artistic creative intelligent agents with different styles. One of the goals of
this work is to have a multi-agent system that, by making use of the shape grammar formalism, will be able
to support creative visual composition synthesis activities, with each intervening agent giving its creative
contribution through a style of its own. Another goal is to use the system as a tool to realize, test and study
creativity criteria and creative processes.

1 INTRODUCTION

In this paper, we show work done and in progress in
implementing part of a system proposed in
previously published papers. See (Reis, 2006a),
(Reis, 2006b), (Reis, 2006c), (Reis, 2006d), (Reis,
2008a) and (Reis, 2008b), where we describe a
multi-agent system in which different artistic
creative intelligent agents, each with its own style,
are able to involve in artistic visual composition
activities, and where shape grammars are used to
emulate styles of visual composition of each agent.
We first expose some concepts centered around
computational creativity, then we introduce shape
grammars briefly, and finally we describe the work
done and the present state of the system
implementation.

By one side we are interested in having a tool to
generate alternative creative visual compositions
with specific styles, or mixture of styles (and, of
course, possible applications for this kind of system
could be visual composition generation with mixed
styles, either free generation or controlled and goal
oriented generation, e.g., technical drawing, Web
page layout design, output layout reconfiguration).
On the other side, we are also interested in studying
human creativity and computationally realize and
test creativity criteria and creative processes in
visual composition and design.

2 COMPUTATIONAL
CREATIVITY

Creativity is an important issue we want to address
and this is also because one of our goals is to help to
understand creativity. Can we make the computer (a
machine) to be creative or, at least, to emulate
human creativity? This is seems to be the main goal
in the area of computational creativity. But other
questions are raised too. What is creativity? And
how can we define it? And where does it com from?
What is a creative idea, or a creative artifact? Is it
just a new one, or a surprising new one, or a
valuable new one? This subject seems to be two
sided: one point of view is the study and
understanding of human creativity, the other is to
produce machine creativity and make computer to
be, or at least to appear to be, creative.

We can view creativity through two perspectives:
the combination-transformation perspective and the
personal-human perspective (Boden, 2004). The
former has to do with producing new ideas simply
by combining old ones - “improbabilistic” creativity
–, the latter consists in transforming completely the
manner in which the new ideas are produced (more
concretely the style used) - “impossibilistic”
creativity. In the former case, a new idea comes
from a new combination of familiar ideas
(specifically those combinations that we value,

289
A. M. dos Reis J. (2009).
GEOWIN - A System for Creative Pattern Generation based on Rules.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 289-296
DOI: 10.5220/0002240402890296
Copyright c© SciTePress

because they are highly improbable or because of
some other kind of criterion). In the latter case a new
idea comes from a radically new generation process.
The personal-human perspective, has to do with
whether a new idea is new within the personal
context – personal, psychological, or P-creativity –
or within the whole human history context – human,
historic, or H-creativity. In the first case, an idea is
P-creative if the person in whose mind it occurred
never had that idea before. In the other case, not
only the idea had never occurred before in the mind
of the person but also no one had ever had that idea.

Two different additional questions, but practical
ones, about computational creativity concern to the
creativity criteria to evaluate new ideas and to the
generative process to produce the new idea (Ritchie,
2001).

3 SHAPE GRAMMARS

How does a creative agent, human or artificial, build
a composition step by step. That is to say, in each
state of the composition, how does the agent choose,
among the myriad of possible options, to proceed?
The generative processes of the system we proposed
in previously published papers, see (Reis, 2006a),
(Reis, 2006b), (Reis, 2006c), (Reis, 2006d), (Reis,
2008a) and (Reis, 2008b), are based on the shape
grammar formalism. Concerning the creativity
criteria, we assume it will be provided by the user as
she/he can intervene in the generative process.

Shape grammars were introduced in the 1970s by
Stiny and Gips (Stiny, 1972). They are similar in
principles to the grammars used in the area of
Natural Language Understanding and Generation of
Artificial Intelligence, with the difference of being
based not on symbols, but on shapes (points, lines,
two-dimensional and three-dimensional geometric
shapes) as well as, by extension, also other
parameters like dimensions, colors, etc..

A vocabulary of basic shapes, an initial shape
and a finite set of rules that specify how shapes can
be generated from other, preexistent, shapes are the
components of a shape grammar. These are an
analogue, respectively, of the lexicon, of the initial
symbol and of the grammar rules of a language in a
natural language processing system. The rules of a
shape grammar specify how, in a composition in
progress, shapes existing in the composition can
trigger the addition of new shapes. Each rule has a
left side, pre-condition, or antecedent, and a right
side, action, or consequent. The left side specifies
the pattern for which the rule is applicable and the

right side the respective pattern to add. Briefly, a
rule is applicable if there is a similarity
transformation (i.e., an isometric or a scale) leading
to a match of the shape of the left side of the rule
with a shape existing in the composition. Rules are
applied in a forward manner (from antecedent to
consequent), like in the production/rule-based
forward-chaining expert systems of Artificial
Intelligence, which perform a kind of forward
inference. When applied, a rule adds the shapes in its
right side.

Shape grammars have been used in different
design problems, in the context of synthesis
(generation) and analysis (interpretation) of visual
compositions and also as means to the description
and the representation of styles, including for
didactic purposes and also other specific
applications, for instance in architectural drawings
(Gips, 1999), (Tapia, 1999), (Knight, 2000),
(Mitchell, 1990). A style is a way of someone doing
something (Simon, 1971) and shows up when that
someone chooses an alternative or a process for
generating a solution. In the field of design, a style is
a kind of design knowledge which is a characteristic
of a product, or a set of products, of design, and is
recognizable through the presence of some visual
elements like shape, color, relative position, texture,
dimension, orientation (Dondis, 1973), (Bonsiepe,
1983), (Wong, 1993) as well as certain ways of
combining those elements. Visual compositions can
be generated automatically according to specific
styles. Each style can be implemented by a set of
rules of a specific shape grammar. Additional
information and theory about shape grammars can
be found in (Shape Grammars, 2006), where lists of
paper references, people and projects are included
too. In (Knight, 2000) we can also find the history of
applications of shape grammars in Architecture and
Arts and a discussion about the roles of shape
grammars in education and practice, as well as new
and ongoing issues. In (Chau, et.al., 2004) we can
find a survey of shape grammar implementations.
Work on the algebras of shapes and issues of shape
representation and recognition can be found in
(Chase, 1996), (Krishnamurti, 1992) and
(McCormack and Cagan, 2002). (Gross, 1996) and
(Gross, 1991) are examples of work involving
application to CAD and constraint based design.
Other papers on creativity modeling, computational
creativity and the relationship between art and
technology can be found in (Gero and Maher, 1993)
and (Candy and Edmonds, 2002).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

290

4 GEOWIN

GEOWIN, a prototype program of the system
described in the papers referred is being developed
in the programming language Common Lisp (Steele,
1990). We choose this programming language
because its exploratory and flexible object oriented
programming model and for allowing the production
of reusable and extensible software. GEOWIN
presently includes the FC (Forward-Chaining), the
GEO (GEOmetry) and the SG (Shape-Grammar)
modules of Lisp code. Agents are not yet
implemented.

(defun forward-chain ()
 (do ((newfacts nil) (results t))
 ((null results) newfacts)
 (setf results nil)
 (dolist (rule (kb-rules)
 (setf newfacts
 (append results newfacts)))
 (setf results
 (append (use-rule rule)
 results)))))

Figure 1: The forward-chain function.

A forward-chaining inference engine to drive
shape grammar rule application is implemented in
the FC module, which includes a small language to
express rules and facts. Rules are stored in the rule
memory part and facts are stored in the working
memory part of a knowledge base. In Figure 1. we
show the code for the function forward-chain,
the one that contains the main cycle of the FC
module. The function kb-rules returns a list of
applicable rules in the rule memory and the function
use-rule is then used to apply each of those rules
in each iteration of the dolist cycle, to generate
new facts. This is repeated (by means of a do cycle)
until no more new facts can be generated. As an
alternative to forward-chain the function
use-rule can also be used for selective and
incremental rule application.

 (r1 "Horizontal rectangle rule."
 (and (rectangle ?x1 ?y1 ?x2 ?y2
 ?color ?filledp)
 (is ?length (- ?x2 ?x1))
 (is ?height (- ?y2 ?y1))
 (rh-hmin ?hmin) (rh-hmax ?hmax)
 (rh-ratio-min ?rmin)
 (rh-ratio-max ?rmax)
 (<= ?hmin ?height ?hmax)
 (<= ?rmin
 (/ ?length ?height) ?rmax)
 (rh-delta ?delta)
 (is ?d (eval (floor
 (/ ?height ?delta))))
 (is ?x1a (- ?x2 ?d))
 (is ?x2a (+ ?x1a ?length))
 (is ?y1a (- ?y1 (- ?height ?d)))
 (is ?y2a (+ ?y1a ?height))
 (x-min ?xmin) (x-max ?xmax)
 (y-min ?ymin) (y-max ?ymax)
 (<= ?xmin ?x1a ?x2a ?xmax)
 (<= ?ymin ?y1a ?y2a ?ymax))
 ->
 (rectangle ?x1a ?y1a ?x2a ?y2a
 dark-red t))

Figure 2: An example of a shape grammar
forward-chaining rule, rule r1.

An example of a rule is shown in Figure 2.. The
body of a rule has the antecedent and the consequent
section, before and after the symbol ->, respectively
besides the rule identifier, r1, and a documentation
string, as we can see. Facts are expressed as patterns
which are represented by Lisp lists. When a rule is
applied, each fact pattern, possibly containing rule
variables, in the antecedent part of the rule is
"pattern-matched" with facts in the working memory
part of the knowledge base. A successful
pattern-matching is expected to instantiate existing
rule variables in one or more ways. When appearing
in the consequent part a pattern means a new fact to
be added to the working memory in case the
pattern-matching process of the fact patterns in the
antecedent part of the rule was successful (any
variables in the fact pattern should have been then
instatiated).

When applied once the rule r1 shown identifies
a rectangle fact and, apart from a number of
constraint fact verifications (to exclude rectangles
that are not "horizontal" or have proportions outside
some intended limits and to avoid generation outside
the limits of the drawing area) generates a new
rectangle fact equal to the first one but lightly
translated.

GEOWIN - A System for Creative Pattern Generation based on Rules

291

Figure 3: Rule r1 ("horizontal" rectangle) generation
example. Generated shapes are solid, the start shape is the
clear rectangle.

In Figure 3. we show the result of some
successive aplications of rule r1, given an initial
rectangle shape.

(r3 "Square rule."
 (and (rectangle ?x1 ?y1 ?x2 ?y2
 ?color ?filledp)
 (is ?a (- ?x2 ?x1))
 (is ?height (- ?y2 ?y1))
 (= ?a ?height) (rq-amin ?amin)
 (>= ?a ?amin) (rq-delta ?delta)
 (is ?d (eval (floor
 (/ ?a ?delta))))
 (is ?x1a (+ ?x1 ?d))
 (is ?x2a ?x2)
 (is ?y1a (- ?y1 ?a))
 (is ?y2a (- ?y2 (+ ?a ?d)))
 (x-min ?xmin) (x-max ?xmax)
 (y-min ?ymin) (y-max ?ymax)
 (<= ?xmin ?x1a ?x2a ?xmax)
 (<= ?ymin ?y1a ?y2a ?ymax))
 ->
 (rectangle ?x1a ?y1a ?x2a ?y2a
 green t))

Figure 4. Another example of a shape grammar
forward-chaining rule, rule r3.

In Figure 4. and Figure 5., we show additional
rule examples, respectively rule r3, which, in the
presence of a square, adds another one, scaled down
and translated, and rule r4, which, in the presence
of a two shape pattern (a "horizontal" rectangle and
a square, lightly superinposed) adds a small circle.

 (r4 "Horizontal rectangle, square
and
 circle rule."
 (and (rectangle ?xr1 ?yr1 ?xr2 ?yr2
 ?color1 ?fillp1)
 (is ?length (- ?xr2 ?xr1))
 (is ?height (- ?yr2 ?yr1))
 (rh-hmin ?hmin) (rh-hmax ?hmax)
 (rh-ratio-min ?rmin)
 (rh-ratio-max ?rmax)
 (<= ?hmin ?height ?hmax)
 (<= ?rmin (/ ?length ?height)
 ?rmax)
 (rectangle ?xq1 ?yq1 ?xq2 ?yq2
 ?color2 ?fillp2)
 (is ?a (- ?xq2 ?xq1))
 (is ?aheight (- ?yq2 ?yq1))
 (= ?a ?aheight) (rq-amin ?amin)
 (>= ?a ?amin)
 (is ?delta (- ?yq2 ?yr1))
 (> ?height ?delta 0)
 (> ?xr2 ?xq1 ?xr1)
 (is ?r (eval (floor (/
 (- ?height (* 3 ?delta)) 2))))
 (> ?r 0)
 (is ?xc (+ ?xr1 ?delta ?r))
 (is ?yc (+ ?yr1 (* 2 ?delta)
 ?r)))
 ->
 (circle ?xc ?yc ?r dark-blue t))

Figure 5. Another example of a shape grammar
forward-chaining rule, rule r4.

Rules r3 and r4 have their results exemplified
in Figure 6. and Figure 7., respectively.

Figure 6: Rule r3 (scaled square) generation example.
Generated shapes are solid, the start shape is the clear
rectangle.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

292

Additional examples of generation with rules for
which, for reasons of space, we don't show code, are
presented in Figure 8. and Figure 9.

Figure 7: Rule r4 ("horizontal" rectangle, square and
circle) generation example. Generated shapes are solid, the
start shape is the clear rectangle.

A fact is composed of the name of the predicate
and the arguments, possibly variables, as in
(rectangle ?x1 ?y1 ?x2 ?y2 ?color
?filledp). Symbols starting with a ? character
are rule variables. Apart from facts, the rule
language has special predefined operators, some of
which can be seen in the example. These operators
include the logical operators and, or and not (to
logically combine facts in the antecedent part of the
rule), arithmetic operators (+, -, * and /) and
comparators (=, /=, >, >=, < and <=), the operator
is for assignment (similar in nature to the is
operator in the Prolog programming language) and
an eval special operator to evaluate arbitrary Lisp
expressions, possibly containing rule variables.

Figure 8: Additional rule generation example.

Graphical shape representation and the graphical
environment and its interactive and programmatic
interfaces is implemented in the GEO module.
Geometric shapes are implemented through objects
of Common Lisp. The most general class is the
shape class, and there are classes for points, line
segments, rectangles and circles, all subclasses of
shape. In Figure 10. we show segments of code
including the definition of classes shape and
circle.

Figure 9: Another aditional rule generation example.

A user can create and introduce new points,
segments, rectangles and circles that appear in a
drawing area through the interactive interface. The
programmatic interface allows the same through
calls to the appropriate Lisp methods. In the near
future the interactive interface will be expanded to
allow also the creation new shape grammar rules
interactively. In Figure 3., Figure 6. and Figure 14..,
the window of the drawing area of the interface is
shown.

(defclass shape ()
((color :reader color :initarg :color
 :initform nil)))
 :
(defclass circle (shape)
 ((center :reader center
 :initarg :center :type point)
 (radius :reader radius
 :initarg :radius :type integer)
 (id :reader id
 :initform (circle-id-calc))
 (filledp :reader filledp
 :initarg :filledp :initform nil))
 (:documentation "Circle shape."))

Figure 10: Some class definitions of the GEO module.

GEOWIN - A System for Creative Pattern Generation based on Rules

293

An ontology of the geometric two-dimensional
domain, some relations of which were implemented
in the GEO module, was also defined. This ontology
includes geometric points and relative position
relations between geometric points along the x and
the y axes, line segments and relative position
relations between line segments along the x and the
y axes, and rectangular shapes and relative position
relations between rectangular shapes along the x and
y axes on the plane.

(defmethod x-before ((s1 shape)
 (s2 shape))
 (< (x-max s1) (x-min s2)))

(defmethod x-after ((s1 shape)
 (s2 shape))
 (< (x-max s2) (x-min s1)))

(defmethod x-meets ((s1 shape)
 (s2 shape))
 (= (x-max s1) (x-min s2)))
 :
(defmethod y-equals ((s1 shape)
 (s2 shape))
 (and (= (y-min s1) (y-min s2))
 (= (y-max s1) (y-max s2))))

Figure 11: Some of the methods for relative position
relations between shapes of the GEO ontology.

The ontology is described in the published
papers, and is reflected in the GEO module in Lisp
methods that implement the relations between
shapes, as shown in example segments of code in
Figure 11. (functions x-max, x-min, y-max,
and y-min produce the extreme x and y coordinate
values of a given shape).

Lastly, the SG module integrates the work done
by the two others. Essentially, the functions
contained in the SG module allow top level
introduction of new shapes in a composition,
introduction of new shape grammar rules and to start
the generation of a composition. Part of the code for
this functionality is shown in Figure 12.. Usually, a
set of parameters are previously established, by
means of facts added to the knowledge base, in order
to allow some rules to be aplicable. Also, some
shape grammar rules are added, as well as one or
more start shapes. Finaly, a generation can be run.
This is all accomplished through calls to SG
functions.

The entire process is exemplified in Figure 13.
for rule r1 (shown in Figure 2.), including adding a
rectangle as a start shape. Figure 3. shows the result
of the corresponding generation with rule r1. A

more elaborated generation example is shown in
Figure 14., involving five shape grammar rules
(including r1, r3, r4 and the rules exemplified in
Figure 8. and Figure9.) and two start shapes.

 (defun sg-add-shape (fact &aux
 newfact newshape)
 (and *geowin*
 (setf newfact
 (sg-add-fact fact))
 (setf newshape
 (sg-add-shape-aux fact)))
 (values newfact newshape))

(defun sg-add-rule (rule)
 (assert-rule rule))

(defun sg-gen (&aux newfacts newshapes
 tmpshp)
 (and *geowin*
 (setf newfacts (forward-chain))
 (setf newshapes
 (mapcan
 #'(lambda (fact)
 (and (setf tmpshp
 (sg-add-shape-aux fact))
 (list tmpshp)))
 newfacts)))
 (values newfacts newshapes))

Figure 12: Some of the functions of the SG module.

5 FUTURE WORK

Generically, future work will improve and refine the
GEWIN system, and will use it as a tool to realize
and test creativity criteria and creative processes. In
specific, we can point at some future work tasks
needed to be done.

One of those tasks respects to improvement of
the FC module. This can involve to improve and
optimize the pattern matching process and the other
forward-chaining functionalities, e.g., by using the
RETE algorithm, see (Forgy, 1982) or (Doorenbos,
1995), for instance.

The system will also evolve to a multi-agent one
after we have implemented agents. Each agent will
essentially be a forward-chaining subsystem with its
own knowledge base (some adjustments may be
necessary in the FC code for this). One of the most
significant aspects to give special attention to are the
control mechanisms for rule application, which can
be viewed in the intra-agent and in the inter-agent
perspectives. The latter involves the coordination of
the activity of the agents in the multi-agent system.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

294

(sg-ini) ; initialize system
;; graphic area limits:
(sg-add-fact '(x-min 0))
(sg-add-fact '(x-max 700))
(sg-add-fact '(y-min 0))
(sg-add-fact '(y-max 500))
;; matching constraints:
(sg-add-fact '(rh-hmin 20))
(sg-add-fact '(rh-hmax 50))
(sg-add-fact '(rh-ratio-min 2))
(sg-add-fact '(rh-ratio-max 5))
;; generation parameters:
(sg-add-fact '(rh-delta 2))
;; shape grammar rule:
(sg-add-rule
 '(r1 "Horizontal rectangle rule."
 (and (rectangle ?x1 ?y1 ?x2 ?y2
 ?color ?filledp)
 (is ?length (- ?x2 ?x1))
 (is ?height (- ?y2 ?y1))
 (rh-hmin ?hmin)
 (rh-hmax ?hmax)
 (rh-ratio-min ?rmin)
 (rh-ratio-max ?rmax)
 (<= ?hmin ?height ?hmax)
 (<= ?rmin (/ ?length ?height)
 ?rmax)
 (rh-delta ?delta)
 (is ?d (eval (floor
 (/ ?height ?delta))))
 (is ?x1a (- ?x2 ?d))
 (is ?x2a (+ ?x1a ?length))
 (is ?y1a (- ?y1
 (- ?height ?d)))
 (is ?y2a (+ ?y1a ?height))
 (x-min ?xmin) (x-max ?xmax)
 (y-min ?ymin) (y-max ?ymax)
 (<= ?xmin ?x1a ?x2a ?xmax)
 (<= ?ymin ?y1a ?y2a ?ymax))
 ->
 (rectangle ?x1a ?y1a ?x2a ?y2a
 dark-red t)))
;; start shape: "horizontal" rectangle:
(sg-add-shape '(rectangle 21 400 180
 440 dark-red nil))
(sg-gen) ; start generation

Figure 13: Preparing and running a generation with rule
r1 using the programatic interface of the SG module.

Some work needs also to be done in the GEO
module involving some computational geometry
know-how. This will involve to expand the number
of geometric shape types the system can represent
and to have the possibility to edit and change
preexistent shape instances in the drawing area,
including by application of different geometric

Figure 14: Example of a composition involving several
rules. Generated shapes are solid, the start shapes are
clear.

transformations.
The geometric shape manipulation referred

above, more specifically similarity transformations,
will be useful particularly for the recognition
mechanism of shape patterns in the antecedent part
of shape grammar rules. This mechanism is
presently limited to recognize a shape indicated
almost in a literal manner in the rule, with limited
provision to specify scale transformations (but at the
cost of using some extra programming in the
language of rules, as we could see by the example
rules shown before).

Still another task to be done at the level of GEO
is to program the interactive creation of new shape
grammar rules using the graphical interface.

6 CONCLUSIONS

In this paper we have shown work done and in
progress in developing a proposed computational
system based on rules for generating patterns for
visual composition. The system makes use of the
shape grammar concept, i.e., the rules can specify
geometric shape manipulations to produce new
shapes, given some initial one(s). Shape grammars
can be used to emulate styles of visual composition
which is an interesting idea that can be applied to
exploratory design. In the future we plan to evolve
the system to a multi-agent system to support visual
composition synthesis activities, with each
intervening agent giving its creative contribution
through a style of its own, and use the system as a
tool to our investigation in realizing and testing

GEOWIN - A System for Creative Pattern Generation based on Rules

295

creativity criteria and creative processes.

ACKNOWLEDGEMENTS

Research presented in this paper was partially
supported by FCT (the Portuguese Foundation for
Science and Technology).

REFERENCES

Boden, M.A., 2004, The Creative Mind, Myths and
Mechanisms (2nd.ed.), Routledge.

Bonsiepe, G., 1983, Teoria e Pratica del Disegno
Industriale, Elementi per una Manualistica Critica,
Giangiacomo Feltrinelli Editore, Milano, Italy.

Candy, Linda, and Edmonds, Ernest (eds), 2002,
Explorations in Art and Technology, Springer-Verlag.

Chase, Scott C., 1996, Design Modeling with Shape
Algebras and Formal Logic, ACADIA '96, Tucson,
AZ, 31 October-3 November, 1996.

Chau, H. H., Chen, X., McKay, A., Pennington, Alan de,
2004, Evaluation of a 3D Shape Grammar
Implementation, First International Conference on
Design Computing and Cognition (DCC'04), J.S. Gero
(ed), Kluwer Academic Publishers, 2004.

Dondis, D. A., 1973, A Primer of Visual Literacy, The
Massachusetts Institute of Technology.

Doorenbos, R. B., 1995, Production Matching for Large
Learning Systems, PhD Thesis, Carnegie Mellon
University.

Forgy, C., 1982, RETE: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem, Artificial
Intelligence, 19, pp 17-37.

Gero, John S., and Maher, Mary Lou (eds), 1993,
Modeling Creativity and Knowledge-Based Creative
Design, Lawrence Erlbaum Associates, Inc..

Gips, J., 1999, Computer Implementation of Shape
Grammars, Workshop on Shape Computation, MIT, in
http://www.shapegrammar.org/ implement.pdf.

Gross, M.D., 1996, Elements that Follow your Rules:
Constraint Based CAD Layout, ACADIA ‘96 Tuscon,
AZ.

Gross, M.D., 1991, Grids in Design and CAD, ACADIA
'91, Los Angeles, CA pp. 33-43.

Knight, T., 2000, Shape Grammars in Education and
Practice: History and Prospects, Dept. of Architecture,
MIT, in http://www.mit.edu/~tknight/IJDC/.

Krishnamurti, R., 1992, The Maximal Representation of a
Shape, Environment and Planning B: Planning and
Design, volume 19, pages 267-288.

McCormack, J.P., Cagan, J., 2002, Supporting Designer's
Hierarchies through Parametric Shape Recognition,
Environment and Planning B: Planning and Design,
volume 29, pages 913-931.

Mitchell, W. J., 1990, The Logic of Architecture, The MIT
Press.

Reis, J., 2008a, Using Rules for Creativity in Visual
Composition, Procs. of the SIGDOC 2008, Lisbon,
Portugal, 22-24 Sept. 2008, 207-214.

Reis, J., 2008b, A Rule Language to Express Visual
Pattern Generation, (poster), Proc. of the SIGDOC
2008, Lisbon, Portugal, 22-24 Sept 2008, 273-274.

Reis, J., 2006a, Agentes com Estilo próprio, Composição
Visual Multi-Agente com Gramáticas de Forma,
CISTI 2006, 1st Iberic Conference on Information
Systems and Technologies, 21-23 June 2006, Ofir,
Portugal, Maria Manuela Cunha, Álvaro Rocha (eds.),
vol.II, 327-339 (in portuguese).

Reis, J., 2006b, Agents with Style − Multi-Agent Visual
Composition with Shape Grammars, Procs. of the 3rd
Joint Workshop on Computational Creativity, August
28-29, 2006, Riva del Garda, Italy, Simon Colton,
Alison Pease (eds.), pp. 61-62.

Reis, J., 2006c, Agents, Grammars and Style: Multi-Agent
Visual Composition with Shape Grammars, Procs. of
the ICWI 2006 - IADIS International Conference
WWW/Internet 2006, October 5-8, 2006, Murcia,
Spain, Pedro Isaías, Miguel Baptista Nunes e
Immaculada J. Martinez (eds.), Vol. II, pp. 278-282.

Reis, J., 2006d, An Approach to Multi-Agent Visual
Composition with Mixed Styles, Procs. of the ICSOFT
2006, Int. Conf. on Software and Data Technologies,
Sept, 11-14, 2006, Setúbal, Portugal, vol.1, 357-362.

Ritchie, G., 2001, Assessing Creativity, Research Report
EDI-INF-RR-0039, University of Edinburgh.

Shape Grammars, 2006, http://www.shapegrammar.org/.
Simon, H.A., 1971, Style in Design, Proceedings of the

Second Annual Environmental Design Research
Association Conference, 1-10.

Steele, Guy L., 1990, Common Lisp, the Language,
Digital Press/Butterworth-Heinemann.

Stiny, G. and Gips, J., 1972, Shape Grammars and the
Generative Specification of Painting and Sculpture, in
C. V. Freiman, ed., Information Processing 71, North
Holland, Amsterdam, 1972, pp. 1460-1465.

Tapia, M., 1999, A Visual Implementation of a Shape
Grammar System, Environment and Planning B:
Planning and Design, vol.26, pp.59-73.

Wong, W., 1993, Principles of Form and Design, John
Wiley & Sons, Inc..

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

296

