TOWARDS UNIFIED SERVICE HOSTING

Josef Spillner, Iris Braun and Alexander Schill
Computer Networks, TU Dresden, Nothnitzer Str. 46, Dresden, Germany

Keywords: SOA, Service provisioning, Heterogeneity.

Abstract:

Service-oriented computing is increasingly assuming an important role in the research on distributed sys-

tems and software engineering. It has also reached application and service hosters by now who need to be
able to host off-the-shelf services as well as custom services. Thus, they are faced with a variety of service
descriptions, service package formats and runtime demands. Each service technology usually requires a sep-
arate execution platform which eventually leads to a high complexity for the administration and management
of services. Similar to the unification of invocation of web services through protocol adapters, it is clearly
needed to unify management aspects like monitoring and adaptation of services. We therefore propose an
abstraction, a formalisation and a unification layer for hosting environments with the intent to pave the way

for technology-agnostic, unified service hosting.

1 INTRODUCTION

Software applications can run either locally on a
user’s computer or remotely on a server. Histori-
cally, each remote application required its own pro-
tocol with binary or text-based data transmission.
More recently, the use of extensible protocol formats
like XML or JSON with a predefined structure and
application-specific content has become popular es-
pecially in web-centric environments. In combination
with a discoverable uniform interface, such applica-
tions are now known as web services.

Legacy software is often made accessible through
the web for interaction with users, or as a web service
for programmatic access. Such additions are known
as application service provisioning (ASP) and lately
as software as a service (SaaS). Despite this evolution
of interface additions, the server-side installation pro-
cedure and consecutive service management has not
become easier. To date, there are no uniform inter-
faces available for managing heterogeneous services,
essentially preventing the consideration of services as
distributable entities.

On the other hand, a growing number of service
offerings is being created with an internet of services
(Petrie, 2007) in mind. Easy installation, often just
consisting of hot-deploying a self-containing service
archive, and registration at a web service directory
are among the characteristics of such services (Win-

Spillner J., Braun |. and Schill A. (2009).
TOWARDS UNIFIED SERVICE HOSTING.

kler, 2008). Due to the popularity of this develop-
ment model, various different service execution tech-
niques and programming languages as well as pack-
aging formats for service deployment have been cre-
ated and are widely used. Additionally, the runtime
environments for such services range from operating-
system level execution to highly sophisticated con-
tainers, execution engines and middleware infrastruc-
tures. In spite of the differences, they all provide a
managing container for the deployed services. This
assumption contrasts with recent research ideas for
distributed, self-managed hosting (Harrison and Tay-
lor, 2005) without containers, which is not widely
used yet. We therefore refer to the individual mid-
dleware implementations of hosting environments for
service execution and management as containers.
For service providers, this variety makes it diffi-
cult to offer the same level of hosting support and
availability guarantees for any service. Even basic
management tasks like retrieving a list of available
services and service instances is not easily possible
with today’s systems. A unification of the contain-
ers into a Unified Hosting Environment (UHE) is thus
needed. In this paper, we propose such a unification
and will show how heterogeneous service hosting in
the internet of services becomes possible without ex-
cluding the existing service development community.
Our contributions herein are threefold: First, we
explain how to assess containers at an abstract level

31

In Proceedings of the 4th International Conference on Software and Data Technologies, pages 31-36

DOI: 10.5220/0002238700310036
Copyright © SciTePress

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

by focusing on the most important service hosting and
management aspects. Second, we propose a formal
notation in UML based on these abstractions. Third,
we outline the concept of a UHE using this notation
and well-known software design patterns.

2 RELATED WORK

Background information on the challenges of intro-
ducing new network-level and application-level ser-
vices into existing infrastructures is given in (Vil-
lanueva and Touch, 2000). Both deployment and
management, refined by us to cover monitoring and
adaptation, has thus already been known to raise is-
sues for about a decade.

A common issue with new technologies like SOA
is the lack of widespread methodologies. The main
contributing factors to this issue are heterogeneous
stakeholders, programming languages, protocols, in-
terfaces and implementation frameworks. The OASIS
Framework for Web Service Implementation (FWSI)
has been designed and extended to cover the require-
ments analysis, development and testing of services,
but the subsequent phases of deployment and opera-
tion are not yet covered (Lee et al., 2006). The gap is
shown in figure 1.

| analyse |

v v

implement

manage
(monitor,
adapt)

Hosting

Figure 1: Typical service hosting lifecycle.

An approach to fill the gap is the Service Grid In-
frastructure (SGI) (Bome and Saar, 2005). Its pur-
pose is the deployment and execution of heteroge-
neous services under a number of requirements: dy-
namic deployment, stateful services and considera-
tion of non-functional properties. By restricting the
service implementation technology to OSGi and EJB,
the approach fails to take advantage of its otherwise
sound decoupled management and execution of state-
ful services in a grid context. On the management
layer, it offers unified access to monitoring data, but
no unified adaptation interface. Despite an extension
to .NET services later on (Troger et al., 2007), to-
day’s needs for dynamic service hosting range from
small CGI scripts and BPEL files to complex, pre-

32

configured virtual machines and corresponding SOA-
aware management interfaces.

The Service Component Architecture (SCA) is an
approach for unification of development and deploy-
ment of services. It wraps each service into a uniform
component and defines dependencies between those
(Kramer, 2008). However, there are several shortcom-
ings with SCA regarding unified hosting. It requires
the presence of the wrapper as part of the distributed
service package. Furthermore, while a configuration
interface is available, it does not cover dynamic re-
configuration at run-time. The omission of this capa-
bility leads to restrictions on adaptation mechanisms.
Other dynamic aspects like switching connection pro-
tocols are supported, though. Therefore, we will not
base our proposal on SCA but rather treat SCA as yet
another concrete container in which SCA-compliant
packages can be deployed.

Based on the evaluation of existing works, we for-
malise unified service hosting and propose a more
complete and more suitable system which honours na-
tive service packages and hence doesn’t require de-
velopers to learn additional technologies. Our pro-
posal maintains a separation of concerns between ac-
cess to services from clients and their management
from hosting agents.

3 ABSTRACTION OF
CONTAINERS

The abstract notation of containers shall be derived
from a comparison of their commonalities. The va-
riety of containers makes it hard to compare all of
them. We selected typical representatives with a suf-
ficiently high popularity in real-world deployments.
This includes Java servlet containers, OSGi service
platforms, conventional web servers for web appli-
cations, operating systems implementing the Linux
Standard Base (LSB) service interface, BPEL engines
and virtualised machines. Most of them expect ser-
vices to be deployed in a format not understood by
the other ones, and they also differ in their implemen-
tation languages, execution models and management
interfaces. Table 1 shows a number of containers, im-
plementations thereof and the accepted package for-
mats for service deployment. For each package type,
repositories are listed if they exist and are commonly
used.

The capabilities of service packages differ widely.
Automatic and semi-automatic functional testing, for
example, requires a formal syntactical description of
the service interface. In the case of BPEL archives,
the corresponding WSDL files are generally included,

TOWARDS UNIFIED SERVICE HOSTING

Table 1: Overview on service containers.

Container Overview

Container H Implementations Deployment Repository
1. | OSGi Knopflerfish, Equinox bundle, PAR OBR
2. | Servlet Jetty, Tomcat servlet none
3. | Web server Apache, thttpd LSB package Debian
4.1 OS Linux
5. | BPEL engine || ActiveBPEL, ODE BPEL archive none
6. | SCA runtime || Tuscany, Fabric3 SCA composite none
7. | VM Eucalyptus Cloud Disk image none
1) OSGi Bundle Repository, http://www.osgi.org/Repository/HomePage
2) Debian Package Search, http://www.debian.org/distrib/packages

whereas LSB packages don’t contain such descrip-
tions in most cases. A study conducted by us found
that among more than 24,000 packages of the Debian
GNU/Linux distribution, 7,121 are registered as be-
ing applications and 267 as being network services.
These numbers are likely higher in reality since the
process of categorising the packages is ongoing. Yet,
despite many of the service packages offering RPC,
XML-RPC, SOAP or REST interfaces, only a total of
two packages (Sympa and phpWiki) ship with WSDL
descriptions.

More differences can be found in the runtime fea-
tures of the containers. Some allow for a dynamic ex-
ternal reconfiguration or multiple instantiation, while
others don’t, as can be seen in table 2.

There is clearly a need to unify the access to such
containers so that service hosters can cope with the
heterogeneity imposed by the preferences of service
developers.

4 A FORMAL NOTATION FOR
CONTAINERS

Considering the variety of properties even of abstract
views on containers, a symbolic expression will not
be able to capture all aspects. On the other hand, ex-
tensible and machine-readable notations are hard to
understand by humans and are unable to selectively
focus on important details. Therefore, we use an
UML notation to express a common model for ser-
vice containers. An excerpt is shown in figure 2. The
model refers to a single container which can deploy
any number of packages. Each package contains n
services which are each described by m formal ser-
vice descriptions and / endpoints. For each service
srv; each invocation yields an instance inst;; ;. By ex-
tension, the invocation properties can be guaranteed

with contracts sla;; for each client for any service. We
will however leave discussion of handling contracts
out of this paper for brevity.

EEiEE!EE!E!

Service

ﬁ

|Package

o]

‘o..
L 5

Container

- services: Service::List
instances: Instance::List

deploy (package: Package): Service::ID

listServices(): Service::List

listInstances(): Instance::List

getServiceConfig(service: Service::ID): Config
reconfigureService (service: Service::ID, config: Config): bool

T+ o+t

Figure 2: Formal notation of service containers.

Today’s package formats support this model only
to a certain degree. For example, the description
and endpoint of a servlet-based service cannot be in-
ferred from the servlet metadata automatically. In-
stead, heuristics need to be applied to find the cor-
rect information inside the package. OSGi-based and
LSB services already provide rich metadata, includ-
ing the licence which is important for the considera-
tion of service migration. Still, the packaging formats
could be improved to cover the needs of dynamically
deployable services.

5 A UNIFIED HOSTING
ENVIRONMENT

Based on the abstract notation of containers, a collec-
tion of a number of them unified behind a delegating
proxy yields a more powerful environment capable of
handling more kinds of services.

For the deployment, a package containing the ser-
vice is routed to the respective container. For exam-

33

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

Table 2: Dynamic aspects in service containers.

Container Dynamics
Container H Configuration Reconfiguration Instantiation
1. | OSGi manifest file messages singleton
2. | Servlet web.xml servlet reload per call
3. | Web server /etc config server reload per call
4.1 OS /etc config SIGHUP per call
5. | BPEL engine none none per call
6. | SCA runtime properties none various
7. | VM /etc config SIGHUP singleton

ple, a BPEL file is written to the BPEL server’s hot-
deployment directory, whereas a web application is
stored on the disk followed by a notification of the
web server. If the deployment at the container fails
or no suitable container has been found, the UHE de-
ployment fails.

Similarly, the reconfiguration either uses an ap-
propriate mechanism of the respective container, or
fails if either the mechanism fails or no container can
be found. While the heterogeneous nature of contain-
ers and service concepts might pose a challenge to
such combinations, preliminary findings suggest that
at least among the considered implementations there
are no hard discrepancies.

UHE Interface

+ deploy(package: Package): Service::ID

i

Container Adapter

+ deploy{package: Package): Service::ID

1
A

Container Interface

+ install(f: File): bool
+ activate(p: Path): void

Figure 3: Design pattern notation of container abstraction.

The architecture of the environment can thus be
assumed to follow the pattern in figure 3, leading to
figure 4. In terms of software design patterns, UHE is
defined as a proxy connected to a number of adapters,
each of which wraps a specific container. Any con-
tainer method can be invoked on the unified environ-
ment, and depending on the service type is redirected
to the container which handles the service. While the
server administrator or corresponding tools communi-
cate with the services through UHE, clients still com-
municate with each container directly, thus the intro-
duced overhead is being minimised.

A possible extension here is to introduce a
recursive-hierarchical distributed UHE by adding a
UHE adapter which accepts all package formats and

34

Client

A
SOAP Rl [SOAP, MTP HTTP
WwHTTP

BPEL OSGi Servlet LSB
engine con- con- service
tainer tainer runtime

Unified Hosting Environmen!

Interactive administration Programmatic administration

Figure 4: Hosting environment architecture.

redirects requests to other UHE installations, thereby
creating a composite environment. Due to the many
implications like globally unique identifiers, we will
not discuss this topic in this paper.

In the following subsections, we will explain the
implications of the unification on a number of aspects
in hosting environments.

5.1 Deployment

Service packages are assumed to be either self-
contained, as can often be seen with servlets and as-
sociated libraries in WAR packages, or to rely on a
dependency resolution and configuration mechanism
as is the case with LSB package managers or OSGi
bundle loaders (Cosmo et al., 2008). We thus define
the self-contained property of the package and the
dependency-resolving property of the respective
container. In both cases, additional restrictions have
to be assumed about the existence and versions of the
installed system software, including language-level
virtual machines, container behaviour and system call
interfaces. This assumption can be weakened if the
implementation supports a recognition of the required
environment configuration and setup of a matching
environment using a virtualised operating systems or
other techniques. This distinction shall be expressed
by the virtualisable property of the container, and

TOWARDS UNIFIED SERVICE HOSTING

Table 3: Properties of service packages.

Service package properties
Package type H self-contained self-described
1. | OSGi bundle possibly yes
2. | Axis WAR possibly no
3. | Webapp/DEB no yes
4. | System/RPM no yes
5. | ODE BPEL archive no yes
6. | SCA composite possibly no
7. | VM image yes no

the corresponding self-described property of the
package.

Therefore, the following property matches are
considered a requirement depending on the desired
universality of the hosting environment: If any pack-
age is not self-contained, then the container must
be dependency-resolving, otherwise the service
will not run. If a package is not self-described,
then the container must meet all its implicit require-
ments, otherwise the service will not run either.

The table 3 shows the varying degree of self-
containedness and self-description of service pack-
ages, corresponding to the containers in the previous
tables. It is interesting to see that no service pack-
age format mandates self-containedness, yet a couple
of them usually ship with dependency libraries while
others do not.

5.2 Monitoring and Adaptation

A number of software components on a typical host-
ing system can be considered stakeholders in a uni-
fied environment. Adaptation mechanisms, for ex-
ample, implement abstract adaptation strategies for
a controlled change of either the system, the ser-
vices or contract offers and running contracts, within
well-defined limits. Likewise, monitoring agents
need ways to capture system-level, container-level
and service-level indicators about running service in-
stances, avoiding to directly provide supporting im-
plementations for the growing variety of containers
and preferring to use the available query interfaces.
Such requirements reach beyond a unification on the
messaging level, as is provided by enterprise service
buses. UHE is a suitable layer to unify monitoring and
adaptation aspects. Adaptation mechanisms on the
middleware level may include load balancing (Lodi
et al., 2007). In such cases, having a unified interface
to deploy packages across machines is beneficial as
well.

tested started O instantiated

installed/
stopped

not installed

Figure 5: Service state transitions.

5.3 Testing

Another requirement from hosting companies is that
each service must first run in a quarantined environ-
ment, also known as sandbox, to find out potential
issues. None of the containers we have evaluated sup-
ports a sandbox. Therefore, we consider it manda-
tory and architecturally sound to provide such a fea-
ture within the UHE, as shown in figure 5.

Migrating an installed and configured service into
the production container will take a small amount of
work compared to the overall configuration efforts
(Sethi et al., 2008).

5.4 Interfaces

A hosting environment should be accessible both by
humans and by software. In both cases, the interfaces
should not depend on the actual variety and number
of containers installed. Instead, the interface should
remain stable whenever new technology demands the
addition or removal of containers, thus guaranteeing
the same level of usability.

For administrators, an interactive interface for ba-
sic management tasks like uploading services, listing
installed services and running instances and modify-
ing the service states is proposed. It could be im-
plemented as a web interface or as a desktop appli-
cation integrated into a general system management
framework. In addition, we propose having a suitable
web service interface to the UHE so that its service
management capabilities can be offered to any remote

35

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

agent. Among the potential users, a service registry
could benefit from a formal way of interacting with
the containers which collectively can be considered
the service repository.

6 DISCUSSION
AND CONCLUSIONS

We have explored commonalities and disparities be-
tween various containers acting as hosting environ-
ments, and based on a comparison presented an ab-
stract view on their structures and abilities. Using a
formal notation, we were able to define the notion of
a Unified Hosting Environment which acts as a proxy
and adapter to all concrete containers. UHE allows for
deployment and management of heterogeneous ser-
vices without any additional service development ef-
fort and run-time execution overhead. The concept of
UHE is complementary to recent progress towards de-
velopment methodologies for distributable services.
It is supported by specialised implementation tech-
niques with mobile code (Liu and Lewis, 2005) and
the tradable service archive format SAR.

Conceptual extension points including contract
handling and distributed operation have been identi-
fied and will be analysed regarding their unification
potential in the future. By now, we have already im-
plemented the deployment part of UHE which will
help service providers to keep up with the high vari-
ety of development methods and packaging formats
in service offerings. The easier service hosting be-
comes, the faster the vision of an internet of services
can be turned into a real infrastructure.

ACKNOWLEDGEMENTS

The project was funded by means of the German Fed-
eral Ministry of Economy and Technology under the
promotional reference “01MQO07012”. The authors
take the responsibility for the contents.

REFERENCES

Bome, H. and Saar, A. (2005). Integration of heteroge-
nous services in the Adaptive Services Grid. In GI-
Edition - Lecture Notes in Informatics (LNI), P-69:
NODe 2005/GSEM 2005. 2nd International Confer-
ence on Grid Service Engineering and Management,
Erfurt, Germany.

Cosmo, R. D., Trezentos, P., and Zacchiroli, S. (2008).
Package upgrades in FOSS distributions: details and

36

challenges. First ACM Workshop on Hot Topics
in Software Upgrades (HotSWUp). Nashville, Ten-
nessee, USA.

Harrison, A. and Taylor, 1. (2005). Dynamic web service
deployment using WSPeer. In Proceedings of 13th
Annual Mardi Gras Conference - Frontiers of Grid
Applications and Technologies, pages 11-16. Baton
Rouge, Louisiana, USA.

Kramer, B. J. (2008). Component meets service: what does
the mongrel look like? In Innovations Syst Softw Eng,
pages 385-394. Springer.

Lee, S. P, Chan, L. P, and Lee, E. W. (2006). Web Ser-
vices Implementation Methodology for SOA Appli-
cation. In Proceedings of the 4th IEEE International
Conference on Industrial Informatics (INDIN). Sin-
gapore.

Liu, P. and Lewis, M. J. (2005). Mobile Code Enabled Web
Services. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 167-174.
Orlando, Florida, USA.

Lodi, G., Panzieri, F., Rossi, D., , and Turrini, E.
(2007). SLA-driven clustering of QoS-aware appli-
cation servers. IEEE Transactions on Software Engi-
neering, 33(3).

Petrie, C. (2007). The world wide wizard of open source
services. Fourth International Workshop on Semantic
Web for Services and Processes (SWSP). Salt Lake
City, Utah, USA.

Sethi, M., Kannan, K., Sachindran, N., and Gupta, M.
(2008). Rapid deployment of SOA solutions via auto-
mated image replication and reconfiguration. IEEE In-
ternational Conference on Services Computing. Hon-
olulu, Hawaii, USA.

Troger, P., Meyer, H., Melzer, 1., and Flehmig, M. (2007).
Dynamic Provisioning and Monitoring of Stateful
Services. In Proceedings of the 3rd International Con-
ference on Web Information Systems and Technologies
- WEBIST. Barcelona, Spain.

Villanueva, O. A. and Touch, J. (2000). Web Service
Deployment and Management Using the X-bone.
In Spanish Symposium on Distributed Computing
(SEID). Ourense, Spain.

Winkler, M. (2008). Service description in business value
networks. Doctoral Symposium of the 4th Interna-
tional Conference Interoperability for Enterprise Soft-
ware and Applications (I-ESA). Berlin, Germany.

