
RESOLVING TRACEABILITY ISSUES IN PRODUCT
DERIVATION FOR SOFTWARE PRODUCT LINES

Saad Bin Abid
Lero-The Irish Software Engineering Centre, University of Limerick, Limerick, Ireland

Keywords: Traceability, Change management, Model-driven development, Software product lines, Product derivation.

Abstract: Dealing with traceability management issues during model based product derivation in large complex
industrial SPL is error prone due to the lack of tool support. As a result traceability management between
connected models emerges as an important research topic. In this position paper, we discuss research
challenges as scenarios from developed example product line and give recommendations on resolving
traceability issues during product derivation. We also discuss initial ideas about our proposed approach for
resolving traceability issues for efficient change management. It is foreseen that the proposed traceability
management recommendations will help to understand the traceability issues during product derivation and
as a result of implementing them will help us to get a bit closer to our ultimate goal of, 1) efficiently
automate the product derivation, 2) reduce the production cost, 3) improve productivity and 4) improve
change management in SPL.

1 INTRODUCTION

Software Product Lines (SPLs) allows companies to
realize significant improvements in time-to-market,
cost, productivity, and system quality (Clements et
al., 2002). One major difficulty with SPL
engineering is to deal with thousands of variation
points in the industrial size product line. These
variant points need special attention as they add
complexity during product configuration (PC) and
product derivation (PD).

In a large SPL, software artefact traceability is
an important factor when it comes to effective
development and maintenance of software system;
due to lack of automation support for traceability,
maintaining links between artefacts is a tedious and
time consuming job. According to (Antoniol et al.,
2006) traceability links between related artefacts
need to evolve synchronously and reflect current
changes and dependencies across multiple artefact
types. Traceability management facilitates the SPL
artefacts to remain in synchronous state and ensures
the consistency of derived products. This research
paper discusses and elaborates on our ideas of doing
traceability management during the product
derivation and motivates where traceability can be
useful and recommend the SPL community
challenges which need attention.

This paper is structured into following sections.
Section 2 discusses the basic terminology of
traceability and motivates the use of traceability in
Model Driven Software Development (MDSD) and
SPL. Section 3 elaborates PD tasks. Section 4
discusses how the introduction of traceability can
facilitate the product engineer and automate the PD.
Section 5 provides related work. Section 6 is
discussion and future work. Section 7 discusses the
research evaluation plan and some limitation of
proposed research prototype tool suite. Section 8
concludes the paper.

2 MOTIVATION OF USING
TRACEABILITY IN MDD
AND SPL

In this section, we are going to discuss the
traceability terminology and motivates use of
traceability in both model-driven software
development (MDSD) and software product lines
(SPLs). The term traceability has different meanings
in different contexts. In the context of software
artefact traceability is “the ability to relate the
different artefacts created in the development life
cycle with one another” (Ajila et al., 2004).

99
Abid S. (2009).
RESOLVING TRACEABILITY ISSUES IN PRODUCT DERIVATION FOR SOFTWARE PRODUCT LINES.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 99-104
DOI: 10.5220/0002239400990104
Copyright c© SciTePress

Traceability is an important challenge in model
driven development (MDD) (ECMDA website,
2006). One critical challenge in MDSD processes is
the traceability of the requirements throughout the
development life cycle and on different levels of
abstraction (Aleksy et al., 2008). Despite the fact
MDD paradigm involves automatic transformations.
Traceability is still an open issue due management
of large number of software development artefacts,
relationships and dependencies among them, these
factors make traceability more time consuming and
error prone (Egyed, A., 2003).

The need of maintaining traces among artefacts
to support change management in software
development is well documented in the literature
(Ramesh et al., 2001). Prior Literature also describes
that poor traceability leads to adverse impact (e.g.
decrease in system quality, increase in number of
changes, loss of crucial knowledge due to turnover,
erroneous decisions, misunderstanding and miss
communication) on project cost and schedule (Ralf
et al., 1998).

Traceability helps identifying relationships and
dependencies among artefacts. Traceability between
requirements and their representation in the models
is crucial to ensure that the relevant set of
requirements is accurately elicited and eventually
implemented in the code (Aleksy et al., 2008). Not
only traceability ensures identifying related artefacts
and elements but it also can facilitate the change
impact analysis during software development.

3 PRODUCT DERIVATION
TASKS

In this section we are going to discuss PD tasks in a
form of scenarios and identify the potential areas for
use of traceability. Many SPL research approaches
(Czarnecki et al., 2004) focus on single development
artefacts. In order to exploit real benefits of a
product line we need to connect these isolated
models (Botterweck et al., 2008). The authors have
identified potential PD tasks in a form of scenarios.
The scenarios are illustrated with a sample product
line (RESCU product line (Botterweck et al., 2008)).
Decision, Feature and Component models are
modeled artefacts from the RESCU product line for
automotive restraint systems. The following sections
discuss few scenarios in detail as well as identify
potential areas for traceability to help the PD tasks.

3.1 Change Analysis and Evolution of
SPL (Scenario 1)

Change can arise during PD. If the introduced
change is not catered it can lead to less productivity.
Introduced change needs special attention when it
comes to understanding the consequences of the
change during PD.

In the next sections, we discuss introduction of
change Impact analysis, artefacts evolution and
consistency, configured product variant validation
and testing identification of unstable product
variants and 3rd part components during PD and also
identify potential area use of traceability.

3.1.1 Impact Analysis (Scenario 1.1)

During PD change can occur due to the following
reasons i) Inclusion of newly built artefacts into the
reusable assets platform (product line level), ii)
Change in customer requirements (product level),
iii) Updating the artefacts in a form of versions
(product level).

In a product line above mention changes can
occur in a form of addition of new decisions,
features, and components. The impact of change
needs to be analyzed for change management during
PD.

3.1.2 Related Artefacts Evolution
and Consistency (Scenario 1.2)

The newly built artefacts need to be added to the
core assets platform for future reuse. Evolving
related artefacts synchronously is still an open issue
as current traceability schemes are focusing on one
time snapshot of related artefacts (Murta et al.,
2008). For instance in example application product
line (RESCU) evolution is required when changes
are introduced to any of the modelled artefacts in a
form of either adding new decision in the decision
model, addition/ deletion of features (functional
requirement) in feature model or addition/
deletion/updating of components in component
model.

Consistency on both product line and model level
is necessary for derived products to be consistent
and PD task to be less error prone. Modeling level
consistency corresponds to the consistency between
instantiated decision, feature and component models.
And elements level corresponds to consistency that
all the related decision, feature and component
models elements are realized/implemented by their
corresponding elements.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

100

3.1.3 Configured Product Variant
Validation and Testing (Scenario 1.3)

During PD product variants need to be validated and
tested accordingly with respect to the customer’s
requirements. One scenario can be when new
variants are generated and reused again during PD.
In this situation the related test cases needs to be
identified for their testing and validation.

3.1.4 Identification of Unstable Product
Variants and 3rd Party Components
(1.4)

During PD the reusable product variants are tailored
by resolving the variability according to customer’s
requirements. Change is introduced in product
variants in a form of variants generation or updating
of variation points. Highly unstable component can
be defined as those components that require multiple
changes. During the PD planning the product
engineer might also want to analyze the highly
unstable components which are of critical
importance during PD.

Introduction of commercially of the shelf
components introduce change during PD. One
scenario could be when a customer wants to
introduce either a hardware (e.g. navigation system)
or software component (e.g. Oracle database) in the
final product variant. As a result of introduction of
new component the product engineer wants to
analyze which hardware or software components are
affected.

3.2 Resolution of Variability Across
Related Artefacts (Scenario 2)

During PD which is an application engineering
process, a product variant is derived from core
platform artefacts/ core assets. The problem arises
when different versions of same artefact elements
are developed and updated and this variability point
(representing variability in an artefact) is not
implemented in corresponding related artefact.

3.3 Identification of Related
Documentation (Scenario 3)

In this scenario, during PD in a product line the
customer gives his/her requirements to the product
engineer and PD slows down because product
engineer doesn’t understand particular feature or
related component functionality. In this situation the
product engineer wants to refer to feature or

components documentation.

4 FACILITATING PRODUCT
DERIVATION TASKS USING
TRACEABILITY

In the previous section we discussed some of the
potential candidate tasks during PD. In this section
we give suggestions as to how introduction of the
traceability can help in automating the PD tasks.

4.1 Interactive Visualisation of
Traceability Links (Approach 1)

The visualization of traceability links facilitates the
issue of visualization of related artefacts elements.
For example, when during PC only the related
elements and rest of the artefacts elements hide
might be one visual effect that can facilitate the
product engineer to stay focused and understand the
consequences of the decisions made by product
engineer. Providing a focus to a certain area in the
model also enhances the understanding of
dependencies between related elements. Visualizing
and reporting an error and providing a guideline to
solve an error can increase the productivity level.

4.2 Semantically Enriched Traceability
Meta-Model

It is hard to define the term ``semantics'' of any
language. Semantics gives the meaning to the
language constructs which define the models in
MDD. Semantics of traceability links is responsible
for defining the constructs of the traceability links.
Semantically correct traceability links ensure the
consistency of related product line artefacts by
capturing more meaningful traceability information.
There are different languages for defining the
semantics for instance Meta modeling languages
(OMG group, 2005; Eclipse website, 2009), Higher
order logic (Janota et al., 2007; Mannion, 2002),
Propositional logic (Batory, 2005).

Figure 1 shows traceability Meta-model
established by us. Meta-model contains “Traceable
Artefact” class. Traceable artefact acts as core
platform containing different artefacts. Different
artefacts are traceable to each other via the class
“Artefact Trace”. “Artefact Trace” class has
attributes like “TId” (identifying unique artefacts),
“TFreq” (for calculating frequency of artefact

RESOLVING TRACEABILITY ISSUES IN PRODUCT DERIVATION FOR SOFTWARE PRODUCT LINES

101

Figure 1: Suggested traceability Meta model.

traces), “TVersion” (which artefact versions are
traceable). Artefact consists of different artefact
elements, these artefact elements are traceable with
each other via the class “Element Trace”. Classes
“Artefact”, “Artefact Trace”, “Artefact Element”
and “Element Trace” can initiate change which is
implemented in class “Change”. Change can be of
different types. For simple version of traceability
Meta model we have change types as Update, Delete
and Add. Initiating the change leads to trigger the
Change Action class. Change Action class is
responsible for analyzing the change and can either
implement the change (Implement Change class) or
reject the change (Reject Change). This change can
lead to either implementing change in a form of
adding, deleting or updating related element or just
rejecting the change after analyzing the change
request.

Attributed traceability links means that
traceability links should not be just acting like
pointers to relate source and target artefact elements
and vice versa but also should contain additional
information (e.g., probability of variant selection,
uncertainty factor for related artefacts elements).
During PD in large complex product line the
probability can be determined by frequency of reuse
of a hardware or software component. This
frequency of reuse can be added as additional
information to the traceability links.

4.3 Documenting Traceability Links
(Approach 3)

Documentation of traceability links facilitates the
product engineer to analyze which artefacts elements
are connected to each other along with their
frequency of reuse during previous variant
derivations. It is also possible that documenting

traceability links might increase the overhead for
maintaining the product line. But during PD in large
complex product lines where thousands of artefacts
elements are connected the product engineer might
want to click the traceability link and get the
information of related artefacts elements.
Documenting traceability links will not only save his
time for analysis but also can serve as planning for
next reuse, as will save all the information captured
in traceability links (e.g. Versioning, updating
source destination artefacts.

5 RELATED WORK

Work by (Murta et al., 2005) presents architecture to
implementation traceability links evolution. The
approach has provided a nice start to manage the
traceability links between architecture to
implementation but still the introduction of new
artefacts and traceability management among them
is not yet elaborated as in our case we are dealing
with traceability management of multiple models
over time. Work by (Asikainen et al., 2007) supports
both the Domain Engineering process and the
Application Engineering Processes. Kumbang does
link the features to the architecture. Unfortunately,
there exists no direct visual, interactive
representation of the relationships between these
models. The guidance to resolve the conflict during
PD is not provided, which makes PD error prone and
human intensive. Pure::Variants (Beuche, 2004) is a
commercially available feature modelling tool. It
supports various views which provide different
approaches for different stakeholder tasks but does
not support cardinality. Pure::Variants is restricted to
only two models and it is not mentioned that if other
SPL artefacts can be traceable and managed. It is
also not possible to navigate to change and analyze
the consequences of introduced change. The
GenArch (Cirilo et al., 2007) approach is model-
based tool support for PD. The approach is lacking
traceability between feature and architecture models
and relies on Java annotations to provide the
traceability information which is not a flexible and
robust approach. It is not possible to identify,
navigate and analyze the change. Also introduction
of new SPL artefact is not elaborated. Work by
(Satyananda et al., 2007) identifies traceability
between feature model and architecture model using
Formal Concept Analysis (FCA) approach. There is
no visualization or tool support available for the
approach. Hence identification and analysis of
introduced change during PD is not possible.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

102

DOPLER tool suite (Rabiser et al., 2007) is
integrating decision model and asset model (based
on domain specific meta model) with the inclusion
condition relationships between them. The complex
relationships between decisions and assets are
expressed in a simple rule language. Self developed
engine is currently used for serving the purpose.
Change identification and management using
traceability is not elaborated also how to manage
traceability when between pre-existing SPL artefacts
(e.g. code, documentation) is not described. AMPLE
project (AMPLE website, 2009) is aiming to apply
MDD techniques in SPL area. AMPLE project is
not treating traceability management for change
management as saparete issue.

6 DISCUSSION AND FUTURE
WORK

From Table 1 we can list that not every approach is
supporting all the scenarios, rather subsets of the
scenarios can be supported by each of the suggested
approach. We can also deduce from the table that
one can develop such approach which is union of all
the suggested approaches in order to facilitate most
of the scenarios identified by the authors during
PD.Initial sample product line for Scientific
Calculator (SciCalc-PL) has been developed. The
proposed architecture for prototype tool will be
based on the Eclipse modelling framework (EMF)
and will be taking care of change management
during PD in SPL. Figure 2 shows the plug in
architecture of the proposed prototype. The
proposed case study will lead to initial prototype
development for automating PD in related artefacts
for traceability links extraction and consistency

Table 1: Suggested approach and scenarios supported.

Suggested Approach Scenarios Supported
Approach 1 Scenario 1.1, 1.4

 Approach 2 Scenario 1.1, 1.2, 1.3,
2, 1.4

Approach 3 Scenario 1.4, 1.3

Figure 2: Prototype Architecture.

checking for better change management using a
semantically enriched traceability Meta model
established in Section 4.2. The Prototype will consist
of set of Plug-ins (AutoMapper,
ConsistencyChecker, ChangeManagement,
Visualization).

7 RESEARCH PROTOTYPE
EVOLUTION PLAN
AND LIMITATIONS

This section is going to discuss the initial evaluation
plan and limitations of the approach discussed in
Section 6. The main focus of proposed solution is to
provide an EMF plug-in based tool suite prototype
for traceability management during PC and PD in
SPL. It is expected that the proposed approaches
(Section 4) will be supported by the prototype in
order to help automate the PD tasks identified in
Section 3.

Tool suites (e.g., Pure::Variants etc) and research
prototypes (e.g. Kumbang and GenArch etc) are
available for PD but they are not mainly focusing on
traceability management. Our approach will purely
address and resolve the challenges of traceability
management for change management during PD in
SPLs. Initial set of plug-ins (Feature, FIM model
and AML model plug-ins) for SciCalc-PL are
developed. The proposed Meta model will be the
basis for developing plug-ins (AutoMapper,
Consistency Checker and Change Management). For
documenting the traceability links it is in our agenda
to use Model to Text transformation languages like
open architecture ware (oAW). For visualising the
traceability links we intent to use Graphical
Modeling Language (GMF). Since our approach will
result in a plug-in based prototype tool suite and
each prototype will be providing different
functionality. The proposed research prototype tool
suite however has some limitations. Our approach
will be focusing on automatically generating
traceability links based on existing model based
traceability extraction techniques. Also the approach
will be using existing consistency checking
techniques and change management for model based
product lines in PD.

8 CONCLUSIONS

This position paper presented different
recommendations for using traceability management

RESOLVING TRACEABILITY ISSUES IN PRODUCT DERIVATION FOR SOFTWARE PRODUCT LINES

103

for efficient PD tasks in large scale software product
lines. The proposed recommendations focus on
providing interactive visual support, semantics and
documentation for traceability links. The
recommendations given to support PD tasks are
general in nature but of importance. A traceability
Meta model is also been proposed. We believe that
by implementing the provided recommendations for
change analysis, validation, components
selection/elimination, identification of high risked
feature, unstable components can be supported in a
large scale PD environment. Initial plug-in
architecture of proposed prototype is also provided
(Figure 2). Initial ideas of proposed approach
evaluation plan and limitations are also discussed.

ACKNOWLEDGEMENTS

This work is partially supported by Science Founda-
tion Ireland under grant number 03/CE2/I303-1.

REFERENCES

Clements, P. and Northrop, L. M. (2002). Software
Product Lines: Practices and Patterns. Boston:
Addison-Wesley.

Antoniol, G., Berenbach, B., Eyged, A., Ferguson, S.,
Maletic, J., Zisman, A., Holbrook, E. A., Sundaram,
S., Zou, C. and Gotel, O. (2006). "Center of
Excellence of Traceability Technical Report " Center
of Excellence for Traceability.

Ajila, S. A. and Kaba, A. B. (2004), "Using traceability
mechanisms to support software product line
evolution," in Information Reuse and Integration,. IRI
2004. Proceedings of the 2004 IEEE International
Conference on, pp. 157-162.

ECMDA Website (2006), "ECMDA Traceability
Workshop ", Homepage: http://www.modelbased.net/
ecmda-traceability/.

Ramesh, B. and Jarke, M.(2001). "Toward reference
models for requirements traceability," IEEE
Transaction.

Aleksy, M., Hildenbrand, T., Obergfell, C., and Schwind,
M. (2008). "A Pragmatic Approach to Traceability in
Model-Driven Development," in PRIMIUM 2008
Process Innovation with Business Software, Garching,
Germany.

Egyed, A. (2003). "A scenario-driven approach to trace
dependency analysis," Software Engineering, IEEE
Transactions on, vol. 29, pp. 116-132.

Czarnecki, K. , Helsen, S. and Eisenecker, U. W. (2004).
"Staged Configuration Using Feature Models," in
Proceedings of the Third Software Product Line
Conference (SPLC 2004), pp. 266-283.

Botterweck, G. , Thiel, S. , Nestor, D. , Abid, S. bin and
Cawley, C. (2008). "Visual Tool Support for
Configuring and Understanding Software Product
Lines," in 12th International Software Product Line
Conference (SPLC 2008), Limerick, Ireland.

Murta, L. G. P., van der Hoek, A. e. and Werner, C. a. u.
M. L. (2008). "Continuous and automated evolution of
architecture-to-implementation traceability links,"
Autom. Softw. Eng., vol. 15, pp. 75-107.

O M G Group (2005). "Revised submission for MOF 2.0
Query, View, Transformation version 2.0".

Eclipse website (2009). "EMF - Eclipse Modelling
Framework." Homepage: http://www.Eclipse.org/

Janota, M. and Kiniry, J. (2007). "Reasoning about
Feature Models in High-Order Logic," in SPLC 2007
Kyoto, Japan.

Mannion, M. (2002). "Using First-Order Logic for Product
Line Model Validation," in Proceedings of the Second
Software Product Line Conference, 2002, pp. 176-187.

Batory, D. (2005), "Feature Models, Grammars, and
Propositional Formulas," in 9th International
Conference on Software Product Lines (SPLC 2005),
Rennes, France, pp. 7-20.

Asikainen, T., Männistö, T., Soininen, T. (2007).
"Kumbang: A domain ontology for modelling
variability in software product families," Adv. Eng.
Inform., vol. 21, pp. 23-40, 2007.

Beuche, D. (2004). "Variants and Variability Management
with pure::variants," in 3rd Software Product Line
Conference (SPLC 2004), Workshop on Software
Variability Management for Product Derivation,
Boston, MA, 2004.

Cirilo, E. , Kulesza, U. and Lucena, C. J. P. d. (2007).
"GenArch A Model-Based Product Derivation Tool,".

Satyananda, T. K. , Lee, D. and Kang, S. (2007). "A
Formal Approach to Verify Mapping Relation in a
Software Product Line," 7th IEEE International
Conference on Computer and Information
Technology, 2007(CIT 2007), pp. 934-939.

Rabiser, R. , Dhungana, D. and Grünbacher, P. (2007)
"Tool Support for Product Derivation in Large-Scale
Product Lines: A Wizard-based Approach," in 1st
International Workshop on Visualization in Software
Product Line Engineering (ViSPLE 2007), Kyoto,
Japan.

Ralf, D. and Klaus, P. (1998). "Adapting traceability
environments to project-specific needs," ACM
Community pp. 54-62.

Ample project (2009). Web site. http://ample.holos.pt/

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

104

