
SECURITY PATTERNS, TOWARDS A FURTHER LEVEL∗

Beatriz Gallego-Nicasio
ATOS Origin

Antonio Muñoz, Antonio Maña, Daniel Serrano
Grupo GISUM, Universidad de Malaga, Malaga, Spain

Keywords: Security patterns, Ambient intelligence, Security and dependability services, Security measurements.

Abstract: Traditionally, security patterns have successfully been used to describe security and dependability (S&D)
solutions, making them available to system engineers not being security experts. Recently, in the SERENITY
research project, the notion of S&D pattern was extended to exact specifications of re-usable S&D mechanisms
for Ambient Intelligence (AmI) systems. SERENITY is focused in AmI systems, but its results can be applied
to other computer paradigms: grids, distributed computing, etc. SERENITY S&D patterns include information
about both the S&D properties that the solution satisfies and the requirements on the context conditions. Along
this paper, we describe how abstract S&D solutions can be implemented by means of functional S&D services.
In order to do that, our approach is based on the use of SERENITY S&D patterns, and their implementations,
called ExecutableComponents. Finally, we propose several examples and we prove their potential application
to AmI scenarios.

1 INTRODUCTION

Traditionally, security engineers’ tasks, in standard
software and service development, have been the def-
inition of security principles and policies, and the
development and validation of solutions for achiev-
ing specific security properties. Due to the nature of
the systems under development (usually, centralized
or loosely connected systems) there was no need of
a high integration of these tasks in the development
process. Nowadays the provision of security and de-
pendability (S&D) for information systems requires
specialized expertise in the S&D engineering tech-
niques. Indeed, the current S&D engineering tech-
niques are able to warrant high levels of security and
dependability, when they are rigorously and appro-
priately applied. Unfortunately, these techniques are
based on a detailed analysis of every part of the sys-
tem, but not as a standalone. Therefore, they do not
work well when they are applied to highly dynamic
systems, where it is impossible for S&D engineers to
foresee all possible configurations of the system that
will happen at run-time. In this paper, we present
an overview of how security expertise is captured by

∗Work partially supported by E.U. through project
Serenity (IST-027587)

means of the Serenity Project S&DPatterns. We also
introduce the structure of these S&DPatterns at the
implementation level: applications use S&DPatterns
at run-time, consequently S&DPatterns are imple-
mented by means of software and hardware compo-
nents, called ExecutableComponents. Secondly, we
introduce the Serenity Run-time Framework, which
is a service providing support to secure applications
at run-time by means of S&DPatterns. And to finish,
we present how developers profit from all the advan-
tages introduced by Serenity, by introducing the two
Java packages developed to support the development
of both ExecutableComponents and secure applica-
tions. The paper is structured as follows: section 2
compiles relevant related works, section 3 introduces
Serenity artifacts used to capture security knowledge,
section 4 presents the Serenity Run-time Framework
and goes into detail describing the exploitation and
deployment of S&D solutions at run-time. Section 5,
presents the monitoring and reaction mechanisms to
control the execution the S&D solutions. Section 6
shows how these concepts are implemented by means
of ExecutableComponents and presents the support-
ing infrastructure created. An example scenario to
demonstrate all these concepts is described in section
7. Finally, section 8 presents the current state and next

349
Gallego-Nicasio B., Muñoz A., Maña A. and Serrano D. (2009).
SECURITY PATTERNS, TOWARDS A FURTHER LEVEL.
In Proceedings of the International Conference on Security and Cryptography, pages 349-356
DOI: 10.5220/0002230303490356
Copyright c© SciTePress



steps of the research, together with our conclusions.

2 RELATED WORK

Concerning the problem of providing adaptable secu-
rity services at run-time, we found proposals based
on Component-based Software development (CBSD
for short) (Georgiadis et al., 2002), and others
based on middleware and Frameworks (Schmidt and
Buschmann, 2003). Some approaches based on the
concept of Framework have been proved to be useful
in the development of secure services, as defended
in (Schmidt and Buschmann, 2003). Unfortunately,
current frameworks provide static security properties.
In other words, the security solutions offered can not
be adapted to work when then number of context
changes is high. Thus, they are selected and config-
ured at application development time. This limitation
makes the approach not applicable in heterogeneous
and dynamic AmI environments.

Current work on CBSD is mainly focused on the
dynamic analysis of component compatibility. Usu-
ally from a functional point of view, with the target of
adapting components and synthesizing suitable soft-
ware architectures (Becker et al., 2007). A remark-
able research is presented in (Mei and Xu, 2003).
This work is based on the use of Bayesian Belief Net-
works for an adaptive dependability model. Unfortu-
nately, current approaches are not focused on the au-
tomated selection and setup of security solutions an-
swering to different security requirements, which is
one of the strongest points of our approach in Seren-
ity. In (Kung, 2007), A. Kung highlights how the
usage of patterns is widely used today in the speci-
fication of architectures and the design based on as-
pects. Concretely, these patterns refer to templates
describing a solution to solve a commonly occurring
problem. Work on security architectures for compo-
nent systems has been focused in the security prob-
lems caused by the interaction of general components
while we focus on the interaction of components pro-
viding security and dependability services. A secu-
rity architecture for composing secure systems from
components is presented in (Jaeger et al., 1998). This
architecture is designed to support the dynamic com-
position of systems and applications from individual
components. This approach differs from Serenity due
to it only deals with access control. As this one, most
of the current proposals are based on oversimplified
views of security, like those based on security levels.

A further discussion is found in (Nobukazu et al.,
2004), where security patterns are applied to construct
secure and efficient intercompany coordination sys-

tems. Authors show an application of their method to
the Environmentally Conscious Product design sup-
port system. As a result, they provide guidelines
to developers for modeling the performance of data
associated with each pattern. Unfortunately, these
guidelines are not expressive enough for the security
patterns developed in the Serenity project and this ap-
proach have no mean for automating neither the dis-
covery, nor selection and nor deployment of the can-
didate patterns.

3 CAPTURING KNOWLEDGE

This section gives an overview of the Serenity Project.
The main objective of Serenity is to provide a frame-
work for the automated treatment of security and de-
pendability issues in AmI scenarios. For this purpose,
the project is two-folded: (i) capturing the specific ex-
pertise of the security engineers in order to make it
available for automated processing, and (ii) providing
run-time support for the use and the monitorization of
these security and dependability mechanisms. These
two cornerstones have been deployed by means of:
A set of S&D modeling artefacts (S&D artifacts, for
short), used to model security and dependability so-
lutions (S&D solutions) at different levels of abstrac-
tion. S&D solutions are isolated components that pro-
vide security and/or dependability services to appli-
cations. The use of different levels of abstraction re-
sponds to the need of different phases of the software
development process. These artefacts are supported
by an infrastructure created for the development and
the validation of S&D solutions. This infrastructure
includes concepts, processes and tools used by se-
curity experts for the creation of new S&D solutions
ready for automatic processing.

Figure 1: Simplified model.

A development framework. Under the name of
Serenity Development-time Framework (SDF) there
is an infrastructure that supports the development of
secure applications. These secure applications, called
Serenity-aware applications, are supported by S&D
solutions, consequently, they include references to the
aforementioned S&D artefacts. A run-time frame-

SECRYPT 2009 - International Conference on Security and Cryptography

350



work, called Serenity Run-time Framework (SRF).
The SRF provides support to applications at run-time,
by managing S&D solutions and by monitoring the
systems’ context. The SRF is briefly described in
Section 4. Once infrastructural pieces have been de-
scribed, the rest of this section explains how to use
S&D modelling artefacts to bridge the gap between
abstract S&D solutions and actual implementations
of these S&D solutions. Interested readers could re-
fer to Section 3 in order to find information on how
the SRF supports applications at run-time. Back to
the abstractions, five main artefacts are provided to
achieve a logical way to represent S&D solutions
in the Serenity project: S&DClasses, S&DPatterns,
IntegrationSchemes, S&DImplementations and Exe-
cutableComponents. These artefacts, depicted in fig-
ure 1, represent S&DSolutions using semantic de-
scriptions at different levels of abstraction. The main
reason for using different artefacts, each one address-
ing an abstraction level, is that, by doing this, it is
possible to cover the complete life cycle of secure
applications, especially at development and run-time
phases. S&DClasses represent abstractions of a set
of S&DPatterns, characterized for providing the same
S&D Properties and complying with a common inter-
face. This is one of the most interesting artefacts to
be used at development time by system developers.
The main purpose of this artefact is to facilitate the
dynamic substitution of S&D solutions at run-time,
while facilitating the development process. Applica-
tions request S&D Solutions to the SRF to fulfill a set
of S&D requirements. Usually, these requirements
are hard coded by means of calls to S&DClasses or
S&DPatterns interfaces. At run-time all S&DPatterns
(and their respective S&DImplementations, described
below) belonging to the same S&DClass, will be
selectable by the SRF automatically. S&DPatterns
are precise descriptions of abstract S&D solutions.
These descriptions contain all the information neces-
sary for the selection, instantiation, adaptation, and
dynamic application of the solution represented by
the S&DPattern. S&DPatterns describe the security
pattern’s functionalities and how to use them in a
structured way. The most interesting elements of
the S&DPattern structure are: (i) The pattern in-
terface, describing the functionalities provided and
how to use them; (ii) references to the S&DClasses
the S&DPattern belongs to; and (iii) the ClassAdap-
tor, describing how to adapt the S&DPattern inter-
face to the S&DClass interface. S&DPatterns repre-
sents monolithic isolated S&D solutions, but a spe-
cial type of S&D artefact called Integration Scheme
(IS) also exists, which consists on an S&D solution
at the same level than S&DPatterns. They represent

S&D solutions that are built by means of combin-
ing other S&DPatterns. At Serenity-aware applica-
tion development time, Integration Schemes are used
similarly as S&DPatterns are. However, they dif-
fer in their development process, presented in (Mana
et al., 2006). All along this paper we use the no-
tion of S&DPatterns to refer to S&DPatterns and In-
tegration Schemes indistinctly. S&DImplementations
are specification of the components that realize the
S&D solutions. S&DImplementations are not real
implementations but their representation/description.
An S&DImplementation describes an implementa-
tion of an S&DPattern and, thus, a S&DPattern may
have more than one S&DImplementation. Finally,
ExecutableComponents are real implementations of
the S&DImplementations. These elements are not
used at development time, but they are the real-
ization of the selected S&D solution at run-time.
An ExecutableComponent works as a stand alone
executable S&D solution ready to provide its ser-
vices to applications. They are software, and some-
times hardware, components. As shown in figure
1, every S&D solution provides at least one security
property. Every S&DPattern (and every Integration
Scheme) refer to an S&D solution. On the contrary,
every S&D solution can be represented by one or
more S&DPattern and/or Integration Scheme. Each
S&DPattern is implemented by means of at least one
S&DImplementation. Finally, there is an Executable-
Component entity for each S&DImplementation. The
entities in the top of the figure 1 conform a hierar-
chy. While, S&DClasses are the most abstract level
entities to represent S&D solutions, ExecutableCom-
ponents, being software components, are the low-
est abstraction level way to represent an S&D solu-
tion. For the representation of S&D solutions, follow-
ing the Serenity approach, developers need to count
on, at least, one artefact for every level of the hier-
archy. To sum up, S&DClasses, S&DPatterns and
S&DImplementations are development-time oriented
artefacts, while ExecutableComponents are specially
suitable for run-time. Serenity-aware applications in-
clude references to development-time artefacts. De-
pending on the artefact level of abstraction, at run-
time, the SRF has more/less flexibility to select S&D
solutions. In other words, this approach enables the
creation of open architectures where, at run-time, the
SRF completes by applying the ExecutableCompo-
nents that implements the S&D solutions fixed at
development-time. The main purpose of introducing
this approach is to facilitate the dynamic substitution
of S&D solutions at run-time while facilitating the de-
velopment process.

SECURITY PATTERNS, TOWARDS A FURTHER LEVEL

351



4 EXPLOITING S&D SOLUTIONS

Security experts capture their expertise into S&D
Artefacts, but in order to go a step forward, these
artefacts should be exploited by applications at run-
time. In other words, applications with security and
dependability requirements should be able to fulfill
them at runtime, by means of deployed S&D So-
lutions, automatically provided and controlled by a
trustworthy third-party. This approach also consid-
ers that application developers do not necessary know
anything about particular security solutions but about
certain generic S&D requirements (such as confiden-
tiality or reliability), probably identified by a func-
tional analyst with a basic security expertise knowl-
edge. Moreover, these applications should rely on the
provided S&D solutions to be able to automatically
be reconfigured and adapted in the event of a typical
AmI environment condition change. Serenity Run-
time framework (SRF) provides this support.

4.1 Serenity Run-time Framework

Bellow, Figure 2 presents a simplified view of the
SRF and the most relevant components that inter-
act with it at runtime, in the process of exploitation
of S&D Solutions. The figure shows two compo-
nents inside the SRF: the S&DLibrary and the Con-
textManager. The S&DLibrary component is a local

Figure 2: Simplified architecture.

S&D solution repository that stores the S&DClasses,
S&DPatterns and S&DImplementations, specific to
the platform and that might, potentially, be used in
the device. The ContextManager component keeps
device’s context related data (SRF configuration, ac-
tive patterns and monitoring information). Context
information is used by the SRF to select the most
appropriate S&D solution for a given scenario under
a set of particular conditions. Outside the SRF, fig-
ure 2 depicts all the components and interfaces that
are involved in the run-time deployment, following
further detailed. A Serenity-aware application is the

application that uses the security services provided
by S&DPatterns, by means of the ExecutableCom-
ponents. The SRF provides a SRFRequest interface,
to be used by applications in order to request S&D
artefacts. Usually, applications request S&DClasses,
S&DPatterns and S&DImplementations, but these re-
quests result in the activation of an ExecutableCom-
ponent implementing the S&D solution requested.

The ExecutableComponents are activated by the
SRF and they implement S&DPatterns functional-
ities. ExecutableComponents provide two inter-
faces: the ECcontrol interface, to be used by the
SRF; and the ECaccessPoint, to be used by appli-
cations. The SRF controls the proper execution of
ExecutableComponents by using the ECcontrol inter-
face. Serenity-aware applications access to the se-
curity services provided by ExecutableComponents
through the ECaccessPoint interface. The ECmoni-
toring interface (provided by the SRF) is used by ECs
to keep the SRF informed about some particular as-
pects of its execution. The SRF uses this information
to control the status of the execution of the EC and its
impact into the environment, with the support of the
Monitoring Services.

This process of control is described ahead in this
document. Finally, Monitoring Services provide an
interface, called monitoring, that allows the SRF
make use of a set of services provided to support the
process of control of the execution of ECs, and to per-
form recovery and reconfiguration actions. Now we
have a more clear idea of the architecture and compo-
nents involved at run-time, we are going to describe
the functionalities provided by the SRF in more detail.

4.2 Selection of the S&D Solution

In the context of the Serenity project, the SRF is im-
plemented as a service of the operating system that
listens to application S&D requests. By means of
these requests, the applications specify their S&D re-
quirements, and the SRF uses those specifications to
search the repository of S&D Artefacts, here referred
as S&D Library, and selects the most appropriate
S&DPattern that fulfills the application request. This
selection consists of a pattern-driven algorithm based
on some particular aspects of the S&DPattern spec-
ification, as well as on the S&D requirements spec-
ified by the application developer. This means that
the SRF looks into the descriptor of each S&DPattern
stored in the repository, and checks if its characteris-
tics, such as security properties or features, match the
application’s particular S&D requirements. In addi-
tion to this, the SRF needs to check if the S&DPattern
is appropriate for the particular context environmental

SECRYPT 2009 - International Conference on Security and Cryptography

352



situation, looking at the context preconditions speci-
fied by the security expert within the S&DPattern de-
scriptor. Once the SRF has selected an S&DPattern,
it is time to start exploiting the S&D Solutions that
represents.

4.3 Activation of S&D Solutions

ExecutableComponents (ECs) are realizations of
S&D Solutions. Each S&D pattern may have several
implementations, described as S&DImplementations,
and, each S&DImplementation has its corresponding
EC. ECs are software components that the SRF is
able to activate and execute, and have some partic-
ular characteristics: (i) provide applications with the
interface defined in the S&DPattern, (ii) implement
the functionality of an S&D Solution, described by
the S&DPattern, and (iii) provide a monitoring inter-
face to enable the SRF to control its execution. There-
fore, to activate the selected S&D Solution that will
provide the application with the S&D properties re-
quested, the SRF creates a new instance of the EC that
runs in the operating system, as an independent soft-
ware piece, within the same S&D realm as the appli-
cation and the SRF are running. To make it accessible
to the application, the SRF uses handler, ECHandler
in the context of Serenity, which is configured with all
the information the application need to communicate
with the EC. This ECHandler is brought back to the
application as a result of its request. By doing this, the
EC can be accessed by the application directly, and
provide the specific S&D Solution functionality with-
out any more intervention of the SRF. Up to here, the
initially mentioned approach could be seen, basically,
as repository of S&DPatterns, plus a software compo-
nent that searches and instantiates the corresponding
S&D Solutions. For AmI environments, we must go
further. We must react to continuous changes of the
context conditions and be able to reconfigure the run-
ning ECs in order to keep fulfilling the security and
dependability requirements of the applications despite
the changes.

5 MONITORIZATION

The Monitoring Services, briefly introduced above,
are actually a framework of components that support
the SRF to monitor, diagnose and detect threats re-
lated with the execution of the ECs.

In figure 2, there is a component labeled Monitor-
ing Services. Security experts define a set of moni-
toring rules in the S&DPattern description that need
to be satisfied during the whole lifetime of a deployed

S&D Solution. These rules are basically assumptions
about the behaviour of a system, and how runtime
events may affect its state, making sure the security
and dependability properties the S&D Solution is pro-
viding remains no matter the conditions of the context
are,. The SRF, by means of the Monitoring Services,
checks every certain period of time that those rules
keep holding. In the event of a monitoring rule vio-
lation, the SRF makes use of the diagnosis and threat
detection mechanisms of the Monitoring Services to
evaluate if any reaction should be perform. How to re-
act to a monitoring rule violation is defined by the se-
curity experts within the S&DPattern descriptor. For
each monitoring rule there is a reaction behaviour as-
sociated, that basically are intended to take corrective
actions to avoid any potential system failure derived
from the malfunction of the EC, and to adapt the sys-
tem security and dependability mechanisms at run-
time. Some examples of reactions could be to stop
the execution of a particular EC, to restart the EC
with other initial parameters or to stop/start monitor-
ing certain set of rules, amongst others. The Moni-
toring Rules of an S&DPattern rely on the ability of
the ECs to generate traces during its execution. Those
traces are encapsulated in the form of events that are
captured by some components, named Event Cap-
turers in the context of Serenity project, attached to
the ECs. Those events captured feed the Monitoring
Services allowing it to deduce information about the
state of the system being monitored. The SRF polls
the Monitoring Services frequently about the status of
each active Monitoring Rule and if there is a violation
detected, the SRF triggers the corresponding reaction.

6 DEVELOPMENT SUPPORT

Serenity project aims to provide end-users not only
with a set of methodologies and abstractions, but also
with some means to benefit of them and to apply to
within their particular scenarios. To support this, here
we introduce two infrastructures provided by Seren-
ity. One supports the development of the Executable-
Components, and the other supports the development
of Serenity-aware applications. As aforementioned,
ExecutableComponents have a one-to-one correspon-
dence with S&DImplementation abstractions, fully
implementing the security solutions described in
the referenced S&DPatterns. ExecutableComponents
are software/hardware components runnable indepen-
dently in a system. They provide interfaces to be used
by either the Serenity-aware applications or the SRF
itself.

These two infrastructures actually consist on

SECURITY PATTERNS, TOWARDS A FURTHER LEVEL

353



two programming libraries, one for each purpose,
and either EC programmers or Serenity-aware ap-
plication programmers may integrate them by sim-
ply import them within their specific software dis-
tribution. The upper package represents the li-
brary that developers may use to create Serenity-
aware applications. It includes classes for access-
ing the SRF (SRF AccessPoint) and for managing the
ExecutableComponents (SerenityExecutableCompo-
nent AP.). The other package is the library devel-
oped to assist developers creating ExecutableCom-
ponents. In order to create an ExecutableCompo-
nent, programmers must extend the class SerenityEx-
ecutableComponent AP. Following the structure of
the presented infrastructure, a Serenity-aware appli-
cation uses instances of the SerenityExecutableCom-
ponent AP class, to establish communication with the
ExecutableComponents. This class is an interface be-
tween the application and one ExecutableComponent,
providing standard mechanisms no matter how the
implementation of the ExecutableComponent is.

Thus, applications only need to create an instance
of the SerenityExecutableComponent AP class and
then, the application uses the ECHandler information
provided by the SRF to access ExecutableComponent
interface. Figure 3 depicts the S&D artefacts devel-
oped for this scenario.

Figure 3: Hierarchy of S&D Artefacts.

By doing this, applications access the services
that S&DPatterns described. We clarify this pro-
cess a bit more next. At development-time, appli-
cation developers learn the behaviour expected from
the security solution, such as the set of available
calls and the appropriate call sequence to use the
security services, by looking at the description of
the development-time S&D artefacts (S&DClasses,
S&DPatterns, and S&DImplementations). These
artefact descriptors contain this information in the
form of, what we call in Serenity, interface calls,
sequences and constraints. S&DPatterns’ specifica-
tions also contain information about how to adapt the
interface offered by S&DClasses to the one offered
by S&DPatterns, we call this adaptation part Class

Adaptors. ExecutableComponent developers strictly
follow the guidelines described in the correspond-
ing S&DClass and S&DPattern descriptors, so Ex-
ecutableComponents are Serenity compliant and are
expected to respond to those queries as described (part
of the Serenity Project is devoted to guarantee that Ex-
ecutableComponents fulfill the specifications of the
S&DPattern they implement). It is important to take
into account that all Serenity S&D Artefacts are cer-
tified by its creators, opening a new business model
based on the provision of security solutions by means
of S&DPatterns. Continuing with the process descrip-
tion, the SRF manages all ExecutableComponents in-
stantiated as result of Serenity-aware applications re-
quests. It keeps a record of important information
such as status, location or assigned monitoring ser-
vices. It is important to highlight that the instantiation
of ExecutableComponents generates new context in-
formation for the SRF, and this influences the results
of the S&D solution selection algorithm. Moreover,
the events generated by ExecutableComponents feed
the Monitoring Service infrastructure and they could
result in the violation of Monitoring Rules. Moni-
toring rules are associated to reactions, and for in-
stance, one common reaction is to de-activate the
S&DPattern whose Monitoring Rule was violated.

7 SECURITY MEASUREMENT

This section introduces an example which highlights
all the concepts presented along this paper. This ex-
ample consists in a prototype implementing a Control
Access System for networks. Briefly, the goal of this
system is allowing or denying access to network re-
sources attending to several parameters what can be
considered security measurements related to sensible
security data like user profile, device identification
and location (this last element provides a small com-
ponent of AmI). The prototype has been developed
following the methodology proposed by the Serenity
project, as explained in previous sections. First step
was to extract S&D requirements from the goals, just
like in any other development process. Full list of re-
quirements is out of the scope of this paper, but once
obtained, we design a set of Serenity S&D Artefacts,
modelling S&D Solutions to cover all those require-
ments. For the sake of simplicity, in this paper we
focus on solutions for managing the aforementioned
security measurements.

SECRYPT 2009 - International Conference on Security and Cryptography

354



7.1 S&D Artefacts

The first artefact on top is an S&DClass Security Mea-
surement, representing an abstract S&D Solution for
a generic security assessment providing a quantita-
tive value, let’s say a number. Below the S&DClass,
there are four entities: three S&DPatterns and an Inte-
gration Scheme. The S&DPatterns represent particu-
lar implementations of the S&D solution represented
by the Security Measurement S&DClass. The differ-
ence among them is the parameter they are based on,
to perform the security assessment. The UserPro-
fileSM S&DPattern performs a measurement based
on the profile attached to a connected user (please,
assume every user is authenticated when connect-
ing to the network). The ZoneSM and DeviceIdSM
S&DPatterns do the same, taking into account the lo-
cation and the digital identification (by cryptographic
means) of the connecting devices, respectively. The
CombinedSM Integration Scheme combines the three
S&DPatterns and provides a final security measure-
ment working as a unique component. The rest of the
figure 3 presents an S&DImplementation for every
S&DPattern, and an ExecutableComponent for every
S&DImplementation.

7.2 Development Phase

After building the abstract elements in the form of
S&D Artefacts we proceed to develop both the Exe-
cutableComponents and the main access Control Ap-
plication, this time with the help of the SRF’s spe-
cialized APIs (one for Excutable Components and an-
other one for applications), presented in previous sec-
tion. The Control Application was developed as a
Serenity-aware application. It opens a communica-
tion channel with the SRF and requests an S&D so-
lution, represented by the CombinedSM Integration
Scheme. As a result of this request, the SRF instan-
tiates the corresponding ExecutableComponent and
provides the application with the configured ECHan-
dler. This particular EC works internally as a new
Serenity-aware application which requests the three
S&DPatterns mentioned before, and combine their
results. This way, the core Control Application is
quite simplified with just one request to perform all
the measurement. In the context of the proposed sce-
nario, the application would expect a solution for a
very simple problem: authorize a resource request. It
is as simple as getting a ok or a ko at certain point
of the execution flow of the application, no matter
how, the great advantage of using Serenity is, in fact,
to make it that easy. The application developer, at
design-time, may assume that a properly configured

SRF, when requested for a certain S&D solution, will
provide a mechanism to use a running instance of that
S&D solution for its own purposes. Developers do
not need to take into account how the S&D solution
is implemented.

7.3 Monitoring and Reactions

Last but not least, the prototype exploits the Monitor-
ing Services features described in section 5. During
development time, we created for each S&DPattern a
set of monitoring rules, and we also added to each Ex-
ecutableComponent the necessary Event Captors to
feed that rules. For instance, the implementation of
the location solution is based on a client-server model,
and we considered important to monitor the server
availability during the lifetime of the solution. There-
fore, we added a specific rule within the S&DPattern
descriptor. The rule, roughly, describes the following:
the server must respond always before n seconds. If
the response takes longer than n seconds, or it never
responds then, the rule will be considered violated.
Some Events Captors were developed and attached to
the ExecutableComponents, in order to provide cus-
tom events for our rule. In this case, we have two
types of events: one signaling the ping to the server
and another marking the ping response. With all these
elements on the table, a Monitoring Service will be
able to check the time interval between both events
happens, and to determine whether the rule is violated
or not. Other rules (and its corresponding events)
could be added to control the other ExecutableCom-
ponents as well. Regarding the ability of the SRF to
perform corrective actions on the event of a monitor-
ing rule violation, we use as an example a reaction
mechanism called notify application. This one is used
by the SRF to notify the application a message when-
ever a rule is violated. We need to mark the rule in the
S&DPattern specifying the reaction we would like to
have performed if it is violated, and write down the
custom message we want to notify. In our scenario,
it would be very useful if, in the case the rule is vi-
olated, the SRF sends a particular warning message,
so the application could display it. It is a very simple
reaction but demonstrates the functionality. It would
be possible to design more complex reactions to im-
prove the adaptability of the system. For instance, in
our scenario, imagine the S&D solution has been in-
stantiated with an initial parameter (specified by the
application) which is actually the server url. Pretend,
the rule that monitors whether the server is alive is
violated. Here, the reaction could be restarting the
solution with a different server url value, such as a
backup server one specified in the S&DPattern de-

SECURITY PATTERNS, TOWARDS A FURTHER LEVEL

355



scriptor. Then, the application will be able to continue
accessing the services provided by the S&D Solution
with no damage.

8 CONCLUSIONS

This work presents an approach for producing secure
applications by means of a provision of S&D solu-
tions. This approach, called Serenity, is composed
by two frameworks. On the one hand, the Serenity
Development-time Framework (SDF) includes con-
cepts, processes and tools supporting the development
of S&D solutions, and secure applications. These
S&D solutions are implemented by means of four
S&D artefacts: (i) S&DClasses, (ii) S&DPatterns,
(iii) S&DImplementations, and (iv) S&D Executable-
Components. This hierarchy enables the use of
security and dependability (S&D) patterns imple-
mentations to develop secure applications. These
S&DPatterns are not a simple set of best practices
or recommendations, like those proposed in the lit-
erature as security patterns, but precise, well-defined
and automated-processing-enabled implementations
of security mechanisms. The extensive use of seman-
tic descriptions, enable the use of automated reason-
ing mechanisms capable of solving problems such as
pattern composition and adaptation. Thus, we have
presented an infrastructure for supporting both the de-
velopment of ExecutableComponents and Serenity-
aware applications. On the other hand, the Serenity
Run-time Framework (SRF) completes the open soft-
ware architectures designed using the SDF, by sup-
porting applications when they requires the use of se-
curity solutions at run-time. It is important to high-
light that the SRF includes monitoring mechanisms
that guarantee that selected S&D solutions are run-
ning properly. In this paper we have presented both
the SDF main concepts and the SRF architecture. Fur-
thermore, we have provided the description of full
developed demo scenario. To deploy this scenario
a set of S&D artefacts has been developed. These
artefacts are used to provide several secure measure-
ment and authentication security patterns, all of them
represented at different abstractions levels, ranging
from the most abstract representation of the solution
(S&DClass), to the real implementation of the pattern
(ExecutableComponent). Among the more relevant
features of this approach is the selection of patterns at
runtime, as well as the configuration of them. Indeed,
this allows context awareness while running obtain-
ing exceptional results. Currently, we count on a fully
operational prototype of the SRF and on XML based
languages for the creation of all S&D artefacts. Be-

sides, we have developed two APIs, one for the imple-
mentation of ExecutableComponents, and the other
one oriented to the implementation of serenity sup-
ported applications (Serenity-aware applications). Fi-
nally, we count on an on-line repository and a useful
tool to search for S&D artefacts. These elements have
been the basis to develop a first set of S&D solutions.
Next steps are (i) to improve the capacities of the SRF
prototype with more reaction capabilities, (ii) to cre-
ate a plugging for include design concepts in a Java
IDE, and (iii) to provide a new version of the APIs for
taking the new advantages that will be introduced in
the next SRF prototype.

REFERENCES

Becker, S., Canal, C., Diakov, N., Murillo, J., Poizat, P.,
and Tivoli, M. (2007). Coordination and adaptation
techniques: Bridging the gap between design and im-
plementation. In Springer, L., editor, Report on the
ECOOP Workshop on Coordination and Adaptation
Techniques for Software Entities (WCAT’06).

Georgiadis, I., Magee, J., and Kramer, J. (2002). Self-
organising software architectures for distributed sys-
tems. In WOSS ’02: Proc. workshop on Self-healing
systems, pages 33–38, New York, NY, USA. ACM.

Jaeger, T., Liedtke, J., Pantellenko, V., Park, Y., and Islam,
N. (1998). Security architecture for component-based
operating system. In ACM, editor, In ACM Special
Interest Group in Operating Systems (SIGOPS) Euro-
pean Workshop., page 118.

Kung, A. (2007). Architecture and design patterns for am-
bient intelligence: an industry perspective. In Proc.
of AmID 2007, volume ISBN: 978-2-287-78543-6,
pages 55–67, Sophia-antipolis (France). Springer-
Verlag.

Mana, A., Sánchez, F., Serrano, D., and Munoz, A. (2006).
Building secure ambient intelligence scenarios. In
18th conf. on Software Engineering and Knowledge
Engineering (SEKE’06).

Mei, L. and Xu, Y. (2003). An adaptive dependability model
of component-based software. In ACM, editor, ACM
SIGSOFT Software Engineering Notes, volume 28.

Nobukazu, Y., Shinichi, H., and Anthony, F. (2004). Se-
curity patterns: A method for constructing secure and
efficient inter-company coordination systems. In In-
ternational, E. I., editor, Enterprise Distributed Object
Computing Conference, pages 84–97. IEEE Computer
Society Press.

Schmidt, D. C. and Buschmann, F. (2003). Patterns, frame-
works, and middleware: their synergistic relation-
ships. In ICSE ’03., pages 694–704, Washington, DC,
USA. IEEE Computer Society.

SECRYPT 2009 - International Conference on Security and Cryptography

356


