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Abstract: With the growing importance of XML in data exchange, much research has been done in providing flexible 
query facilities to extract data from structured XML documents. In this paper, we discuss an efficient 
algorithm for tree mapping problem in XML databases based on unordered tree matching. Given a target 
tree T and a pattern tree Q, the algorithm can find all the embeddings of Q in T in O(|D||Q|) time, where D is 
a largest data stream associated with a node of Q. More importantly, the algorithm is index-oriented: with 
XB-trees constructed over data streams, disk access can be dramatically decreased.  

1 INTRODUCTION 

In this paper, we consider a kind of tree mappings 
used in XML databases, in which a set of XML 
documents is maintained. Abstractly, each document 
can be considered as a tree structure with each node 
standing for an element name from a finite alphabet 
∑; and an edge for the element-subelement 
relationship. Therefore, queries in XML query lan-
guages, such as XPath (Deutch et al., 1999), XQuery 
(Wang et al., 2003; Wang et al., 2005), XML-QL 
(Cooper et al., 2001), and Quilt (Chamberlin et al., 
2000; Chamberlin et al., 2002 ), typically specify 
patterns of selection predicates on multiple elements 
that also have some specified tree structured 
relations. For instance, the XPath expression: 
 book[title = ‘Art of Programming’]//author[fn = 

‘Donald’ and ln = ‘Knuth’] 
matches author elements that (i) have a child 
subelement fn with content ‘Donald’, (ii) have a 
child subelement ln with content ‘Knuth’, and are 
descendants of book elements that have a child title 
subelement with content ‘Art of Programming’. 

 
Figure 1: A query tree. 

This expression can be represented as a tree 
structure as shown in Fig. 1. 
In this tree structure, the nodes v are labeled with 
element names or string values, denoted as label(v). 
In addition, there are two kinds of edges: child edges 
(/-edges) for parent-child relationships, and 
descendant edges (//-edges) for ancestor-descendant 
relationships. A /-edge from node v to node u is 
denoted by v → u in the text, and represented by a 
single arc; u is called a /-child of v. A //-edge is 
denoted v ⇒ u in the text, and represented by a 
double arc; u is called a //-child of v. In addition, a 
node in Q can be a wildcard ‘*’ that matches any 
element in T. Such a query is often called a twig 
pattern.  
In any DAG (directed acyclic graph), a node u is 
said to be a descendant of a node v if there exists a 
path (sequence of edges) from v to u. In the case of a 
twig pattern, this path could consist of any sequence 
of /-edges and/or //-edges. We also use label(v) to 
represent the symbol (∈ ∑ ∪ {*}) or the string 
associated with v. Based on these concepts, the tree 
embedding can be defined as follows. 

Definition 1. An embedding of a twig pattern Q into 
an XML document T is a mapping f: Q → T, from 
the nodes of Q to the nodes of T, which satisfies the 
following conditions: 
(i) Preserve node label: For each u ∈ Q, label(u) = 

label(f(u)). 
(ii) Preserve parent-child/ancestor-descen- 
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 dant relationships: If u → v in Q, then f(v) is a 
child of f(u) in T; if u ⇒ v in Q, then f(v) is a 
descendant of f(u) in T.   

If there exists a mapping from Q into T, we say, Q 
can be imbedded into T, or say, T contains Q. 
Notice that an embedding could map several nodes 
with the same tag name in a query to the same node 
in a database. It also allows a tree mapped to a path. 
In fact, it is a kind of unordered tree matching, by 
which the order of siblings is not significant. This 
definition is quite different from the tree matching 
defined in (Hoffman and O’Donnell, 1982).  
In the past decade, there is much research on how to 
find such a mapping efficiently; but all the proposed 
methods can be categorized into two groups. By the 
first group (Abiteboul et al., 1999; Chung, et al., 
2002; Chen, et al., 2006), a tree pattern is typically 
decomposed into a set of binary relationships 
between pairs of nodes, such as parent-child and 
ancestor-descendant relations. Then, an index 
structure is used to find all the matching pairs that 
are joined together to form the final result. By the 
second group (Bruno et al., 2002; Chen et al., 2005; 
Choi et al., 2003; Lu, et al., 2005; Seo et al., 2003 ; 
Li et al., 2001), a twig pattern is decomposed into a 
set of paths. The final result is constructed by 
joining all the matching paths together. As an 
important improvement, TwigStack was proposed by 
Bruno et al. (2002), which compresses the 
intermediate results by the stack encoding, which 
represents in linear space a potentially exponential 
number of answers. However, TwigStack achieves 
optimality only for the queries that contain only //-
edges. In the case that a query contains both /-edges 
and //-edges, some useless path matchings have to be 
performed. In the worst case, TwigStack needs 
O(|D||Q|) time for doing the merge joins as shown by 
Chen et al. See page 287 in (Chen et al., 2006). 
Here, D is a largest data stream associated with a 
node q of Q and each element in a data stream is a 
quadruple (DocId, LeftPos, RightPos, LevelNum) 
representing an element v (matching q) in a 
document, where DocId is the document identifier; 
LeftPos and RightPos are generated by counting 
word numbers from the beginning of the document 
until the start and end of v, respectively; and 
LevelNum is the nesting depth of v in the document. 
This method is further improved by several re-
searchers. In (Chen et al., 2005), iTwigJoin was 
discussed, which exploits different data partition 
strategies. In (Lu et al., 2005), TJFast accesses only 
leaf nodes by using extended Dewey IDs. By both 
methods, however, the path joins can not be avoided. 
The method Twig2Stack proposed by Chen et al. 

(2006) works in a quite different way. It represents 
the twig results using the so-called hierarchical 
stack encoding to avoid any possible useless path 
matchings. In (Chen et al., 2006), it is claimed that 
Twig2Stack needs only O(|D|⋅|Q| + |subTwigResults|) 
time for generating paths. But a careful analysis 
shows that the time complexity for this task is 
actually bounded by O(|D|⋅|Q|2 + |subTwigResults|). 
It is because each time a node is inserted into a stack 
associated with a node in Q, not only the position of 
this node in a tree within that stack has to be 
determined, but a link from this node to a node in 
some other stack has to be constructed, which 
requires to search all the other stacks in the worst 
case. The number of these stacks is |Q|. See Fig. 4 in 
(Chen et al., 2006) to know the working process. 
The following example helps for illustration. 

 
Figure 2: Illustration for hierarchical stacks. 

In Fig. 2(b), we show the hierarchical stacks 
associated with the two nodes A and B of Q with 
respect to T shown in Fig. 2(a). In (Chen, et al., 
2006), the nodes in a data stream associated with 
each node of Q are sorted by their (DocID, 
RightPos) values. So a1 is visited last. When it is 
inserted into HS[A] (hierarchical stack of A), all 
those stacks in HS[A], which are not a descendant of 
some other stack, will be checked to establish ances-
tor-descendant links. In addition, to generate links to 
some stacks in HS[B], similar checks will also be 
performed. This needs O(|Q|) time in the worst case, 
yielding an O(|D|⋅|Q|2) time complexity.  
The method discussed in (Jiang et al., 2007) 
improves the stack structure used in Twig2Stack to 
avoid storing individual path matches and remove 
subTwigResults time. But its theoretical time 
complexity is still O(|D|⋅|Q|2).    
In this paper, we present an new algorithm, tree-
matching( ), for evaluating tree pattern queries with 
the following advantages: 
- tree-matching( ) is able to handle twig patterns 

containing /-edges, //-edges, *, and branches. 
- tree-matching( ) takes a set of data streams as 

inputs, over which XB-trees can be established to 
speed up disk access. 
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- tree-matching( ) runs in O(|D|⋅|Q|) time and 
O(|D|⋅|Q|) space. 

The remainder of the paper is organized as follows. 
In Section 3, we restate the tree encoding (Zhang et 
al., 2001), which facilitates the recognition of 
different relationships among the nodes of a tree. In 
Section 3, we discuss our algorithm. Section 4 is de-
voted to the adaptation of our algorithm in an 
indexing environment. Finally, a short conclusion is 
given in Section 5. 

2 TREE ENCODING 

In (Zhang et al., 2001), an interesting tree encoding 
method was discussed, which can be used to identify 
different relationships among the nodes of a tree. 
Let T be a document tree. We associate each node v 
in T with a quadruple α(v) = (d, l, r, ln), where d is 
the document identifier (DocId), l = LeftPos, r = 
RightPos, and ln = LevelNum. By using such a data 
structure, the structural relationship between the 
nodes in an XML database can be simply deter-
mined (Zhang et al., 2001): 
(i) ancestor-descendant: a node v1 associated with 

(d1, l1, r1, ln1) is an ancestor of another node v2 
with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2. 

(ii) parent-child: a node v1 associated with (d1, l1, 
r1, ln1) is the parent of another node v2 with (d2, 
l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln2 = ln1 
+ 1. 

(iii) from left to right: a node v1 associated with (d1, 
l1, r1, ln1) is to the left of another node v2 with 
(d2, l2, r2, ln2) iff d1 = d2, r1 < l2. 

 
Figure 3: Illustration for tree encoding. 

In Fig. 3, v2 is an ancestor of v6 and we have 
v2.LeftPos = 2 < v6.LeftPos = 6 and v2.RightPos = 9 
> v6.RightPos = 6. In the same way, we can verify 
all the other relationships of the nodes in the tree. In 
addition, for each leaf node v, we set v.LeftPos = 
v.RightPos for simplicity, which still work without 
downgrading the ability of this mechanism. 
In  the  rest of the paper, if for two quadruples α1 =  

(d1, l1, r1, ln1) and α2 = (d2, l2, r2, ln2), we have d1 = 
d2, l1 < l2, and r1 > r2, we say that α2 is subsumed by 
α1. For convenience, a quadruple is considered to be 
subsumed by itself. If no confusion is caused, we 
will use v and α(v) interchangeably. 
We can also assign LeftPos and RightPos values to 
the query nodes in Q for the same purpose as above. 
Finally we use T[v] to represent a subtree rooted at v 
in T. 

3 MAIN ALGORITHM 

In this section, we discuss our algorithm according 
to Definition 1. The input of the algorithm is a set of 
data streams associated with the query nodes q in Q, 
which contains the positional representations 
(quadruples) of the document nodes v that match q 
(i.e., label(v) = label(q)). All the quadruples in a data 
stream are sorted by their (DocID, RightPos) values. 
For example, in Fig. 4, we show a query tree 
containing 5 nodes and 4 edges and each node is 
associated with a list of matching nodes of the 
document tree shown in Fig. 3, sorted according to 
their (DocID, LeftPos) values. For simplicity, we 
use the node names in a list, instead of the node’s 
quadruples.  
We also note that the data streams associated with 
different nodes in Q may be the same. So we use q 
to represent the set of such query nodes and denote 
by L(q) the data stream shared by them. Without loss 
of generality, assume that the query nodes in q are 
sorted by their RightPos values.  

 
Figure 4: Illustration for L(qi)’s. 

We will also use L(Q) = {L(q1), ..., L(ql)} to 
represent all the data streams with respect to Q, 
where each qi (i = 1, ..., l) is a set of sorted query 
nodes that share a common data stream.  
During the process, for each document tree node v, a 
data structure is produced and maintained to 
facilitate computation: 
QS(v) - it contains all those query tree node q such  
that Q[q] (the subtree rooted at q) can be  imbedded  
into T[v]. 
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In addition, each q is associated with a variable, 
denoted χ(q). During the tree matching process, χ(q) 
will be dynamically assigned a series of values a0, 
a1, ..., am for some m in sequence, where a0 = φ and 
ai’s (i = 1, ..., m) are different nodes of T’. Initially, 
χ(q) is set to a0 = φ. χ(q) will be changed from ai-1 
to ai = v (i = 1, ..., m) when the following conditions 
are satisfied. 
i) v is the node currently encountered.  
ii) q appears in QS(u) for some child node u of v. 
iii) q is a //-child, or 
  q is a /-child, and u is a /-child with label(u) = 

label(q).  
Then, each time before we insert q into QS(v), we 
will do the following checking: 
1. Let q1, ..., qk be the child nodes of q. 
2. If for each qi (i = 1, ..., k), χ(qi) is equal to v and 

label(v) = label(q), insert q into QS(v). 
Since we search both T and Q bottom-up, the above 
checking guarantees that for any q ∈ QS(v), T[v] 
contains Q[q]. 
Below we show our algorithm tree-matching(L(Q)) 
for queries containing /-edges, //-edges, *, and 
branches. During the execution, another algorithm 
subsumption-check(v, q) may be invoked to check 
whether any q ∈ q can be inserted into QS(v).  
In the whole process, the quadruples will be 
removed one by one from the data streams and for 
each of them a node will be created and inserted into 
a temporary tree structure, called a matching 
subtree. 
Algorithm tree-matching(L(Q)) 
input: all data streams L(Q). 
output: a matching subtree T’ of T, Droot and Doutput. 
begin 
1. repeat until each L(q) in L(Q) becomes empty {  
2.  identify q such that the first node v of L(q) is of the 

minimal RightPos value; remove v from L(q); 
generate node v;  

3.  if v is the first node created then 
4.  {QS(v) ← subsumption-check(v, q);}   
5.  else 
6.  {let v’ be the quadruple chosen just before v, for 

which a node is constructed; 
7.   if v’ is not a child (descendant) of v then 
8. {left-sibling(v) ← v’; (*generate a left-sibling link 

from v to v’.*) 
9.   QS(v) ← subsumption-check(v, q);} 
10.  else 
11.  {v’’ ← v’; w ← v’;  (*v’’ and w are two temporary 

units.*) 
12. while v’’ is a child (descendant) of v do 
13. {parent(v’’) ← v; (*generate a parent link. Also, 

indicate whether v’’ is a /-child or a //-child.*) 

14.  for each q in QS(v’’) do { 
15. if ((q is a //-child) or  
16. (q is a /-child and v’’ is a /-child and 
17. label(q) = label(v’’))) 
18. then χ(q) ← v;} 
19. w ← v’’; v’’ ← left-sibling(v’’); 
20. remove left-sibling(w); 
21. } 
22. left-sibling(v) ← v’’; 
23. } 
24. q ← subsumption-check(v, q); 
25. let v1, ..., vj be the child nodes of v; 
26. q’ ← merge(QS(v1), ..., QS(vj)); 
27. remove QS(v1), ..., QS(vj); 
28. QS(v) ← merge(q, q’); 
29.}} 
end 
The outputs of the above algorithm are mainly two 
data structures: 
 Droot - a subset of document nodes v such that Q 

can be embedded in T[v]. 
 Doutput - a subset of document nodes v such that 

Q[qoutput] can be embedded in T[v], where 
qoutput is the output node of Q. 

In these two data structures, all nodes are 
increasingly sorted by their RightPos values. Based 
on them, we can find all the answers. 
In addition, special attention should be paid to 
merge(QS1, QS2), which puts QS1 and QS2 together 
with any duplicate being removed. Since both QS1 
and QS2 are sorted by RightPos values, merge(QS1, 
QS2) works in a way like the sort-merge join and 
takes only O(max{|QS1|, |QS2|}) time. We define 
merge(QS1, ..., QSk-1, QSk) to be merge(merge(QS1, 
..., QSk-1), QSk). 
In lines 14 - 18, we set χ values for some q’s. Each 
of them appears in a QS(v’), where v’ is a child node 
of v, satisfying the conditions i) - iii) given above. In 
lines 24 - 28, we use the merging operation to 
construct QS(v).  
Function subsumption-check(v, q) (*v satisfies the node 

name test  at each q in q.*)   
1.  QS ← F;  
2.  for each q in q do { 
3.   let q1, ..., qj be the child nodes of q. 
4.  if for each /-child qi χ(qi) = v and for each //-child 

qi χ(qi) is subsumed by v then 
5.   {QS ← QS ∪ {q}; 
6.   if q is the root of Q then 
7.   Droot  ← Droot  ∪ {v}; 
8.  if q is the output node then Doutput  ← Doutput  

∪ {v};}} 
9. return QS; 
end 
In Function subsumption-check( ), we check whether 
any q in q can be inserted into QS by examining the 
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ancestor-descendant/parent-child relationships (see 
line 4). For each q that can be inserted into QS, we 
will further check whether it is the root of Q or the 
output node of Q, and insert it into Droot or Doutput, 
respectively (see lines 6 - 8). 
The algorithm handles wildcards in the same way as 
any non-wildcard nodes. But a wildcard matches any 
tag name. Therefore, L(*) should contain all the 
nodes in T. However, as with twigStack (Bruno, et 
al., 2002), we establish an XB-tree over the data 
stream and take an element from it as it is needed. 
We discuss this issue in Section 4.  

Example 1. Applying Algorithm tree-matching to 
the data streams shown in Fig. 4, we will find that 
the document tree shown in Fig. 3 contains the query 
tree shown in Fig. 4. We trace the computation 
process as shown in Fig. 5.  

 
Figure 5: Sample trace. 

4 INDEX-BASED ALGORITHM 

In this section, we discuss how the algorithm 
presented in the previous section can be adapted to 
an indexing environment by constructing XB-trees  
(Bruno, et al., 2002) over data streams. However, 
XB-trees require that the quadruples in a data stream 
are sorted by their LeftPos values while our 
algorithm accesses data stream in the order of 
increasing RightPos values. For this reason, we 
maintain a global stack ST to make a transformation 
of data streams using the following algorithm. In ST, 
each entry is a pair (q, v) with q ∈ Q and v ∈ T (v is 
represented by its quadruple.) 
In the following algorithm, B(q) represents a data 
stream sorted by LeftPos values and will be 
transformed to another data stream L(q) sorted by 
RightPos  values. We  note  that  an XB-tree will be  

generated over B(q), instead of L(q). 
Algorithm stream-transformation(B(qi)’s) 
input: all data streams B(qi)’s, each sorted by LeftPos. 
output: new data streams L(qi)’s, each sorted by RightPos. 
begin 
1. repeat until each B(qi) becomes empty 
2. {identify qi such that the first element v of B(qi) is of 

the minimal LeftPos value; remove v from B(qi); 
3.  while ST is not empty and ST.top is not v’s ancestor 

do 
4.  { x ← ST.pop(); Let x = (qj, u); 
5.   put u at the end of L(qi); } 
7.   ST.push(qi, v); 
8. } 
end 
In the above algorithm, ST is used to keep all the 
nodes on a path until we meet a node v that is not a 
descendant of ST.top. Then, we pop up all those 
nodes that are not v’s ancestor; put them at the end 
of the corresponding L(qi)’s (see lines 3 - 4); and 
push v into ST (see line 7.) The output of the 
algorithm is a set of data streams L(qi)’s with each 
being sorted by RightPos values. However, we 
remark that the popped nodes are in postorder. So 
we can directly handle the nodes in this order 
without explicitly generating L(qi)’s. That is, in the 
main loop of Algorithm tree-matching( ), we handle 
the popped nodes one by one. 
In the XB-tree established over an B(q), each entry 
in a page is a pair a = (LeftPos, RightPos) (referred 
to as a bounding segment) such that any entry 
appearing in the subtree pointed to by the pointer 
associated with a is subsumed by a. In addition, all 
the entries in a page are sorted by their LeftPos val-
ues. As an example, consider a sorted quadruple 
sequence shown in Fig. 6(a), for which we may 
generate an XB-tree as shown in Fig. 6(b). 

 
Figure 6: A quadruple sequence and the XB-=tree over it. 

In each page P of an XB-tree, the bounding 
segments may partially overlap, but their LeftPos 
positions are in increasing order. Besides, it has two 
extra data fields: P.parent and P.parentIndex. 
P.parent is a pointer to the parent of P, and 
P.parentIndex is a number i to indicate that the ith 
pointer in P.parent points to P. For instance, in the 
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XB-tree shown in Fig. 6(b), P3.parentIndex = 2 since 
the second pointer in P1 (the parent of P3) points to 
P3. 
We notice that in a Q we may have more than one 
query nodes q1, ..., qk with the same label. So they 
will share the same data stream and the same XB-
tree. For each qj (j = 1, ..., k), we maintain a pair (P, 
i), denoted , to indicate that the ith entry in the page 
P is currently accessed for qj. Thus, each  (j = 1, ..., 
k) corresponds to a different searching of the same 
XB-tree as if we have a separate copy of that XB-
tree over B(qj). 
In (Bruno, et al., 2002) two operations are defined to 
navigate an XB-tree, which change the value of βq. 
1. advance(βq) (going up from a page to its parent): 

If βq = (P, i) does not point to the last entry of P, 
i ← i + 1. Otherwise, βq ← (P.parent, 
P.parentIndex + 1). 

2.  drilldown(βq) (going down from a page to one of 
its children): If βq = (P, i) and P is not a leaf 
page, βq ← (P’, 1), where P’ is the ith child page 
of P. 

Initially, for each q, βq points to (rootPage, 0), the 
first entry in the root page. We finish a traversal of 
the XB-tree for q when βq = (rootPage, last), where 
last points to the last entry in the root page, and we 
advance it (in this case, we set βq to φ, showing that 
the XB-tree over B(q) is exhausted.) As with 
TwigStackXB, the entries in B(q)’s will be taken 
from the corresponding XB-tree; and many entries 
can be possibly skipped. Again, the entries taken 
from XB-trees will be reordered as shown in 
Algorithm stream-transformation( ). According to 
(Bruno et al., 2002), each time we determine a q (∈ 
Q), for which an entry from B(q) is taken, the 
following three conditions are satisfied: 
i)  For q, there exists an entry vq in B(q) such that it 

has a descendant  in each of the streams B(qi) 
(where qi is a child of q.) 

ii) Each  recursively satisfies (i). 
iii) LeftPos(vq) is minimum. 
In the case of XB-trees, we modify the function 
getNext( ) given in (Bruno et al., 2002) to do the task 
and fit it for our strategy, in which the following 
functions are used. 
isLeaf(q) - returns true if q is a leaf node of Q; 
otherwise, false. 
currL(βq) - returns the leftPos of the entry pointed to 
by βq. 
currR(βq) - returns the rightPos of the entry pointed 
to by βq. 
isPlainValue(βq) - returns true if βq is pointing to a  

leaf node in the corresponding XB-tree. 
end(Q) - if for each leaf node q of Q βq = φ (i.e., 
B(q) is exhausted), then returns true; otherwise, 
false. 
Function getNext(q) (*Initially, q is the root of Q.*) 
begin 
1. if (isLeaf(q)) then return q; 
2. for each child qi of q do 
3.  {ri ← getNext(qi);} 
4. if (there exists at least an ri such that ri ≠ qi) 
5. then return rj such that currL() is minimal 
  among all ri’s and RightPos(rj) is maximum  
6. else 
 {qmin ← q’’ such that currL() = mini{currL()}; 
7.  qmax ← q’’’ such that currL() = maxi{currL()}; 
8. while (currR(βq) < currL() do advance(βq); 
9.  if (currL(βq) < currL() then return q; 
10. else return qmin; } 
end 
The goal of the above function is to figure out a 
query node to determine what entry from data 
streams will be checked in a next step, which has to 
satisfy the above conditions (i) - (iii). So the 
algorithm works in a recursive way (see line 3 and 
condition (ii).) Lines 6 - 9 are used to find a query 
node satisfying condition (i). Lines 4, 5, 9 and 10 
show that condition (iii) must be met. Special 
attention should be paid to line 5. We may have 
more than one ri’s with the same minimal currL(). In 
this case, the one with the maximum RightPos is 
returned. It is because the access sequence of the 
document nodes will be reordered. This arrangement 
enables us to check query nodes (against a certain 
document node) in postorder. 
Based on the above algorithm, tree-matching( ) is 
extended to tree-matchingXB( ) with βq’s being used 
to navigate different XB-trees, which is controlled 
by a specific procedure called XB-navigation( ) (see 
below). In addition, for each created node v in T’, 
both Sv and Av are handled as global variables. For 
each q, Rq is also a global variable such that for each 
v ∈ Rq T’[v] embeds Q[q]. 
Algorithm tree-matchingXB(Q) 
begin 
1. while (¬end(Q)) do 
2. {q ← getNext(root-of-Q); 
3. if (isPlainValue(βq) then 
4. {let v be the node pointed to by βq; 
5. while ST is not empty and ST.top is not v’s ancestor 

do 
6. {x ← ST.pop(); Let x = (q’, u); (*a node for u will    

be created.*) 
7. call embeddingCheck(q’, u); } 
8. ST.push(q, v); advance(βq); 
9. } 
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10. else call XB-navigation(q);} 
end 
In the above algorithm, all the entries from data 
streams will be visited through XB-trees (see line 3 
and 10.) But they will be reordered by using a global 
stack ST so that they are handled actually in 
postorder (see lines 4 - 9; also see Algorithm stream-
transformation( ) for comparison.) For checking the 
tree embedding, Algorithm embeddingCheck( ) is 
invoked (see line 7) while for navigating an XB-tree 
Algorithm XB-navigation( ) is called (see line 10.)   
Procedure XB-navigation(q) 
Input: a query node q. 
Output: βq is changed. 
begin 
1. if q is the first node (in postorder) then downtrill(βq); 
2. else {let q’ be the node just before q (in postorder); 
3.  if q’ is to the left of q then 
4. {if empty(Rq’) ∧ (currL(βq’) > currR(βq)) 
5.  then advance(βq) (*not part of a solution*) 
6.  else drilldown(βq);} (*may have a child in 

some solution*) 
7. else (*q is the parent of q’.*) 
8. if (¬empty(Rq’) ∨ (currL(βq’) > currL(βq) ∧ 

currL(βq’) < currR(βq)) 
9. then drilldown(βq) 
10. else advance(βq); 
11. } 
end 
The above procedure shows a way different from 
TwigStackXB to control the navigation of XB-trees. 
On the one hand, it is because we check the tree 
embedding bottom-up. On the other hand, we use 
not only ancestor-descendant, but also left-to-right 
relationships to control the XB-tree traversal. First, 
we examine whether q is the first node in postorder 
(see line 1.) If it is the case, we will drill down the 
corresponding XB-tree since along the branch we 
may find some entries which are part of a solution. 
In general, we will check the query node q’ which is 
the predecessor of q in postorder. It can be to the left 
of q or the right-most child of q. In the former case, 
we will compare currL(βq’) and currR(βq). If 
empty(Rq’) and currL(βq’) > currR(βq), any entry in 
the subtree rooted at the entry pointed to by βq, 
cannot be part of a solution, so βq will be advanced 
(see lines 4 - 5.) Otherwise, we will drill down the 
subtree to find some entries which might be part of a 
solution (see line 6.) A similar analysis applies to 
lines 7 - 10.  
Procedure embeddingCheck(q, v) 
Input: a query nodes q; a document tree node v. 
output: a matching subtree T’ of T, Droot and Doutput. 
begin 
1.  generate node v;  
  … … (*same as lines 3 – 29 in tree-matching*) 
end 

5 CONCLUSIONS 

In this paper, a new algorithms is presented to 
evaluate twig pattern queries based on unordered 
tree matching. The main idea is a process for tree 
reconstruction from data streams, during which each 
node v that matches a query node will be inserted 
into a tree structure and associated with a query node 
stream QS(v) such that for each node q in QS(v) T[v] 
embeds Q[q]. Especially, by using an important 
property of the tree encoding, this process can be 
done very efficiently, which enables us to reduce the 
time complexity of the existing methods such as 
Twig2Stack (Chen et al., 2006) and One-Phase 
Holistic (Jiang et al., 2007) by one order of 
magnitude. Our experiments demonstrate that the 
new algorithm is both effective and efficient for the 
evaluation of twig pattern queries. 
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