
SEMANTIC PROFILE BASED SERVICE DISCOVERY FOR
ABSTRACT PROCESS COMPOSITION

Shuying Wang, Miriam A. M. Capretz and Hany El Yamany
Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Ontario

London, Ontario, N6A 5B9, Canada

Keywords: Business Process Composition, Semantic Web services, Service Oriented Architecture.

Abstract: WSBPEL (Web Services for Business Process Execution Language) is a process modelling language for
composing Web Services. Abstract processes can be used in WSBPEL as process templates, which describe
abstract activities without specifying the execution details and the service bindings. However, it is a
challenge to refine an abstract process into a concrete executable process for the purpose of adapting to
different business requirements. In order to discover the potential business partners and Web Services, we
propose a profile-based service matching and discovery approach for semi-automatic semantic process
representation that occurs during design time. Specifically, our approach utilizes semantic profiles to specify
the semantic descriptions of process activities. Consequently, our methodology provides substantial
flexibility for abstract process composition while reusing existing processes and services.

1 INTRODUCTION

The service-oriented computing paradigm is
transforming traditional workflow management from
a close, centralized control system into a dynamic
information exchange and business process. In fact,
the complexity involved in the establishment of
business processes necessitates the reuse of similar
processes within organizations. Process reuse
minimizes errors and reduces costs, since a process
can be constructed from other processes already
designed and used by specialists. Therefore, when a
process is well-established, it can be shared by
service designers or developers for the creation of a
similar process.

In order to achieve the reuse of processes,
generic templates are often used to create different
processes for specific cases. For example, WSBPEL
(Web Services for Business Process Execution
Language) (WSBPEL, 2007) uses executable
processes and abstract processes to ensure that
different business processes can understand one
another in a Web Services environment. The abstract
processes are used to describe the order in which
business partners may invoke operations without
specifying the execution details and service
bindings. Moreover, abstract processes allows for
the modelling of common parts and disparate

elements of processes in order to enable their
configuration in specific cases (Tao and Yang,
2007). Therefore, the abstract process allows
designers to create a process template and enables
developers to refine the execution details at a later
stage.

Incorporating the Semantic Web Services
(McIlraith, et al., 2001) with BPM (Business Process
Management) (BPM, 2008) provides a semantically
enriched environment and a set of tools to help
processes respond to the business changes. Some
researchers have tried to combine semantic Web
Services with WSBPEL in order to reap the benefits
of both standards. Liu et al. (2004) present a one-
way mapping from the OWL-S (2004) process
model to WSBPEL for creating composite and
atomic processes. Furthermore, Hepp et al. (2005)
present a semantic business process management
(SBPM) framework and utilizes semantic Web
Services with the existing BPEL processes. More
specifically, Sivashanmugam et al., (2004) partially
define and then annotate a process with semantic
information that may be analyzed at runtime to find
missing data and derive a completely executable
BPEL process.

Although the combination of BPM and the
Semantic Web Services provides significant
potential for business flexibility, there is still
uncertainty in how to synthesize them. In particular,

258
Wang S., A. M. Capretz M. and El Yamany H. (2009).
SEMANTIC PROFILE BASED SERVICE DISCOVERY FOR ABSTRACT PROCESS COMPOSITION.
In Proceedings of the International Conference on e-Business, pages 258-263
DOI: 10.5220/0002236002580263
Copyright c© SciTePress

there are three major challenges in combining these
features:

1. How to formally represent descriptions of
potential service providers.

2. How to use such descriptions to discover
appropriate service providers.

3. How to integrate discovered services into the
WSBPEL engine.

In this paper, we propose a semantic profile-
based abstract process composition. Specifically, we
use abstract processes, which are independent of the
service description and process definition, to
instantiate an executable process during process
design. Also, in order to dynamically discover the
business partners and Web Services before the
execution, process requirements are represented as
semantic profiles. Specifically, any service that
satisfies the semantic requirements of an activity can
be potentially used to perform that specific activity
in the process. Therefore, the abstract processes can
be refined into concrete executable processes based
on the activity and the associated Web Services
requirements. Finally, our approach works during
design time, where the goals are to reuse the existing
process and reduce the process redesign cost.

The paper is organized as follows: Section 2
presents a case study in the automotive retail
domain. Next, in Section 3, we illustrate our system
architecture, which includes mapping from
WSBPEL to the OWL-S profile, the semantic
representation for adding process profiles to the
WSBPEL extension as well as profile matching and
process refinement. Finally, Section 4 provides a
conclusion and describes future work.

2 A BUSINESS CASE SCENARIO

This section describes a business case scenario in the
automotive retail industry. In this industry, there is
an increasing need for information exchange and
unified service sharing between business partners.
STAR (Standards for Technology in Automotive
Retail) (STAR, 2009) is a non-profit, unionized
organization whose members include dealers,
manufacturers, retail system providers and
automotive-related industrial organizations. The
STAR domain ontology, which is based on STAR
metadata, is formalized in OWL DL and serves as a
source of background knowledge in the automotive
retail business domain.

A DMS (Dealer Management System), created
specifically for vehicle dealers, includes the finance,
sales, parts, inventory and maintenance components
of sales. Moreover, a DMS provides multiple Web

Services interfaces so that it can be integrated with
potential business partners. These Web Services are
composed in a unified manner to provide a
configurable business process for the quoting,
ordering, delivery, and payment of vehicles and
parts.

For example, the parts order process describes
the transactional data exchanged between the DMS
and other service providers. When a dealer receives
a parts order from a customer, he/she searches the
service repository for both parts and delivery
providers, locates the services and initiates an order
process with the Web Services of the factory and
delivery company. However, the customer’s parts
order may be a specific requirement for which the
dealer has to find a factory with the capability of
producing it. Consequently, the factory’s service
interface may not match with the dealer’s service,
necessitating the DMS to generate an alternative
service in order to interoperate with the parts
providers’ services.

Figure 1: An Example of Parts Order Process.

Figure 1 represents a simple example of an
abstract parts order request process. A car parts
order process is separated into a customer’s order
request, the order and the delivery activities.
Accordingly, the process can be accomplished by
three corresponding Web Services: the Dealer
Service, the Manufacturing Service, and the
Delivery Service. However, without knowing the
manufacture and delivery services in advance, it is
impossible to define an executable WSBPEL
process, since the WSBPEL process has to define
the service participants specified by the port types in
the process definition.

SEMANTIC PROFILE BASED SERVICE DISCOVERY FOR ABSTRACT PROCESS COMPOSITION

259

3 ABSTRACT PROCESS-BASED
SERVICE COMPOSITION

As shown in Figure 2, we are aiming to provide a
profile-based service discovery for abstract process
composition. During business process modelling, the
semantic process profiles, which are compatible with
the OWL-S profile model (OWL-S, 2004), are
defined for the WSBPEL process activities. These
profiles are used to provide semantic descriptions for
activities that do not entail service binding.
Subsequently, the profiles are sent to the
matchmaker to find potential service matches
through the domain ontology and the service
repository. The matchmaker will then return the
candidate service list for further process refinement.

Figure 2: Architecture of the Semantic Profile-Based
Abstract Process Composition.

The approach includes the following steps:
 First, the process designer models abstract

processes for defining the generic activities that
are required by all users regardless of their
various contexts.

 Second, the semantic description of a business
process is defined in the process profiles. These
profiles are based on the mapping from
WSBPEL to the OWL-S profile model as well as
the user-specified domain ontology.

 Next, the process composer will search for the
related service providers in the service repository.
In fact, our profile-based service matching
algorithm uses the domain ontology to expand
the profile and thus increase the mapping
precision and the number of candidate services.

 Finally, the executable WSBPEL process and
Web Services are generated through process
refinement. Specifically, a WSBPEL engine
provides a run-time execution environment for a
process instance.

Currently, we are in the process of developing a
set of components for this procedure. One key
component is the process composer, which plays a
central role in process composition. When a process
requirement originates from the service requester,
the composer retrieves the abstract process template
and its related process profiles from the repository.
Subsequently, the process profiles are sent to the
matchmaker for retrieving the relevant services. As a
result, the outputs of the process composer entail a
concrete process definition that can be executed by
the WSBPEL process engine.

3.1 OWL-S based Profile for Abstract
WSBPEL Process

A semantic process profile provides a semantic
description of the process activities associated with a
Web Service. Specifically, it introduces the IOPE
descriptions, which are equivalent to the details that
the OWL-S profile supplies. Moreover, the semantic
process profile can use a domain specific ontology
as a parameter for describing the concise activity
requirements. In fact, since WSBPEL allows a
process to compose one or more services, an abstract
process may contain one or more profiles; the
activities corresponding to one web service are
bundled as one profile. Consequently, the process
profile specifies the activity requirements which are
used for discovering the potential services in order
to refine an abstract process into a concrete
executable process.

As shown in Table 1, we map the corresponding
WSBPEL variables to the OWL-S profile. The
process profile mapping contains the following
matches:
 The Input/Output variables of Invoke are related

to the Inputs/Outputs of the OWL-S profile.
 The other attributes of Invoke, such as Operation

and partnerLink, can be mapped to the Inputs if
there are only input variables or they can be
mapped to the Outputs if there are only output
variables. Lastly, they can be mapped to both the
Inputs and the Outputs if there are both input and
output variables or if neither variable exists.

 The attributes of Receive, such as Operation and
its related variables, are mapped to the Inputs of
the OWL-S profile.

ICE-B 2009 - International Conference on E-business

260

 The attributes of Reply, such as Operation and its
related variables, are mapped to the Outputs of
the OWL-S profile.

 The <onMessage> attributes of Pick are similar
to a <receive> activity, since both attributes wait
for the receipt of an inbound message.

 The Precondition, Effects, and QoS constraints
can be defined by the user, but they cannot be
automatically transferred from the WSBPEL
process definition to the profile.

 In the process profile, the process name will be
defined as the service name.

Table 1: A Reference Mapping of WSBPEL Activities to
an OWL-S Profile.

WSBPEL OWL-S profile

Input variables of <Invoke> Inputs
Output variables of <Invoke> Outputs
Other attributes of <Invoke> Inputs or Outputs or Both

Attributes of <Receive> Inputs
Attributes of <Reply> Outputs

<onMessage> attributes of
Pick

Inputs

/ Precondition/Effect

In this mapping, there are four activities in the
WSBPEL process that provide the inputs and
outputs of a process: Invoke, Receive, Reply, and
onMessage of Pick. For each activity, the user can
define one or more attributes in the corresponding
process profile. Moreover, since control structures,
such as sequence, flow, fork, and repeat, as well as
internal activities, such as the fault handler, have no
direct relations with IOPE, we do not provide a
mapping for them. The generation of a process
profile is a semi-automatic procedure, since the
attributes of mapped activities can be automatically
retrieved from the defined WSBPEL abstract
processes. However, the user is responsible for
manually defining the Precondition, Effects and
domain-specific ontology, since there are no direct
definitions in WSBPEL.

3.2 An Example

A WSBPEL abstract process, shown in Figure 3.a,
models the parts order process described in the
scenario. After receiving a customer’s request, the
dealer places the order with the manufacturing
service, using PartsOrder_Request, and receives
back the details through PartsOrder_Receive. Since
the dealer may not have the service information for
the manufacturing, the parnterLink, inputVariable

and Variable are all marked as ##opaque, which
identifies unknown variables in WSBPEL. Similarly,
opaqueActivity is another keyword for unknown
control activity structures. Additionally, the same
process of activities occurs for delivery services.

1. <sequence>
2. <opaqueActivity name="parts order"/>
3. <opaqueActivity name="parts delivery"/>
4. <invoke operation="PartsOrder_Request"
5. partnerLink="##opaque"
6. inputVariable="##opaque"
7. p:profileURI="partsorder_profile"/>
8. <receive operation="PartsOrder_Receive"
9. partnerLink="##opaque"
10. Variable="##opaque"
11. p:profileURI="partsorder_profile"/>
12. <invoke operation="PartsDelivery_Request"
13. partnerLink="##opaque"
14. inputVariable="##opaque"
15. p:profileURI="partsdelivery_profile"/>
16. <receive operation ="PartsDelivery_Receive"
17. partnerLink=" ##opaque"
18. Variable="##opaque"
19. p:profileURI="partsdelivery_profile "/>
20. </sequence>

Figure 3.a: An Example of Abstract Process.

1. <profile:serviceName>
2. PartsOrder</profile:serviceName>
3. <profile:hasInput>
4. <process:Input rdf:ID="#PartsOrder_Request">
5. <process:parameterType>
6. STAR.owl#PartsOrder
7. </process:parameterType>
8. </process:Input>
9. </profile:hasInput>
10. <profile:hasOutput>
11. <process:Output rdf:ID="#PartsOrder_Receive">
12. <process:parameterType>
13. STAR.owl#PartsOrder
14. </process:parameterType>
15. </process:Output>
16. </profile:hasOutput>

Figure 3.b: An Example of a Process Profile.

In our approach, we add the semantic process
profile to the WSBPEL elements for representing the
semantics of a process or an activity. The fragment
of the WSBPEL process, in Figure 3.a, specifies the
profile as p:profileURI. This is used to define the
extension to support the use of process profile.
Further, the activities of the same service use the
same profile. Therefore, the PartsOrder_Request and
PartsOrder_Receive components use the same

SEMANTIC PROFILE BASED SERVICE DISCOVERY FOR ABSTRACT PROCESS COMPOSITION

261

profile, partsorder_profile; whereas
PartsDelivery_Request and PartsDelivery_Receive
use partsdelivery_profile.

As illustrated in Figure 3.b, a process profile is
constructed for the PartsOrder_Request and
PartsOrder_Receive activities. The profile, which
service name is PartsOrder, uses the invoke
operation name of PartsOrder_Request as the input
and PartsOrder_Receive as the output. Moreover, the
STAR.owl#PartsOrder, which specifies the concept
of the STAR ontology, is referred to as
parameterType.

3.3 Profile based Service Matching

The profile based matching that we are proposing is
a semi-automatic approach similar to the OWL-
S/UDDI matchmaking algorithm presented in
Paolucci et al. (2002). OWL-S/UDDI matchmaking
requires service providers to create and register their
service profiles for service searching. However, this
is very rare in actual applications. Most of services
are still registered directly using their service
descriptions instead of OWL-S profiles. Therefore,
in order to support generic service matching, we
propose a profile-based service matching algorithm.
The algorithm firstly expends the profile concepts
using domain ontology and then searches services
with updated profiles. The algorithm can be
summarized in four steps:

Step 1: Profile Extraction. This step includes
extracting the terms defined in the profile. As shown
in Figure 4, these terms are categorized as four sets:
inputV, outputV, preconditionV, and effectV. These
sets correspond to the instances of IOPE, including
the input, the output, the precondition and the effect
of the profile. Each IOPE instance is extracted as a
set, which includes <id, parameterType1, parameter
Type2>, where id is the instance name,
parameterType1 represents the ontology name and
parameter Type2 is the associated ontology concept.
For example, according to our defined profile in
Figure 3.b, the profile is transformed into an input
and output set; the input set includes
<"PartsOrder_Request", "STAR.owl", "PartsOrder">, and
the output set contains <"PartsOrder_Receive",
"STAR.owl", "PartsOrder">.

Step 2: Profile Expansion. The second step is to
expand the profile by searching relevant concepts in
the domain ontology. For example, for the concepts
"PartsOrder_Request" and "PartsOrder" in the input set,
the search function supported by STAR ontology
match engine is used to find the equivalent concepts
in "STAR.owl". Subsequently, new input sets are
constructed according to the discovered concepts,

and these new concepts will be the id of new sets
with parameterTypes from the original set.

Step 3: Profile Reforming. This step involves
reforming the profile using the updated vector sets.
A rewrite function writes the four vector sets as
corresponding IOPE parts. For example, each vector
in the input set will be added as an input instance of
hasInput. Consequently, the new profile can be used
for service matching.

1. Input:SP //semantic profiles
2. Output:SL //candidate service list
3. Begin:
4. SL = ∅;
5. if (SP ≠ ∅){
6. for(∃p ∈ SP){
7. /*Step1:Profile Extracting*/
8. inputV=p.inputs;
9. outputV=p.outputs;
10. preconditionV=p.preconditions;
11. effectV=p.effects;
12. /*Step2:Profile Expansion*/
13. inputV=inputV∪search(inputV);
14. outputV=outputV∪search(outputV);
15. preconditionV=preconditionV∪
16. search(preconditionV);
17. effectV=effectV∪search(effectV);
18. /*Step3:Profile Reforming*/
19. np=rewrite(inputV,outputV,
20. preconditionV, effectV);
21. /*Step4:Profile Matching*/
22. ServiceSet = match(np);
23. for(∃s ∈ ServiceSet)
24. if (s ≠ ∅){
25. /*Filtering out incompatible
26. results*/
27. if(s==“exact“||s==“plugIn“)
28. SL = SL ∪ s;}
29. }
30. }
31. }
32. End.

Figure 4: Profile Based Service Matching Algorithm.

Step 4: Profile Matching. During profile
matching, the expanded profiles are matched with
the registered Web Services. The result set is then
ranked based on the semantic similarity between the
input concepts of the process profile and the
returned Web Services. Consequently, the algorithm
obtains a result expressing the degree of semantic
similarity. We set the similarity value to four
possible results:
 exact, which means that the profile concept

and discovered service concept being compared
are identical,

 plugIn, which indicates that the profile concept
subsumes the registered service concept,

 subsumes, which occurs when the registered
service concept subsumes the profile concept

ICE-B 2009 - International Conference on E-business

262

contained in the request, and
 fail, which happens when none of the other

relationships occur.

As shown in Figure 4, we consider the results of
exact and plug-in as semantically compatible
with the matching request. Consequently, the results
of fail and subsume will be filtered out. The final
result will be one selected service from a list of
compatible Web Services.

3.4 Process Refinement

The objective of process refinement is to refine the
abstract processes and generate the executable
process definition according to the discovered
services. This is a semi-automatic process since
some human decisions are needed to select the
proper services and update the processes, such as
partnerlink, activities, message correlations, and
exception handling. For example, the abstract
activity of parts order, presented in Figure 3.a, will
be refined as follows.

1. <partners>
2. <partner name="manufacturer"
3. serviceLinkType="lns:PartsOrderLinkType"
4. partnerRole="manufacturer"/>…
5. </partners>
6. <sequence>
7. <while><assign name="parts order">…</assign>
8. </while>
9. <flow>
10. <invoke operation="PartsOrder_Request"
11. partnerLink="PartsOrder"
12. inputVariable="PartsOrder_Request" />
13. <receive operation="PartsOrder_Receive"
14. partnerLink="PartsOrder"
15. Variable=" PartsOrder_Receive "/>
16. </flow>…
17. </sequence>

Figure 5: A Fragment of the Refined Parts Order Process.

As shown in Figure 5, at first, partner name,
serviceLinkType, and partnerRole are updated.
Then, the concealed activities that organize the
message sent from or to the manufacturer are
replaced by the assigned activities. Next, the invoke
activities sending the requests to the manufacturer
are embedded into a flow activity. Finally, the
keyword opaque is replaced by the concrete
variable.

4 CONCLUSIONS

In this paper, we presented a semantic profile-based
approach for abstract process composition. By
developing semantic profiles for business processes,
we propose a semi-automatic method for
interpreting these processes with substantial
flexibility and exploiting the reusability of existing
processes and services with a minimum amount of
redesign and redevelopment. In our work, the
activities defined in an abstract WSBPEL process
use semantic profiles, which contain IOPE
descriptions of OWL-S compatible profile model for
performing the discovery of services. We are
currently developing the process composition tool to
enable the semantic profile definition, profile based
service discovery, and abstract process refinement.
Future work will also focus on extending the
utilization of the proposed approach by
incorporating business rules.

REFERENCES

BPM, 2008. Business Process Management Initiative,
http:// www.bpmi.org.

Liu, S., Khalaf, R., Curbera, F., 2004. From DAML-S
Process to BPEL4WS, In Proc. of the 14th
International Workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-
Government Applications (RIDE’04).

McIlraith, S.A., Son, T.C., Zeng, H., 2001. Semantic web
services, IEEE Intelligent Systems, 16, 46–53.

Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel,
D., 2005. Semantic Business Process Management: A
Vision Towards Using Semantic Web services for
Business Process Management, IEEE International
Conference on e-Business Engineering, pp. 535 – 540.

OWL-S, 2004. Web Ontology Language for Web services
http://www.w3.org/Submission /OWL-S/.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.,
2002. Semantic Matching of Web Services
Capabilities, ISWC 2002, LNCS 2342, pp. 333-347.

Sivashanmugam, K., Miller, J., Sheth, A., Verma, K.,
2004-5. Framework for Semantic Web Process
Composition, International Journal of Electronic
Commerce, Vol. 9(2) pp. 71-106.

STAR, 2009. Standards for Technology in Automotive
Retail, http://www.starstandard.org/.

Tao, T. A., Yang, J., 2007. Supporting Differentiated
Services With Configurable Business Processes. In
Proc. of IEEE International Conference on Web
Services (ICWS 2007).

WSBPEL, 2007. Web Services Business Process
Execution Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

SEMANTIC PROFILE BASED SERVICE DISCOVERY FOR ABSTRACT PROCESS COMPOSITION

263

