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Abstract: Since similarity plays a key role for both clustering and classification purposes, the problem of finding a 
relevant indicators to measure the similarity between two patterns drawn from the same feature space 
became of major importance. The advantages of using principal components reside from the fact that bands 
are uncorrelated and no information contained in one band can be predicted by the knowledge of the other 
bands.  The semi-supervised learning (SSL) problem has recently drawn large attention in the machine 
learning community, mainly due to its significant importance in practical applications. The aims of the 
research reported in this paper are to report experimentally derived conclusions on the performance of a 
PCA-based supervised technique in a semi-supervised environment. A series of conclusions experimentally 
established by tests performed on samples of signals coming from two classes are exposed in the final 
section of the paper. 

1 INTRODUCTION 

In supervised learning, the basis is represented by a 
training set of examples (inputs) with associated 
labels (output values). Usually, the examples are in 
the form of attribute vectors, so that the input space 
is a subset of Rn. Once the attribute vectors are 
available, a number of sets of hypothesis could be 
chosen for the problem.   

Traditional statistics and the classical neural 
network literature have developed many methods for 
discriminating between two classes of instances 
using linear functions, as well as methods for 

interpolation using linear functions. These 
techniques, which include both efficient iterative 
procedures and theoretical analysis of their 
generalization properties, provide a suitable 
framework within which the construction of more 
complex systems are usually developed. 

The semi-supervised learning (SSL) problem has 
recently drawn large attention in the machine 
learning community, mainly due to its significant 
importance in practical applications.  

In statistical machine learning, there is a sharp 
distinction between unsupervised and supervised 
learning. In the former scenario we are given a 
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sample { }ix  of patterns in ℵ drawn independently 
and identically distributed (i.i.d.) from some 
unknown data distribution with density P(x), the 
goal being to estimate either the density or a 
functional thereof. Supervised learning consists of 
estimating a functional relationship x → y between a 
covariate ℵ∈x and a class variable { }My ,...,2,1∈ , 
with the goal of minimizing a functional of the joint 
data distribution P(x, y) such 
as the probability of classification error.  

The terminology “unsupervised learning” is a bit 
unfortunate: the term density estimation should 
probably suit better. Traditionally, many techniques 
for density estimation propose a latent (unobserved) 
class variable y and estimate P(x) as 

mixture distribution ( ) ( )∑
=

M

y
yPyxP

1
. Note that y has 

a fundamentally different role than in classification, 
in that its existence and range c is a modeling choice 
rather than observable reality.  

The semi-supervised learning problem belongs to 
the supervised category, since the goal is to 
minimize the classification error, and an estimate of 
P(x) is not sought after. The difference from a 
standard classification setting is that along with a 
labeled sample ( ){ }niyxD iil ,...,1, ==  drawn i.i.d. 
from P(x, y) we also have access to an additional 
unlabeled sample { }mjxD jnu ,...,1== + from the 

marginal P(x). We are especially interested in cases 
where n«m which may arise in situations where 
obtaining an unlabeled sample is cheap and easy, 
while labeling the sample is expensive or difficult. 

Principal Component Analysis, also called 
Karhunen-Loeve transform is a well-known 
statistical method for feature extraction, data 
compression and multivariate data projection and so 
far it has been broadly used in a large series of signal 
and image processing, pattern recognition and data 
analysis applications.   

The advantages of using principal components 
reside from the fact that bands are uncorrelated and 
no information contained in one band can be 
predicted by the knowledge of the other bands, 
therefore the information contained by each band is 
maximum for the whole set of bits (Diamantaras, 
1996).  

Recently, alternative methods as discriminant 
common vectors, neighborhood components analysis 
and Laplacianfaces have been proposed allowing the 
learning of linear projection matrices for 
dimensionality reduction. (Liu, Chen, 2006; 
Goldberger, Roweis, Hinton, Salakhutdinov, 2004) 

The aims of the research reported in this paper 
are to report experimentally derived conclusions on 
the performance of a PCA-based supervised 
technique in a semi-supervised environment.  

 The structure of a class is represented in terms 
of the estimates of its principal directions computed 
from data, the overall dissimilarity of a particular 
object with a given class being given by the 
“disturbance” of the structure, when the object is 
identified as a member of this class. In case of 
unsupervised framework, the clusters are computed 
using the estimates of the principal directions, that is 
the clusters are represented in terms of skeletons 
given by sets of orthogonal and unit eigen vectors 
(principal directions) of each cluster sample 
covariance matrix. The reason for adopting this 
representation relies on the property that a set of 
principal directions corresponds to the maximum 
variability of each class.  

A series of conclusions experimentally 
established by tests performed on samples of signals 
coming from two classes are exposed in the final 
section of the paper.  

2 THE MATHEMATICS BEHIND 
THE PROPOSED ATTEMPT 

The classes are represented in terms of multivariate 
density functions, and an object coming from a 
certain class is modeled as a random vector whose 
repartition has the density function corresponding to 
this class. In cases when there is no statistical 
information concerning the set of density functions 
corresponding to the classes involved in the 
recognition process, usually estimates based on the 
information extracted from available data are used 
instead.     

The principal directions of a class are given by a 
set of unit orthogonal eigen vectors of the 
covariance matrix. When the available data is 
represented by a set of objects  NXXX ,...,, 21 , 
belonging to a certain class C, the covariance matrix 
is estimated by the sample covariance matrix, 

( )( )∑
=

−−
−

=Σ
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i

T
NiNiN XX
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ˆˆ
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where ∑
=

=
N

i
iN X

N 1

1μ̂ . 

Let us denote by N
n

NN λλλ ≥≥≥ ...21  the eigen 

values and by N
n

N ψψ ,...,1  a set of orthonormal 

eigen vectors of NΣ̂ .  
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If a new example XN+1 coming from the same 
class has to be included in the sample, the new 
estimate of the covariance matrix can be recomputed 
as, 

( )( )1 1 1
1ˆ ˆ ˆ ˆ

1
T

N N N N N NN
μ+ + += + − − −

+
Σ Σ X μ X 1 ˆ

NN
− Σ          (2) 

Using first order approximations (State, Cocianu, 
2006), the estimates of the eigen values and eigen 
vectors respectively are given by,  
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On the other hand, when an object has to be 
removed from the sample, then the estimate of the 
covariance matrix can be computed as, 

11
ˆˆ

++ Δ+= NNN ΣΣΣ ,                                      (5) 
where 
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The conclusion formulated in the next lemma 
can be proved by straightforward computation. 

Lemma. Let KXXX ,...,, 21  be an n-dimensional 
Bernoullian sample. We denote by 
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orthogonal unit eigen vectors of NΣ̂ , 

12 −≤≤ KN . In case the eigen values of 1
ˆ

+NΣ  are 
pairwise distinct, the following first order 
approximations hold, 
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where 11
ˆˆ

++ −=Δ NNN ΣΣΣ  

Let N
n

N ψψ ,...,1 be set of principal directions of 

the class C computed using NΣ̂ . When the example 
XN+1 is identified as a member of the class C, then 
the disturbance implied by extending C is expressed 
as,  
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where d is the Euclidian distance and 11
1 ,..., ++ N

n
N ψψ  

are the principal directions computed using  1
ˆ

+NΣ . 
Let { }MCCCH ,...,, 21= be a set of classes, 

where the class Cj contens Nj elements. The new 
object X is alloted to Cj, one of the classes for which 
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In order to protect against misclassifications, due 
to insufficient “closeness” to any class, we 
implement this recognition technique using a 
threshold T>0 such that the example X is allotted to 
Cj only if relation (8) holds and D<T. 

The classification of samples for which the 
resulted value of D is larger than T is postponed and 
the samples are kept in a new possible class CR. The 
reclassification of elements of CR is then performed 
followed by the decision concerning to either 
reconfigure the class system or to add CR as a new 
class in H.  

For each new sample allotted to a class, the class 
characteristics (the covariance matrix and the 
principal axes) are re-computed using (2), (3) and 
(4). The skeleton of each class is computed using an 
exact method, M, in case PN samples have been 
already classified in { }MCCCH ,...,, 21= . 

Briefly, the recognition procedure, P1, is 
described below (Cocianu, State, 2007).  

Input: { }MCCCH ,...,, 21=  the set of samples  
coming from M classes respectively 

Step 1: For each class, compute a set of  
orthogonal unit eigen vectors (characteristics of the 
classes)  

Repeat 
i←1 
Step 2:  Generate X a new test example and 

classify X according to (8) 
Step 3: If Mjj ≤≤∃ 1, such that X is allotted 

to jC , then  
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3.1.re-compute the characteristics of jC  using 
(3), (4) and (5) 

3.2. i←i+1 
Step 4: If i<PN goto Step 2 
     Else 
     4.1. For i= M,1 , compute the characteristics 

of the class iC  using M.      4.2. goto Step 2. 
Until all test examples are classified  
Output: The new set{ } CRCCC M ∪,...,, 21  

3 EXPERIMENTAL ANALYSIS 
ON THE PERFORMANCE OF 
THE PROPOSED 
CLASSIFICATION METHOD 

In this section, we present the results in testing the 
performance of the proposed approach evaluated in 
terms of the recognition error. The tests were 
performed in discriminating between two classes of 
signals, with known statistical properties. The 
evaluation of the error is computed on new test 
examples. The approach can be taken as a semi-
supervised approach because each new test example 
is included in the class established by the decision 
rule (not necessarily being the true provenance class) 
therefore becoming involved in the re-actualization 
of the new characteristics. 

The classes are represented by NP examples 
coming from each class. 

Test 1. The evaluation of error using the leaving one 
out method. Sequentially, one of the given examples 
is removed from the sample. The classifier is 
designed using the rest of 2NP-1 examples (that is 
the characteristics of the classes are computed in 
terms of the NP, NP-1 remaining examples) and the 
removed example is classified into one of resulted 

classes.  The error is evaluated as
NP
F

2
 , where F is 

the number of misclassified examples.  
Let { } { } ni
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ini
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i ≤≤≤≤ 1

,2
1

,1 , ψψ , 
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,2

1
,1 , λλ  be the characteristics of  the 

classes and the corresponding eigen values at the 
initial moment and 21 , NPNP μμ , 21 , NPNP ΣΣ  the sample 
means and the sample covariance matrices 
respectivelly. Let X be the removed example. In 
case X comes from the first class, then the new 
characteristics are, 
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for the first class and remains unchanged for the 
second one, where 
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In case X comes from the second class, similar 
formula are used. 

The evaluation of the error is performed for 
50,40,30,20,10=NP . Several tests were performed 

on samples generated from 3 repartitions, Gaussian, 
Rayleigh and geometric, each class corresponding to 
one of them. All tests reported to a surprising 
conclusion, that is the misclassification error is very 
closed to 0. 

a) The classes correspond to the Gaussian 
repartition and Rayleigh repartition respectively, 
NP=150, n=50, e=50, where n is the data 
dimensionality and e is the number of epochs, the 
resulted empirical error is 0.0327. The variation of 
the empirical error in terms of e is presented in 
Figure 1.  

b) The classes correspond to the geometric 
repartition and Rayleigh repartition respectively, 
NP=150, n=50, e=50, where n is the data 
dimensionality and e is the number of epochs, the 
resulted empirical error is 0.0112. The variation of 
the empirical error in terms of e is presented in 
Figure 2.  

 
Figure 1. 

TOWARD A SEMI-SUPERVISED APPROACH IN CLASSIFICATION BASED ON PRINCIPAL DIRECTIONS

71



 

 
Figure 2. 

 
Figure 3. 

c) The classes correspond to the Gaussian 
repartition, NP=150, n=50, e=50, where n is the data 
dimensionality and e is the number of epochs, the 
resulted empirical error is 0.0261. The variation of 
the empirical error in terms of e is presented in 
Figure 3. 

Test 2. The evaluation of the error by counting the 
misclassified examples from a set of NC new test 
samples coming from the given classes of the same 
repartitions. 

In this case, the learning is performed in a non-
adaptive way, that is first order approximations of 
the characteristics for each class are used for 
classification purposes only (the characteristics of 
the classes are the initial computed characteristics 
during the classification process).  

The tests were performed for 
NP=10,20,30,40,50, NC=10,20,30,40,50, n=50, 
e=50, where n is the data dimensionality and e is the 
number of epochs. 

a) The classes correspond to the Gaussian 
repartition and Rayleigh repartition respectively.  

b) The classes correspond to the geometric 
repartition and Rayleigh repartition respectively.  

c) The classes correspond to the Gaussian 
repartition.  

The values of the empirical error in terms of e lie 
in the interval [0.02,0.15] in case a), [0.32,0.4] in 
case b), and [0.04,0.4] in case c) respectively. In all 
cases, a decreasing tendency is identified while the 
number of epochs increases.  

Test 3. The evaluation of the error by counting the 
misclassified examples from a set of NC new test 
samples coming from the given classes of the same 
repartitions. 

In this case, the learning is performed in an 
adaptive way, that is, each new classified example 
contributes to the new characteristics of the class the 
exampled is assigned to, the new characteristics 
being computed using first order approximations in 
terms of the previous ones. Besides, after each 
iteration, the characteristics of the new resulted 
classes are re-computed using an exact method M.  

The tests were performed for NP=150, 
NC=10,20,30,40,50, n=50, e=100, where n is the 
data dimensionality and e is the number of epochs. 

a) The classes correspond to the Gaussian 
repartition and Rayleigh repartition respectively, 
The empirical error stabilises in few epochs at the 
value 0.015 and remains unchanged while the 
number of epochs increases.  

b) The classes correspond to the geometric 
repartition and Rayleigh repartition respectively. 
The variation of the empirical error in terms of e is 
presented in Figure 4.  

c) The classes correspond to the Gaussian 
repartition. The variation of the empirical error in 
terms of e is presented in Figure 5.  

 
Figure 4. 
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Figure 5. 

Finally, we conclude that the long series of tests on 
the proposed classification procedure pointed out 
very good performance in terms of the 
misclassification error. In spite of the apparent 
complex structure, using first order approximations 
for the class characteristics, its complexity 
significantly decreases without degrading the 
classification accuracy. 
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