THE HIXOSFS MUSIC APPROACH VS COMMON MUSICAL FILE
MANAGEMENT SOLUTIONS

Nicola Corriero, Vittoria Cozza and Fabrizio Fattibene
Department of Computer Science, University of Bari, Via Orabona 4, Bari, Italy

Keywords:

Abstract:

Operating system, Linux, Filesystem, System calls, FUSE, Multimedia.

Hixosfs music is an extension of ext2 Linux filesystem, with additional features to easy accessing and cate-

gorizing musical files. Specially it extends the inode struct inside the Virtual file system, considerating as file
proprieties meta information such as album, author, title related to the content of a musical file. Comparition
have been done respect to the Linux file system in user space Musicmeshfs, the Linux ext2 xattr feature, and ad
hoc user space programs for efficiently retriving multimedia data. Since Hixosfs music manages the musical
tags at kernel level, it offers higher performances then the other solutions but with less flexibility.

1 INTRODUCTION

In this work we present and compare different way
to manage at file system (fs) level musical file collec-
tion of various format. We address both the problems
of store inside a folder tree a musical collection in a
configurable way with MusicMeshFS(Corriero, 2008)
and xattr and the problem of access in a fast way the
musical tag (e.g. author, album) values with Hixosfs
music. Manage musical files in a Linux fs makes pos-
sible to use the shell tools as find, beside of ad hoc
commands for specific musical fs that keep under con-
sideration metadata. Generally speaking GNU/Linux
fs are based on a common kernel layer called Virtual
File System (VFS) then they keep the same logical
structure and are all presented at the user in the same
way. At this level structs and operations common to
all fs types have to be defined. To implement a new
fs means to know the kernel internals, learning kernel
module programming and either to know the VFS ar-
chitecture to modifies its structs. For example Hixosfs
music, respect ext2 fs, extends the inode struct to in-
clude musical tags in the metainformations associated
to a file.

Linux offers already a way to extend inode attributes
but without physically modifying the inode struct
with the xattr feature. This solution is currently used
in most common Linux fs and it offers an easy in-
terface to the final user that can choose and add run-
time all the couples attribute-name attribute-value he
likes to store with the command attr. Finally an
other way to manage tags in fs is by writing a new

Corriero N., Cozza V. and Fattibene F. (2009).

fs in userspace, this can be done even from not kernel
developers, thanks the the userspace library offered
by Filesystem in Userspace (FUSE) project(Szeredi,
2008). In this way an user can ridefine the file oper-
ations keeping under consideration metainformation
related to a file, and to have a different virtual view
of his fs that anyway is not physically modified. Mu-
sicMeshFS (MMEFS) is an example of fs based on fuse
for multimedia data.

2 HIXOSFS MUSIC

Hixosfs music architecture(Corriero, 2009) generally
recalls the widely used ext2 file system, but it extends
the information stored in the inode with tags such as
author, title, year and album for musical data. The
hixosfs project required the linux headers to be modi-
fied, new system calls for read and write tags and the
new hixosfs module to be implemented: chtag and re-
tag, the final user recall the syscall by the tools chmu-
sic and statmusic with analogous functionality of the
well known chown and stat but obviously consider-
ating musical tags(hix). The header "linux/fs.h” has
been changed to extend the definition of iattr struct
with musical tag. Specially the function setattr
with the task to propagate at the inode the change re-
lated to iattr struct, has been extended specifying the
new tags definition that will be stored inside the in-
ode.

The inode is the kernel struct for all the file type man-

189

THE HIXOSFS MUSIC APPROACH VS COMMON MUSICAL FILE MANAGEMENT SOLUTIONS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 189-192

DOI: 10.5220/0002230801890192
Copyright © SciTePress

SIGMAP 2009 - International Conference on Signal Processing and Multimedia Applications

agement, hixosfs music extends the inode definition
with a struct tag.

The struct tag has four fields for a total of about
100 byte of stored information, theoretically an
i-node can be extended until 4 kb then it’s possible
to customize it with many tags for your purpose.
It’s convenient to choose tags that are most of the
time used in the file search to di-scriminate the files
depending their content. We chose here what was
able to maximize the time of search musical files
by most commonly used criteria as album or author
name and so on.

A new module have been created, the Hixosfs
module that includes hixosfs operations defini-
tion. Certain functions as hixosfs_read_inode,
hixosfs_update_inode and hixosfs_new_inode don’t
differ too much respect to read and update for ext2 file
system. In addition there is a new part for the man-
agement of the new content based file attribute in the
struct iattr and inode. Finally two new system calls
Chtag and retag have been implemented to allow to
write and read the struct tag from hixos_inode.

All described modification have been done start-
ing from 2.6.23 kernel, but can easily integrated in
newer kernel versions. Beside standard user mode
tools (stat, chmod, 1Is and so on), specific command
are needed to directly handle with new file tags.
There are two kind of user space programs hixosfs
requires, to read/write tags from/to inodes and as well
to interface with the tag based file management of-
fered by hixosfs. At the first group belong programs
as statmusic (think at shell command stat) and
chmusic (think at chown and so on), at the second
orderby, 1s, find, with an intuitive meaning.

3 EXTENDED ATTRIBUTES

Currently Linux fs as ext2 (Remy Card), ext3, reis-
erfs allows to manage with metainformation related
to a file with xartr feature. Patching the kernel with
xattr you have a way to extend inode attributes that
doesn’t physically modify the inode struct. This is
possible since in xattr the attributes are stored as a
couple attribute-value out of the inode as a variable
length string. Generally the basic command used to
deal with extended attributes in Xattr is attr that
allows to specifies different options to set and get at-
tribute values, to remove attributes to list all of them
and then to read or writes these values to standard out-
put. The programs we implemented in our testing sce-
nario are based on this user space tool.

190

4 FILE SYSTEM IN USERSPACE

FUSE is an open source project with GPL and LGPL
license that offers a Linux kernel module to allow
to not privileged users to create their own fs without
write kernel level code, in fact customizing fuse you
can create your own fully functional fs directly in user
space. This approach is used to write virtual fs, that
don’t care about store data on the disk but of arranging
them to offer a virtual view of such data to the final
user. For the MMFS design please refers to (Corriero,
2008).

S PERFORMANCE MEASURES

In this section performance measurements made on
hixosfs are presented. The monitored operation are
about reading e writing tags from and to a file, read-
ing from disk the folders content, the operation of
ordering a group of files with user passed parame-
ters. The time required to perform this operations
by hixosfs has been measured and compared with the
time needed in the some situation by:

e a fuse based file system approach, specially mu-
sicmeshfs (MMES)

e xattr Linux fs feature
e an ad hoc user space program

All analyzed case have in common a musical
files processing phase application based on TagLib
C(Wheeler, 2008) library to extract musical tags such
as author, track, title year, album. The time it-
self has been measured by the unix command t ime
command] that gives as output the execution times
of input command commandl. As you can expect
the study shows that performing such operations with
hixosfs gives an huge optimization in term of time
since it works in kernel mode with operating system
privileges. Every action done for the discovery of in-
formation involves a system call and then a software
interrupt for each system call.

To work with hixosfs music and related user mode
tools you have to to patch and recompile the kernel
source, to compile user space programs, to create a
hixosfs fs (ext2-modified) with a 256 byte inode by,
e.g, mkfs.ext2 -I 256 ... and finally to mount
hixosfs fs in your tree To test his way of working and
then do performance comparisons, after preparing the
system, we populated the fs with a collection of 80 Gb
of musical data. The main command used to add files
inside the hixosfs music is addmusic and the sintax is:

addmusic FILENAME | FOLDERNAME

THE HIXOSFS MUSIC APPROACH VS COMMON MUSICAL FILE MANAGEMENT SOLUTIONS

By using this command you can find the hixosfs music
already mounted and copy music file inside it. Other-
wise it’s possible to use cp to physically copy files
in the partition and then filltag to populate the
hixosfs_inode tags struct. The usage is:

filltag FILENAME

The command open file with taglib function to find
metainformation about music and uses a system call
to insert this information in the inode. Since it uses
a system call the operation is a high priority kernel
mode task. Once fs contains musical files, they can
be ordered by an ad hoc program called orderby. The
syntax is:

orderby [-a tagl | -b tag2?]

For example with the command:

#orderby author year

we have all file in fs in a tree with the first node as
a folder with as name each track author, the second
node as a folder with as name the track year and in the
third node, finally, the music file itself. The trick of
using hard links for implementing orderby allows
coexisting in safe way more then one order.

~/musica... tree

|— oDasis
L 1907
Don't Go Away.mp3
Stand by Me.mp3
— Queen
1875
Bohemian Raphsody.mp3
Sweet Lady.mp3

t: e are the Champlons.mp3
e will rock you.mp3

1985
L— The Unforgettable Fire.mp3
1997

D1lscothegue.mp3

Please.mp3

g8 directories, 9 files
~/musica. ..

Figure 1: orderby.

5.1 Musicmeshfs vs Hixosfs

Musicmeshfs is an example of file system based on
the fuse library. The concept of orders is common
at both hixosfs and MMFS. In the case of MMS the
string used at mounting fs time, includes a reference
to a particular required orders. For example mount-
ing with the option Author#Year creates a three levels
tree: first level with author of the tracks, second year
of the tracks in the database for each author, then the
track files themself. The MMFS implementation in-
cludes a database that stores the metainformation and
the data organization according user choose. In fact

Table 1: Hixosfs vs mmfs.

[1sin MMFS [1s in hixosfs |
[13.10 sec [0.20 sec \

in general a virtual fs never changes the real files, but
it just shows them at the user according a chose order.
Since MMEFS is a kind of read-only fs, the only access
you can do to write in fact is only to change a file tag,
a command that seems interesting to perform to do
a comparison with hixosfs is the common command
that shows the files according predefined order such
1s. In the simple case of a fs, let’s say with folder ar-
ranged by author (that implies one folder for one au-
thor), by executing 1s, MMFS executes the command
as a run time query (select ...) to the db of the infor-
mation related to the author and show them in a file
system fashion. MMFS is high customizable in fact
it’s possible to query the database in a configurable
and easy way thanks MMFS language, but the access
to a db is not costless. From one other side Hixosfs
doesn’t query a db to search for metadata but keeps
them in the inode itself can move inside the folders
with 1s command faster as in table 1.

5.2 Xattr vs Hixosfs

As introduced earlier, Xattr is a Linux feature to sup-
port extended file attributes. To use Xattr means to
compile the kernel with the support of such tags, to
create the fs with extended attributes and mount the
fs with mount -o remount,user_xattr what where, then
to use ad hoc programs to read and write the extended
attributes. To deal with extended attributes we used
attr that allows to specifies different options to read
and write attribute values; The way we used this com-
mand is like in the following example:

e attr -s autore -V Valore
/mnt/Musica/mia_musica.ogg: creates the couple
(autore, Valore) for the musical file musica.ogg;

e attr —g autore /mnt/Musica/mia_musica.ogg:
allows to read the couple of values associated to
the attribute autore;

e attr -1 /mnt/Musica/mia_musica.ogg: allows
to read all the couple attribute values;

To populate the fs with extended attributes we created
a read_Xattr script that recall attr -s command to
associate to each file of our testset the following at-
tributes: author, album, title, year. Then getXattr
script to read the attributes.

It seems relevant to compare now the operation
of extraction extended attributes thanks getXattr with
the hixosfs statmusic. This command is similar to the

191

SIGMAP 2009 - International Conference on Signal Processing and Multimedia Applications

Table 2: Hixosfs vs xattr.

’ getXattr * H statmusic * ‘

[29.725sec || 2.987 sec \

the standard Unix user mode tool stat, specially the
output of stat is the list of tags content for each
input file, while in the case of statmusic musical
tags are showed too:

statmusic Bohemian Rhapsody.mp3
File Name: Bohemian Rhapsody.mp3
Author: Queen

Title: Bohemian Rhapsody

Album: A Night at the Opera

Year: 1975

The time comparison result are in the table 2. As
you expect since the way hixosfs and xAttr physically
store and access tags, statmusic gives better perfor-
mances.

5.3 Open_Read vs Hixosfs

Open_Read is an ad hoc program that open a music
file, extract tags and then it shows them on the screen:
TagLib_File* tlf = taglib_file_new(argv([i]);
TagLib_Tag* tlt = taglib_file_tag(tlf);

printf ("\nAlbum: %s", taglib_tag_album(tlt));
Open_read uses the taglib library that works with
the standard system call fopen or/and Iseek and print
on the screen with printf C standard function. We
compared the use of Open_read with the use of
statmusic in hixosfs that recalls the system call
retag and read the tags directly from the inode and
shows them on the screen. Comparing the time spent
by both approach we had less then 1 second (0.03 sec)
needed from statmusic, respect 4.19 minutes re-
quired in the case of the ad hoc program.

6 CONCLUSIONS

This work comparison analysis shows that the faster
way to handle musical metadata, in term of time spent
to deal with, is when the tags management happens at
kernel level: the case of hixosfs and xattr feature.

Hixosfs music appears to be an innovative approach to
manage musical file tags at fs kernel level and it gives
higher performances when dealing with an huge num-
ber of files. If we think of a partion formatted hixosfs
that collect only musical data, hixosfs appears the best
performant solution. The huger advantage in time in
the case of hixosfs is because tags are stored inside
the inode and they are accessed by high priority ker-
nel space calls: the system calls. From the operating

192

system efficiency side a further disavantage is an in-
tuitive memory lost. In fact hixosfs music allocates
for each file memorization in the hixosfs formatted
partition, a 256 byte inode even if the file has to be
tagged with no attributes so better if we use hixosfs
only for a whole partition for musical data or as the fs
for embedded devices as ipod or mp3reader.// From
user side the problem is that the tags are fixed at fs
design time even if here we chose the most common
tags for indexing musical data such as author, album,
year, title, that we extracted from musical file since
the use of taglib. As further development we imagine
to extend the inode with different kind of tags chosen
from the final user and to implement user space com-
mands that can allow to the user to copy the tag in the
inode to the tag in the file and the opposite easily. In
the case of working with a fs in userspace as MMFS
or using xattr feature they had lower performances in
term of time but they offer high flexibility for tag se-
lection and management. A further work can be to
extend fuse library to make it to offer an abstraction
layer over hixosfs music. Hixosfs design also can be
enriched to became a network fs well suited for the
musical files sharing and to simplify the indexing of
files inside the network.

REFERENCES

Hixosfs file system. http://www.di.uniba.it/hixos/hixosfs/
index.html. home page.

Corriero, C. Hixosfs_music: a filesystem in linux kernel
space for musical files. MMEDIA 2009. home page.

Corriero, Cozza, D. t. Z. (SIGMAP 2008). A configurable
linux file system for multimedia data.

Remy Card, Theodore Ts’o, S. T.
http://e2fsprogs.sourceforge.net/.

Szeredi, M. (2008). Fuse. http://fuse.sourceforge.net. Home
page.

Wheeler, S. (2008). Taglib. http://developer.kde.org/
wheeler/taglib.html. Home page.

