
MULTIPARTY COMPARISON
An Improved Multiparty Protocol for Comparison of Secret-shared Values

Tord Ingolf Reistad
Department of Telematics, O.S. Bragstads plass 2B, NTNU, Trondheim, Norway

Keywords: Multiparty, Secret sharing, Comparison, Information hiding.

Abstract: Given any linear secret sharing scheme with a multiplication protocol, we show that a set of players holding
shares of two valuesa,b∈Zp for some primep (written [a] and[b]), it is possible to compute a sharing[result]
such that[result] = ([a] < [b]). The protocol maintains the same security against active/adaptive adversaries
as the underlying secret sharing scheme.

1 INTRODUCTION

In the millionaire problem (Yao, 1982) two or more
millionaires want to know which one of them is richer
without revealing each other’s wealth. This was one
of the first protocols for multiparty computation, and
illustrates the challenges in multiparty protocols in
practical applications. As the goal of the protocol be-
tween the millionaires should not only keep the input
private, but also compute the result quickly.

In the millionaire problem each player (million-
aire) knows his own wealth, which is the input to that
is sent to the protocol. In a more generalized setting
the inputs might not be explicitly known to any sin-
gle party, but resulting from a linear combination of
secret inputs by several parties, or from an earlier in-
termediate result.

In general a multiparty computation (MPC) is a
computation between a number of partiesP1, . . . ,Pn.
These parties haveprivate inputsx1, . . . ,xn and they
want to compute some functionf on these inputs,
where f (x1, . . . ,xn) = (y1, . . . ,yn) such thatPi learns
yi but nothing else. The players are mutually mis-
trusting and do not wish to share their inputs.

When considering concrete applications, the func-
tion f is often computed using Shamir secret shar-
ing scheme over a fieldZp for some large odd prime
p. The function is computed usingsimulated integer
arithmetic. This means that although the values are
points in a finite field, they can be used as integer val-
ues inZ. This is analogous to current day computers
where each value is stored as a limited set of bits. The
difference is that in the multiparty protocol there is no
way to efficiently check for overflow, the primep will

therefore have to be chosen such that all simulated in-
teger values are less thanp for all possible inputs.

Although there exists efficient protocols for addi-
tion and multiplication of secret shared values, most
functions or algorithmsf require additional operators
such as comparison and equality checking. This moti-
vates us in constructing specialized efficient protocols
that realizes such operators. These operator primitives
may be used repeatedly and any improvement in the
implementations of the primitive operators will lead
to a similar improvement in an overall application.

Comparison in a multiparty computation setting
could be solved by circuit based computations. All
inputs would then be split into bits. Comparison be-
tween inputs would then be easy, but this would make
addition and multiplication much more complicated
so the overall effect would be slower computer pro-
grams.

This work describes a protocol for one such primi-
tive operator, namely comparison (inequality-testing)
of secret shared values. That is, given two secret
shared values[a] and[b], a secret shared bit[result] =
[a < b] is obtained stating whether one value is larger
than the other without leaking any information. This
protocol is more efficient than all previously pub-
lished constant round protocols for comparison.

Section 2 discusses this work in relation to previ-
ously published papers. Sections 3 and 4 introduce
the model as well as a number of primitives required.
Most of these are well-known, and are included in or-
der to provide detailed analysis of our protocol. Sec-
tion 5 Gives first a high-level view of the protocol and
then discusses the details. Finally Section 6 gives the

325
Ingolf Reistad T. (2009).
MULTIPARTY COMPARISON - An Improved Multiparty Protocol for Comparison of Secret-shared Values.
In Proceedings of the International Conference on Security and Cryptography, pages 325-330
DOI: 10.5220/0002233603250330
Copyright c© SciTePress



conclusion and further improvements.

2 RELATED WORK

Research on multiparty computation (MPC) has
mostly focused on either primitives for multiparty
computations or on some concrete applications such
as actions (Bogetoft et al., 2005; Fischlin, 2001;
Schoenmakers and Tuyls, 2004). This paper consid-
ers neither of these cases. It assumes underlying prim-
itives for multiparty computations with addition and
multiplication of field elements. It also does not con-
sider concrete applications as comparison of elements
are just one piece in a framework for multiparty com-
putations.

Damgård et al. provided the first constant rounds
comparison in the present setting (Damgård et al.,
2006), the protocol relied on bit-decomposition of
values this approach requiredO (ℓ log(ℓ)) secure mul-
tiplications whereℓ = log(p). Comparison was later
improved by Nishide and Ohta (Nishide and Ohta,
2007) who reduced the complexity toO (ℓ) multipli-
cations.

The most recent solutions have concentrated on a
binary representation of the values being compared.
Thus, unless a radically different approach is taken,
improving on theO (ℓ) bound does not seem feasi-
ble. The present work builds on sub-protocols and
ideas of (Damgård et al., 2006), (Nishide and Ohta,
2007) and (Reistad and Toft, 2007) and aims at re-
ducing the constants hidden under big-O . These costs
hidden under big-O are becoming more relevant as
multiparty is implemented and used in practical ap-
plications (Bogetoft et al., 2008).

Table 1 compares the solution presented in this pa-
per to those of Damgård et al., Nishide and Ohta, and
Reistad and Toft. Type A refers to comparison of ar-
bitrary values[a], [b] ∈ Zp, while R is for restricted
values[a], [b] < ⌊ p

4⌋ and a primep = 2ℓ − c where
c is a small integer; when usingZp to simulate in-
teger computation, it is not unreasonable to choose
p in such a way to accommodate these two assump-
tion. Furthermore to give the protocols equal footing
we assume that all protocols use the same underlying
protocols see section 4. E.g. the protocol for creating
random bitwise shared values are created using the
same protocol. For comparison of arbitrary values in
arbitrary fields it is assumed that the underlying pro-
tocol will have to be run two times for a total of 8ℓ
multiplications. For a well chosenp and restricted
values this complexity can be assumed to be close to
2ℓ. As the test becomes more efficient and the prob-
ability of having to run the underlying protocol twice

becomes insignificant.
A distinction is also made between online

complexity and pre-processing complexity. Pre-
processing are all the computations that can be made
independent of the private inputs. Online computa-
tions are all those computations that can only be made
once the private inputs are available.

3 MODEL

We assume a linear secret sharing scheme that allows
for multiparty addition and a multiplication of secret
shared values, to be shared amongn > 2 parties. The
security properties of the secret sharing scheme are
inherited, i.e. if the secret sharing scheme is uncon-
ditionally secure against active/adaptive adversaries
then so is the protocols proposed. As as example,
consider Shamir’s scheme along with the protocols of
Ben-Or et al. (or the improved protocols of Gennaro
et al.) (Shamir, 1979; Ben-Or et al., 1988; Gennaro
et al., 1998).

The communication model is that there exist au-
thenticated private channels between each pair of par-
ties. The model assumes that in addition to sharing
values and performing secure arithmetic onZp, the
parties may reveal (reconstruct) shared values. Re-
vealing a secret shared value ensures that the value
becomes known byall parties.

We use[a] to denote a secret sharing ofa ∈ Zp
among then parties, wherep is anℓ-bit prime (ℓ > 7).
The operators are written using an infix notation. For
shared values[a] and[b], and constantc∈Zp, compu-
tation of sums will be written as[a]+ c and[a]+ [b],
while products will be writtenc[a] and[a][b]. The first
three operator are computed locally, while the fourth
operator represents an invocation of the multiplication
protocol.

Sharings of bits,[b] ∈ {0,1} ⊂ Zp will also be
considered. Boolean arithmetic is written using in-
fix notation, though it must be realized using field
arithmetic. Notably xor of two bits is constructed as
[b1]⊕ [b2] = [b1]+[b2]−2[b1][b2] which is equivalent.

Values may also bebitwise shared, written [a]B.
Rather than having a sharing of a value itself,[a],
sharings of the bits of the binary representation ofa
are given, i.e.[a0], . . . , [aℓ−1] ∈ {0,1} such that

[a]B =
ℓ−1

∑
i=0

2i [ai ] (1)

for ℓ = ⌈log(p)⌉, with the sum being viewed as
occurring over the integers. Note that[a] is easily ob-
tained from[a]B as it is a linear combination.

SECRYPT 2009 - International Conference on Security and Cryptography

326



Table 1: Complexities of comparison protocols.

Presented in Type Rounds Multiplications
overall online overall online

(Damgård et al., 2006) A 44 37 184ℓ log2(ℓ)+209ℓ 21ℓ+56ℓ log2(ℓ)
(Nishide and Ohta, 2007) A 15 8 279ℓ+5 15ℓ+5
(Reistad and Toft, 2007) A 12 4 84ℓ+78log2(ℓ)+17 18l +5

This paper A 8 2 58.5ℓ+33 4.5ℓ
(Damgård et al., 2006) R 44 37 184ℓ log2(ℓ)+165ℓ 21ℓ+56ℓ log2(ℓ)

(Nishide and Ohta, 2007) R 13 6 49ℓ+5 5ℓ+1
(Reistad and Toft, 2007) R 10 2 17ℓ+26log2(ℓ)+4 5ℓ
(Reistad and Toft, 2007) R 8 2 20ℓ+36log2(ℓ)+6 5ℓ

This paper R 6 1,5 7,5ℓ+11 1,5ℓ

Similarly a publicly known valuec can be split
into bits, whereci represents thei’th bit of c. c0 is the
least significant bit ofc.

Complexity. When considering complexity, the fo-
cus of the analysis will be on communication. Simi-
lar to other work, focus will be placed on the number
of invocations of the multiplication protocol as this is
considered the most costly of the primitives. It is as-
sumed that invocations of the multiplication protocol
parallelize and multiplications are executed in parallel
when possible. When we say ”one round” we mean
one round of arbitrary many invocations of the mul-
tiplication protocol, all performed in parallel among
the parties.

Multiplication by constants and addition require
no interaction and is therefore considered cost-less.
The complexity of sharing and revealing is seen as
negligible compared to that of multiplication. Rounds
for reconstruction are disregarded as in other work.

4 SIMPLE PRIMITIVES

This section introduces a number of simple primitives
required below. Most of these sub-protocols are given
in (Damgård et al., 2006) but are repeated here in or-
der to provide a detailed analysis as well as for com-
pleteness. Most of these are related to the generation
of random values unknown to all parties. It is impor-
tant to note that these may fail, however, this does not
compromise the privacy of the inputs – failure sim-
ply refers to the inability to generate a proper random
value (which is detected). Generally the probability
of failure will be of the order 1/p, which for simplic-
ity will be considered negligible, see (Damgård et al.,
2006) for further discussion.

Random Element Generation. A sharing of a uni-
formly random, unknown value[r] may be generated
by letting each party share a uniformly random value
r i ∈ Zp. The sum[r] = ∑ r i modp of these is uni-
formly random and unknown to all, even in the face

of an active adversary. The complexity of this is as-
sumed to be equivalent to one invocation of the mul-
tiplication protocol.

Random Bits. The parties may create a uniformly
random bit [b] ∈ {0,1}. The parties may generate
a random value[r] and reveal its square,r2. If this
is 0 the protocol fails, otherwise they compute[b] =

2−1((
√

r2)−1)[r]+1) where
√

r2 is defined such that
0 ≤

√
r2 ≤ p−1

2 . The complexity is two multiplica-
tions in two rounds.

Creating Random Bitwise Shared Values. The
parties may create a uniformly random bitwise shared
value [r]B less than somem, k = ⌈log2(m)⌉, as de-
scribed in (Reistad and Toft, 2007). This is accom-
plished by generatingk bits [rk−1], . . . , [r0] and verify-
ing that this represents a value less thanm. The ver-
ification is done by creating a vector with elements
[ei ] and revealing them. Note that this protocol will
be used to generate uniformly random bitwise shared
elements ofZp (done by settingm= p).

[ei ] = [si ]
(

1+(m−1)i − [r i ]+
k−1

∑
j=i+1

((m−1) j ⊕ [r j ])
)

(2)
The notation(m−1)i denotes thei’th bit of m−1

and[si ] are random shares inZp. Revealing the shares
[ei ] gives a vector that will contain a 0 element only
whenm− 1 < [r]B ⇔ [r]B ≥ m for proof see (Reis-
tad and Toft, 2007). Note that this protocol will leak
information about the individual bits[r i ] if there is a
0 element, but this coincides with discarding the bits
[r i ].

The complexity of generating random bitwise
shared values consists of the generation of thek bits
andk masks, in addition there are neededk multipli-
cations to perform the masking. Overall this amounts
to 4k multiplications in three rounds as the[r i ] and[si ]
may be generated in parallel. For added efficiency the
[ei ] where(m−1)i = 1 do not need to be calculated or
revealed, as they are guaranteed to be non-zero. For

MULTIPARTY COMPARISON - An Improved Multiparty Protocol for Comparison of Secret-shared Values

327



m= 2k−c, wherec is a small integer the complexity
can be reduced to 2k+2log(c).

Additional Improvement. The probability that the
protocol above fails to return a bitwise secret shared
value, depends uponm. The worst case scenario is
m = 2k + 1, which makes the probability of failing
equal to 1/2. For 5 additional multiplications and no
extra rounds the probability of restarting can be low-
ered to an upper bound of 1/4 for all m. This is done
by noting that if the two highest order bits ofm are
10, then the protocol fails if the products of the two
highest bits of[r]B is 1. The solution is therefore to
create 2 or sets of candidates for highest order bits.
The two bits in each of the candidates can be mul-
tiplied together and revealed, and the candidate only
used if the product is 0. This introduces no additional
rounds of communication as[tk−1tk−2] can be com-
puted in parallel with computing the bits.

[rk−1rk−2]= 4−1(
[tk−1tk−2]

√

t2
k−1

√

t2
k−2

+
[tk−1]
√

t2
k−1

+
[tk−2]
√

t2
k−2

+1)

(3)

Unbounded Fan-in Multiplications. It is possible
to compute prefix-products of arbitrarily many non-
zero values in constant rounds using the method of
Bar-Ilan and Beaver (Bar-Ilan and Beaver, 1989).
Given [a1], . . . , [ak] ∈ Z

∗
p, [a1,i] = [∏i

j=1a j ] may be
computed fori ∈ {1,2, . . . ,k} as follows.

Let u0 = 1 and generatek random non-zero values
[u1], . . . , [uk], however, in parallel with the multipli-
cation of [u j ] and its mask[v j ], compute[u j−1v j ] as
well. Then[u j−1u

−1
j ] may be computed at no cost as

[u j−1v j ] · (u jv j)
−1. Each[a j ] is then multiplied onto

[u j−1u−1
j ] and all these are revealed. We then have:

[a1,i] =
i

∏
j=1

(a ju j−1u−1
j ) · [ui] (4)

Privacy of the[a j ] is ensured as they are masked
by the[u−1

j ], and complexity is 5k multiplications in
three rounds. Regarding the preparation of the mask-
ing values as pre-processing, the online complexity is
k multiplications in a single round.

5 THE COMPARISON
PROTOCOL

The comparison protocol consists of 3 sub proto-
cols, the first sub-protocol transforms the comparison
[a] < [b] into a comparison[r]B > c, where[r]B is a
random secret shared value andc is a value known to
all parties. This transformation is done so the other
two protocols can work on individual bits.

The second sub-protocol transforms the compari-
son[r]B > c into a single[x] this share[x] is made in
such a way that[x] <

√
4p for all [r]B andc and the

least significant bit of[x] is equal to the result of the
comparison test between[r] andc.

The third sub-protocol extracts the least signifi-
cant bit of[x] <

√
4p efficiently. Once the least signif-

icant bit of[x] is extracted then the bit representing the
answer to the original comparison between[a] < [b] is
computed with two xor’s.

5.1 First Transformation

When[a], [b] < p−1
2 and[z] = [a]− [b], then[a] < [b]

is equivalent to determining the least significant bit of
2[z], written[(2z)0]. The least significant bit of[(2z)0]
is found by computing and revealingc, where

[c] = 2[z]+ [r]B = 2([a]− [b])+ [r]B (5)

c0 is the least significant bit ofc, [r0] is the least sig-
nificant bit of[r]B and[r]B is a random bitwise shared
value. We then have the following equation:

(

[a] < [b]
)

= [(2z)0] = c0⊕ [r0]⊕
(

[r]B > c
)

(6)

With this first transformation the comparison be-
tween [a] and [b] has then been transformed to the
problem of comparing[r]B > c. For more detail on
the transformation see (Reistad and Toft, 2007), and
for unbounded values of[a] and[b] see (Nishide and
Ohta, 2007).

The cost of this transformation is the creation of
one secret shared value and one secret shared xor. The
calculation of the secret shared value can be done in
3 rounds in parallel with other pre-processing and the
xor adds one online multiplication in one round.

Privacy follows from the security of the secret
sharing scheme. Revealingc does not leak informa-
tion, because[r]B is a uniformly random secret shared
value. Therefore the distribution ofc is also uniformly
random.

5.2 Computing X

Theorem 1. Given a random secret shared value
[r]B and a publicly known valuec. Let the secret
shared value[x] be constructed as:

[x] =
l−1

∑
i=0

[r i ](1−ci)2
∑l−1

j=i+1 cj⊕[r j ] (7)

The least significant bit of[x], written [x0] is equal
to the value[r i ], wherei is the most significant bit
where[r i ] 6= ci . Or in other words[x0] is equal to the
boolean statement([r]B > c).

SECRYPT 2009 - International Conference on Security and Cryptography

328



Proof. Starting from the most significant bits we see
that [r i ](1− ci) and the sum∑l−1

j=i+1c j ⊕ [r j ] are 0, as
long as[r i ] = ci . Beginning with the highest order
bit where[r i ] 6= ci , the expression[r i ](1−ci) is equal
to [r i ]. For lower order bits after the first one where
[r i ] 6= ci , the sum∑l−1

j=i+1c j ⊕ [r j ] becomes non-zero.
Therefore all lower terms except the first one where
[r i ] 6= ci become either. 0 or some value 2k, where
k < 1. �

For the greatest efficiency an even more complex
form for the function for[x] will be used. The function
[x] is essentially the same only that for each summa-
tion not one but two bits of[r i ] andci are considered at
the same time. Therefore[r i ](1−ci) will be expressed
asr i > ci for 2 bits at a time, andc j ⊕ [r j ] will only
return 1 if both pair of bits are equal. This ensures

that[x] < 2
l+1
2 .

This functions which compares two bits at a time
is more efficient. In addition it also avoids a problem
in the next protocol. As that the function[x] as stated
above has a worst case bit length ofℓ.

In the 2-bit version each pair of secret shared bits
have to be multiplied together at a cost of 0,5ℓ mul-
tiplications. This also computes the two bit version

of [r i ](1− ci) andc j ⊕ [r j ]. Computing 2∑
l−1
j=i+1cj⊕[r j ]

can be done with fan-in multiplications in 2,5ℓ multi-
plications and the final multiplication costs 0,5ℓ. The
protocol therefore takes a total of 3,5ℓ multiplications
and 3 rounds (as the random values for fan-in multi-
plications can be done in pre-processing). Privacy of
computing[x] is immediate as no value is revealed.

5.3 Extracting the Least Significant Bit

Extracting the last bit of a secret shared value[x],
where [x] <

√
4p, can be done efficiently. First a

bitwise secret shared random variable[s]B is created.
The the valued is calculated and revealed, where

[d] = [s]B +[x] (8)

From this we can easily see that the least signifi-
cant bit of[x], written as[x0] is equal to[s0]⊕d0, when
d >

√
4p.

To create a generalized version for finding[x0],
[s]B will have to be split into 3 parts[s]B =

2l−1[sl−1]+2l−2[sl−2]+ [ŝ]B. Note that two bits of in-
formation are needed from[s]B as in a worst case sce-
nario p might be 2l−1 +1 and[s]B might be 2l−1−1.

We then have that[ŝ]B+[x] < 2l−2+
√

4p< p, for
all p. As [d̂] = [ŝ]B + [x] never will need a modulop
reduction.

[x0] = [ŝ0]B⊕ [d̂0] (9)

The value[d̂0] cannot be revealed, as this would
leak information about[x], on the other hand there are
only 4 possible values for[d̂] based upon the valued,
and the shares[sl−1] and[sl−2]. Therefore following
equation need only one secret shared multiplication to
compute[d̂0]: (Note(d < 2l−1) returns 1 ifd < 2l−1).

[d̂0] =(1− [sl−1]− [sl−2]+ [sl−1sl−2])d0

+([sl−2]− [sl−1sl−2])(d0⊕ (d < 2l−2))

+ ([sl−1]− [sl−1sl−2])(d0⊕ (d < 2l−1))

+ ([sl−1sl−2])(d0⊕ (d < (2l−1 +2l−2))

Going from [d̂0] to [x0] adds one multiplication,
and going from[x0] to [[a] < [b]] also add one more
multiplication. Therefore onced is known it takes
3 multiplications in 2 rounds to compute the original
comparison. To save rounds all combinations of the
secret shared values[sl−1], [sl−2], [s0] and[r0] can be
pre-computed once[r]B and [s]B are known. This is
done with 11 multiplications and 2 rounds that run
in parallel with previous computations. The privacy
argument is the same as for the first transformation.

6 CONCLUSIONS AND FURTHER
WORK

We have presented a protocol for comparison in con-
stant rounds that is significantly faster than previous
versions. As the most time consuming part of a MPC
program is in many cases the comparison protocol,
the efficiency of the comparison protocol will directly
affect the speed of the program.

The comparison protocol in (Reistad and Toft,
2007) has be implemented in the VIFF framework
(http://viff.dk/) therefore the implementation of the
protocol in this paper will show in practice how ef-
ficient the two protocols are compared to each other.

Further improvements in the online computation

can also be done as the computation of 2∑l−1
j=i+1cj⊕[r j ]

when computing[x] in equation 7 can be split into
three multiplications.

• ∏l−1
j=i+1(1+[r j ]) can be pre-processed.

• ∏l−1
j=i+1(1+ c j) can be computed online without

multiparty multiplications.

• The last that product∏l−1
j=i+1(1− 3 · 4−1(c j [r j ]))

can be pre-computed in such two shares are cre-
ated and only one of them is opened depending
uponc j .

This will result in the same amount of pre-
computations, but will not require any online com-
putations only revealing values.

MULTIPARTY COMPARISON - An Improved Multiparty Protocol for Comparison of Secret-shared Values

329



ACKNOWLEDGEMENTS

The author would like to thank the anonymous re-
viewers for their comments, Stig Frode Mjølsnes and
Harald Øverby for useful discussions on the article
and Tomas Toft for comments and fruitful discussions
about MPC comparison.

REFERENCES

Bar-Ilan, J. and Beaver, D. (1989). Non-cryptographic fault-
tolerant computing in a constant number of rounds of
interaction. In Rudnicki, P., editor,Proceedings of the
eighth annual ACM Symposium on Principles of dis-
tributed computing, pages 201–209, New York. ACM
Press.

Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988).
Completeness theorems for noncryptographic fault-
tolerant distributed computations. In20th Annual
ACM Symposium on Theory of Computing, pages 1–
10. ACM Press.

Bogetoft, P., Christensen, D., Dåmgard, I., Geisler, M.,
Jakobsen, T., Krøigaard, M., Nielsen, J., Nielsen, J.,
Nielsen, K., Pagter, J., Schwartzbach, M., and Toft, T.
(2008). Multi-party computation goes live.Cryptol-
ogy ePrint Archive, Report 2008/068.

Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter,
J., and Toft, T. (2005). Secure computing, economy,
and trust: A generic solution for secure auctions with
real-world applications. BRICS Report Series RS-05-
18, BRICS.http://www.brics.dk/RS/05/18/.

Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., and Toft,
T. (2006). Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits
and exponentiation. In Halevi, S. and Rabin, T., edi-
tors,Theory of Cryptography, volume 3876 ofLecture
Notes in Computer Science (LNCS), pages 285–304.
Springer.

Fischlin, M. (2001). A cost-effective pay-per-multiplication
comparison method for millionaires. In Naccache, D.,
editor,Topics in Cryptology – CT-RSA 2001, volume
2020 of Lecture Notes in Computer Science, pages
457–471. Springer-Verlag, Berlin, Germany.

Gennaro, R., Rabin, M., and Rabin, T. (1998). Simplified
vss and fast-track multiparty computations with appli-
cations to threshold cryptography. InPODC ’98: Pro-
ceedings of the seventeenth annual ACM symposium
on Principles of distributed computing, pages 101–
111, New York, NY, USA. ACM Press.

Nishide, T. and Ohta, K. (2007). Multiparty computa-
tion for interval, equality, and comparison without
bit-decomposition protocol. InPKC 2007 Interna-
tional Workshop on Theory and Practice in Public Key
Cryptography, Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany.

Reistad, T. and Toft, T. (2007). Secret sharing compari-
son by transformation and rotation. In Preproceedings

ICITS, International Conference on Information The-
oretic Security 2007

Schoenmakers, B. and Tuyls, P. (2004). Practical two-
party computation based on the conditional gate. In
Lee, P. J., editor,Advances in Cryptology – ASI-
ACRYPT 2004, volume 3329 ofLecture Notes in
Computer Science, pages 119–136. Springer-Verlag,
Berlin, Germany.

Shamir, A. (1979). How to share a secret.Communications
of the ACM, 22(11):612–613.

Yao, A. (1982). Protocols for secure computation. InPro-
ceedings of the twenty-third annual IEEE Symposium
on Foundations of Computer Science, pages 160–164.
IEEE Computer Society.

SECRYPT 2009 - International Conference on Security and Cryptography

330


