
DESIGN QUALITY OF ASPECT-ORIENTED AND
OBJECT-ORIENTED PROGRAMS

An Empirical Comparison

Konstantina Georgieva, Ayaz Farooq and Reiner R. Dumke
Inst. of Distributed Sys., Faculty of Computer Science, OvG University Magdeburg

P.O.Box 4120, 39106 Magdeburg, Germany

Keywords: Aspect-oriented programming, Object-oriented programming, Software metrics, Java, AspectJ, Empirical
analysis.

Abstract: The aspect-oriented programming introduces the next step in the software design approaches in the sense
of overcoming the imperfections in the object-oriented paradigm by separating the cross-cutting concerns
and manipulating them in a separate manner. While the use of aspect-orientation attempts to tackle some of
the issues with object-oriented approach, it raises some others. How far is the design quality improved by
the use of aspect-orientation over object-orientation. What are common design trends among AO programs
in comparison with OO programs? A comparison among design metrics for both these kinds of programs
can help find answers to these questions. We have used Chidamber & Kemerer metrics suite to empirically
compare design properties of AO programs with OO programs. Results from Chidamber & Kemerer metrics
for eleven AspectJ benchmark programs and those for dozens of Java libraries and programs are analyzed.
The experiment reveals few interesting design trends and some limitations of the used metrics suite.

1 INTRODUCTION

As an another innovation to the hierarchy of pro-
gramming technologies, aspect-oriented program-
ming (AO) is aimed at enabling better software de-
signs. It introduces clear responsibilities for in-
dividual modules, consistent implementation, im-
proved reusability, and improved skill transfer (Lad-
dad, 2003). The new aspect-oriented paradigm is
aimed to improve designs over its well-known pre-
decessor, object-oriented programming, by separating
the cross-cutting concerns and in this way maintain-
ing better modularity. In this new type of code it is be-
lieved that better cohesion, maintainability, reusabil-
ity and quality are achieved.

Evaluation of aspect-oriented vs. object-oriented
programming designs can be studied in different
ways. One of these methods is the comparison be-
tween AO and OO programs for analyzing the ben-
efits or improvements brought by either of the two
technologies. Such comparisons can test validity of
the claims that AO programming scores well on some
of the quality attributes in comparison to OO pro-
gramming. It has been observed that empirical re-
search of this kind is yet at an early stage (Guy-

omarc’h and Guhneuc, 2005).
Within this context, this paper performs an em-

pirical comparison between AO and OO program
designs by using the well-known and widely used
Chidamber & Kemerer (subsequently referred to as
C&K) metrics. This metrics suite was initially defined
for object-oriented systems (Chidamber and Kemerer,
1994) and has been extended for aspect-oriented pro-
grams (Ceccato and Tonella, 2004). The interpreta-
tion and measurement of these metrics for AO and OO
programs is certainly slightly different. However, the
comparisons between these metrics can still be mean-
ingful since they measure the same property of design
in both cases with the same scale. We have used mea-
surement results from a very large source of object-
oriented measurements (Farooq et al., 2005) which
holds C&K metrics results for several Java standard
libraries. The results are compared with the measure-
ment of AO version of the same metrics calculated for
a set of programs written in AspectJ.

This experiment’s benefit is twofold. On one
hand it will help us compare complexity, maintain-
ability, usability and other quality attributes of typ-
ical AO and OO programs. Secondly, it will re-
veal the typical design and implementation trends for

287
Georgieva K., Farooq A. and R. Dumke R. (2009).
DESIGN QUALITY OF ASPECT-ORIENTED AND OBJECT-ORIENTED PROGRAMS - An Empirical Comparison.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 287-290
DOI: 10.5220/0002237102870290
Copyright c© SciTePress



aspect-oriented programs. This information can also
be used for benchmarking among AO programs. A
few other works have compared aspect-oriented and
object-oriented programs (Tsang et al., 2004), (Guy-
omarc’h and Guhneuc, 2005), (Kulesza et al., 2006).
However, our experiment is based on relatively very
large set of measurements which gives strength to
generalizability of our results.

2 ASPECT-ORIENTED AND
OBJECT-ORIENTED DESIGN
METRICS

As already mentioned above, several sets of met-
rics exist for aspect-oriented programs and even more
available for object-oriented programs as well. To be
able to make the planned comparisons, we needed a
common and resembling set of metrics for both AO
and OO programs. Chidamber & Kemerer metrics
appeared an excellent choice as two variants of this
metrics suite are available for aspect-oriented (Cec-
cato and Tonella, 2004) and object-oriented pro-
grams (Chidamber and Kemerer, 1994). C&K met-
rics for OO program used in this experiment are
Weighted Method per Class (WMC), Depth of Inher-
itance Tree (DIT), Number of Children (NOC), Cou-
pling between Objects (CBO), Response for a Class
(RFC), andLack of Cohesion in Methods (LCOM).
C&K metrics for AO programs used in this exper-
iment areWeighted Operations in Module (WOM),
Depth of Inheritance Tree (DIT), Number Of Children
(NOC),Response for a Module (RFM), Coupling be-
tween Modules (CBM), andLack of Cohesion in Op-
erations (LCO).

3 THE EXPERIMENT

A very large collection of C&K metrics val-
ues for object-oriented programs is already
provided by an online measurement repository
called OOMJ (available athttp://donner.cs.uni-
magdeburg.de:8080/oomj). This resource is based
on measurement of thousands of classes from
several Java standard libraries and programs. To
calculate C&K metrics for aspect-oriented pro-
grams we have used an open source tool called
aopmetrics (available athttp://aopmetrics.tigris.org).
In our evaluation, we have measured the sam-
ple programs located under theexamples folder
of AspectJ 1.6.3 distribution, LoD (found at
http://www.ccs.neu.edu/home/lorenz/papers/aosd2003

Table 1: Size metrics for measured programs.

Number
of classes

Number
of meth-
ods

Avg. LOC
per class

AOP 114 502 35
OOP 14372 140784 642

Table 2: Descriptive statistics: C&K metrics for AO pro-
grams.

Min. Max. Mean Std. Dev.
DIT 0 4 0.63 0.9
NOC 0 3 0.2 0.63
WOM 0 23 4.4 4.68
CBM 0 10 1.62 6.366
RFM 0 235 13.067 2.12
LCO 0 219 10.39 35.99

lod/ ), and TETRIS (found athttp://www.guzzzt.com/
coding/aspecttetris.shtml). The next section sum-
marizes some initial measurements of the measured
programs.

3.1 Size Metrics

Table 1 gives some size metrics for our experiment.
The sample size of object-oriented programs is enor-
mously large which provides stable trends of C&K
metrics values for OO programs. Comparatively
fewer AO programs could be measured. However, the
sample is large enough for any meaningful and rep-
resentative comparisons between both of the AO and
OO paradigms.

4 RESULTS

4.1 Descriptive Statistics

Table 2 shows minimum, maximum, mean, and stan-
dard deviation values of C&K metrics for AO pro-
grams. A relatively high value of standard deviation
for CBM and LCO indicates a high variation among
the values of these metrics.

Table 3 compares values of mean and standard de-
viation for the similar C&K metrics among both types
of OO and AO programs. The results show smaller
averages for number of operations per class (WOM),
response for class (RFM), and lack of cohesion (LCO)
values for aspect-oriented programs. The rest of the
metrics show almost similar trends. Furthermore, the
smaller standard deviations for almost all of the AO

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

288



Table 3: Comparison between the C&K metrics for OO and
AO programs

Mean Std. Deviation
Metric OO AO OO AO
DIT 0.7 0.6 1.0 0.9
NOC 0.4 0.2 2.0 0.6
WMC/WOM 11.9 4.4 15.8 4.7
CBO/CBM 1.9 1.6 3.9 6.4
RFC 19.5 13.1 28.6 2.0
LCOM/LCO 139.4 10.4 802 36.0

Table 4: 95% Confidence interval: mean of C&K metrics
for AO and OO programs.

Metric OOP
(lower/upper
limit)

AOP
(lower/upper
limit)

DIT 0.57–0.61 0.47–0.80
NOC 0.14–0.16 0.09–0.33
WMC/WOM 8.54–8.85 3.54–5.26
CBO/CBM 2.92–3.09 1.23–2.01
RFC/RFM 14.45–15.10 4.47–7.20
LCOM/LCO 35.88–39.14 3.79–17.00

metrics make these averages more meaningful and re-
liable.

Sometimes, mean value of an entity may be mis-
leading specially when there is a very large variation
among the values. For a further deeper analysis of
the mean values shown in table 3 we calculated confi-
dence intervals for each of the metrics. Table 4 shows
confidence intervals at 95% level for each of the met-
rics.

To give another orientation to the aforementioned
statistics, figure 1 presents graphical view of the OO
and AO metrics distributions. Metrics values are
drawn on the horizontal axis while on the vertical axis
are the frequencies of these values.

4.2 Measurement Analysis

General observations: The first comment is about the
overall range of metric values. Table 3 indicates a
smaller standard deviation for all of AO metrics as
compared to their OO counterparts. This is due to
the fact that most metrics values fall within a nar-
row range with very few outliers. Figure 1 shows fre-
quency distributions for these metrics which corrobo-
rate this fact. This makes the results of table 4 more
representative and reliable which is aimed to tell us a
most probable value for each of these metrics.

WMC/WOM: A small WMC/WOM is considered
a good design practice which is believed to reduce
complexity. Separation of concerns in AO designs

0

15

30

45

60

0 1 2 3 4+

%
o
f
C
la
ss
e
s

DIT

0

20

40

60

80

0 5 6 10 11 15 16 20 21+

%
o
f
C
la
ss
e
s

WMC/WOM

0

20

40

60

80

100

0 25 26 50 51 75 76 100 101+

%
o
f
C
la
ss
e
s

RFC/RFM

0

20

40

60

80

100

0 1 2 3 4+

%
o
f
C
la
ss
e
s

NOC

0

20

40

60

80

100

0 4 5 8 9 12 13 16 17+

%
o
f
C
la
ss
e
s

CBO/CBM

0 25 26 50 51 75 76 100 101+

0

20

40

60

80

100

0 50 51 100 101 150 151 200 201+

%
o
f
C
la
ss
e
s

LCOM/LCO

OO/Java AO/AspectJ

Figure 1: C&K metrics distributions for AO and OO pro-
grams.

DESIGN QUALITY OF ASPECT-ORIENTED AND OBJECT-ORIENTED PROGRAMS - An Empirical Comparison

289



should reduce the size of operations. This is clearly
seen by a smaller value of this metric observed in the
performed measurements.

DIT/NOC: Both these metrics as indicators of in-
heritance show slightly smaller values for AO pro-
grams vs. OO programs. Based on their character-
istics, these metrics should not be much affected with
the change of paradigm from OO to AO. Perhaps that
is the reason that these metrics do not show any sig-
nificant changes in program design strategies.

Coupling related measures, to be discussed
next, are more important for analysis since aspect-
orientation mainly concerns with this issue.

RFM: This metric, similar to RFC of C&K met-
rics suite, is a kind of coupling measure. Both the
figure 1 and the tables 3 and 4 show that its value is
between 0-25 in about 95% of the cases. This metric
reflects reduced coupling for AO programs. It shows
a considerable design improvement of the AOP over
the OOP.

CBO/CBM: CBM of AO is the closest parallel to
the CBO of OO programs. It is perhaps the most im-
portant measure characterizing the couplings which is
the main motivation for the paradigm shift from OOP
to AOP. The figure 1 and table 3 show considerably
reduced coupling between modules. This seems to
be a consequence of AO’s separation of concerns and
woven code.

LCO: In an OO or AO design, there should be
high cohesion between methods/operations. Non-
cohesive operations indicate a need for splitting
classes/aspects. Despite being in the range of 0-50,
a very high variation of this metric was observed for
object-oriented programs. However, in case of AO, it
shows a very small average with a very low value of
standard deviation, see table 3. Table 4 shows that its
value could be between 3 and 17. A higher majority
of measured AO programs have showed a very high
cohesion which reflects an improved design practice.

5 CONCLUSIONS

This paper presented a metrics-based comparison
among object-oriented and aspect-oriented designs
using several samples of OO/AO libraries and pro-
grams. Amplitude of the OO measurement data made
this empirical study unique among the very few ex-
periments of this kind ever performed. From the pro-
grams and libraries that we measured, it was found
that both kinds of programs exhibited similar inheri-
tance related characteristics. Small coupling and high
cohesion was observed in the measured AO programs
w.r.t OO programs. Based on these quality indica-

tors we were able to confirm the thesis that aspect-
orientation improves modularity and maintainability.
Overall, AO reflected (usually considered) better de-
sign characteristics in contrast to OO programs.

A very large proportion of measured OO programs
consisted of standard libraries, and not normal pro-
grams/applications. The study needs to be extended
with a larger and diverse sample of both real OO and
AO programs using more coupling related and other
relevant metrics.

REFERENCES

Ceccato, M. and Tonella, P. (2004). Measuring the effects
of software aspectization. InProceedings of 1st Work-
shop on Aspect Reverse Engineering.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object-oriented design.IEEE Trans. Softw.
Eng., 20(6):476–493.

Farooq, A., Braungarten, R., and Dumke, R. R. (2005). An
empirical analysis of object-oriented metrics for Java
technologies. InINMIC 2005: Proceedings of the
9th IEEE International Multitopic Conference, pages
548–553. IEEE Computer Society.

Guyomarc’h, J.-Y. and Guhneuc, Y.-G. (2005). On the
impact of aspect-oriented programming on object-
oriented metrics. In Proceedings of the 9th
ECOOP workshop on Quantitative Approaches in
Object-Oriented Software Engineering, pages 42–47.
Springer-Verlag.

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von
Arndt Staa, and Lucena, C. (2006). Quantifying the
effects of aspect-oriented programming: A mainte-
nance study. InICSM ’06: Proceedings of the 22nd
IEEE International Conference on Software Mainte-
nance, pages 223–233. IEEE Computer Society.

Laddad, R. (2003). Aspect-oriented programming will im-
prove quality.Software, IEEE, 20(6):90–91.

Tsang, S. L., Clarke, S., and Baniassad, E. (2004).
Object metrics for aspect systems: Limiting em-
pirical inference based on modularity. Technical
report, Trinity College Dublin, Ireland. Avail-
able at http://www.cse.cuhk.edu.hk/ẽlisa/papers/OO-
AOMetrics.pdf.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

290


