
THROTTLING DDoS ATTACKS

Saraiah Gujjunoori, Taqi Ali Syed, Madhu Babu J, Avinash D
Radhesh Mohandas and Alwyn R. Pais

Information Security Lab, Department of Computer Engineering, NITK, Surathkal, Karnataka, India

Keywords: Source throttling, Distributed denial of service, Integer factorization, CPU stamps, Request stamping.

Abstract: Distributed Denial of Service poses a significant threat to the Internet today. In these attacks, an attacker
runs a malicious process in compromised systems under his control and generates enormous number of
requests, which in turn can easily exhaust the computing resources of a victim web server within a short
period of time. Many mechanisms have been proposed till date to combat this attack. In this paper we
propose a new solution to reduce the impact of a distributed denial of service attack on a web server by
throttling the client’s CPU. The concept of source throttling is used to make the client pay a resource stamp
fee, which is negligible when the client is making a limited number of requests but becomes a limiting
restriction when he is making a large number of requests. The proposed solution makes use of the integer
factorization problem to generate the CPU stamps. We have packaged our solution as an API so that
existing web applications can easily deploy our solution in a layer that is transparent to the underlying
application.

1 INTRODUCTION

In modern web applications, the web client makes a
request which takes very little effort to compose, but
causes the server to process lots of data and compose
the response. This disparity in the computation
efforts of the server and the client is usually of an
order of magnitude and works very well in the
favour of an attacker when he modifies a web client
to launch an application level attack against a server.
Hence a bunch of compromised machines in the
hands of an attacker can easily launch a denial of
service attack against even the biggest server farms
and succeed. The fundamental flaw in such a web
transaction is that the entire cost of processing the
request falls more or less on the server end and very
little is shared by the client. Hence learning from the
postal system, we can impose a cost to a web client
to make each such request. This cost can be
collected in different ways and in our work we
propose to collect it in terms of CPU cycles and call
them CPU stamps which have to accompany each
request. Collection of these CPU stamps has a
source throttling effect on the web application,
thereby reducing the impact of the attack by an order
of magnitude.

For such a scheme to work, we have to exploit an
algorithm that takes lot of CPU cycles to calculate a
stamp (which the client has to pay) but very few
cycles to verify the stamp (which the server
computes). In our solution we propose to use the
popular integer factorization problem as the
mathematical complexity to impose and tune the
computation difficulty on the client. Any system that
uses a server and a client that can be subjected to a
denial of service attack can use our solution, but for
our study we take a web application server which
has some unique needs making it difficult to use
existing solutions.

A web server is designed to accept requests from
multiple clients across the internet which makes it
difficult to filter requests based on IP address which
can be easily accomplished in hardware. In most
cases the clients are unauthenticated and even if we
impose certain kind of authentication, most
applications allow creation of users on the internet
which involves little or no manual verification of
end-user information provided. Even if we manually
verify all the end-users of the application, a single
user who bears malice in his heart can inflict all the
necessary damage to bring the web application to a
grinding halt by sending valid requests through his
authenticated account by tweaking the web client a

121
Gujjunoori S., Ali Syed T., Babu J. M., D. A., Mohandas R. and R. Pais A. (2009).
THROTTLING DDoS ATTACKS.
In Proceedings of the International Conference on Security and Cryptography, pages 121-126
DOI: 10.5220/0002229001210126
Copyright c© SciTePress

bit. Our solution aims to make the web server
responsive to legitimate users with reasonable
overhead and tolerable failure rates when the server
is actively being subject to a denial of service attack.

In this paper we propose a technique to generate
CPU stamps, force an attacker to recompute the
stamp when the source address or the request
changes. We provide a heuristic to guard replay
attack by discarding requests at the beginning of
processing.

The rest of the paper is organised as follows.
Section 2 will describe about the problem. Related
work is presented in section 3. Section 4 shows the
working of the proposed solution. Section 5
describes about the application of the proposed
solution. Implementation results will be presented in
section 6 and section 7 will conclude this paper.

2 PROBLEM DESCRIPTION

To clarify our idea, we will use the following
hypothetical profile and work with some
hypothetical numbers. Suppose
http://www.mysearch.com is designed to handle a
maximum of 4000 searches per second (sps). A
search requires the application server to talk to a
database server. Serving a search request is more
expensive than serving a static page. During peak
day times the traffic reaches around 3000 requests
per second (rps) and drops to 500 in the early hours
of morning. There are roughly 2000 searches and
1000 main page accesses every second. A valid
search request for a nonexistent keyword in the
database is probably the most expensive as it misses
all caches and in the worst attack, the attacker
creates the keyword dynamically. Now a distributed
attack is launched against the website and it starts
receiving 40,000 sps. The website will be able to
respond to only 1 out of 11 requests and the number
of valid users who get a response will be lesser than
10%. Now instead of wasting valuable resources to
respond to the fake requests, we propose a solution
to filter them out so that after a period of time, the
site will be able to service at least 2500 genuine rps.

3 RELATED WORK

Adam Back (Adam Back, 2002) proposed a
Hashcash based solution for Denial of Service. He
computes a token which can be used as a proof-of-
work.

XiaoFeng Wang (XiaoFeng Wang and Michael
K. Reiter, 2003) proposed a puzzle mechanism
called puzzle auction. In this, the auction lets each
client determine the difficulty of the puzzle it solves
and allocates server resources first to the client that
solved the difficult puzzle when the server is busy.

T.Aura (Tuomas Aura, Pekka Nikander and
Jussipekka Leiwo, 2000) showed how the robustness
of authentication protocols against DoS attacks can
be improved by asking the client to commit its
computational resources to the protocol run before
the server allocates its resources.

M.Abadi (Martin Abadi, Mike Burrows, Mark
Manasse, and Ted Wobber, 2003) proposed memory
bound functions for use in cryptographic puzzles.
Drew Dean (Drew Dean and Adam Stubblefield,
2001) implemented puzzles for protection of SSL
against DoS attacks.

Ari Juels (Ari Juels and John Brainard, 1999)
had proposed a cryptographically based
countermeasure against connection depletion attacks
like TCP SYN flooding.

4 PROPOSED SOLUTION

Prime Factoring is the act of splitting an integer
into the unique set of primes (factors) which, when
multiplied together, form the original integer. No
good algorithms exist to solve this problem in
polynomial time and the best algorithm which solves
this problem in less complexity is general number
field sieve in O(exp((64/9b)1/3.(log b)2/3)) for a b-bit
integer.

Threshold Value is the number of requests that
a server can handle without straining its resources. It
is defined as a predetermined percentage of the
maximum number of requests that a server can
handle.

4.1 Proposed Solution

Notations:
• N: An integer and a product of two primes
• p, q: prime factors of N.
• Ndigits, pdigits, qdigits: Number of digits in

N,p,q.
The sequence of operation is as follows.

• A client sends a request to the web server for a
webpage.

• The Server starts a session and sends ‘N’ along
with the JavaScript to factorize it.

• The Client computes p and q values and sends
‘N, p, q’ values to the server.

SECRYPT 2009 - International Conference on Security and Cryptography

122

• The server verifies whether the product of the
factors sent by the client is equal to the ‘N’
value sent by the server (N=p*q). If this
condition is not satisfied or the values not sent
by the client, the server will drop the request.

4.1.1 Description of our Solution

When the server is facing normal flow of traffic, we
do not interfere with the web application. When the
number of requests arriving at the server crosses the
threshold value, our solution is invoked and the
server starts sending ‘N’ to all the clients.

A user using a web browser will experience a
momentary delay when the JavaScript calculates the
values ‘p’ and ‘q’ on his client machine but then his
request gets through when presented to the server.

An attacker who is using a malicious client will
not send these ‘p’ and ’q’ values and his requests get
dropped. If he now modifies his client to read the
JavaScript and compute ‘p’ and ‘q’, the number of
requests that he can send will drop down drastically.
If the distributed attack sustains or deepens, we can
increase the number of digits in ‘N’ and this will
throttle the malicious clients further without
increasing any load on the server.

4.1.2 Countermeasures Against the
Throttling

The strength of our solution lies in the mathematical
complexity of the integer factorization problem.
Since no algorithms exist to solve this problem in
polynomial time the attacker will not try to optimize
this computation but will try to get around the
computation by finding a hole in the protocol. In this
section we discuss various scenarios where the
attacker actively modifies his malicious client and
tries to tweak the hosts launching the distributed
attack and the countermeasures that we need to have
in place to defend against such modifications.

Case 1: At this case the attacker observes that
the server is sending the same ‘N’ for all requests.
He computes the prime factors once and appends
these factors to every request. This is a form of
replay attack. To counter this we will dynamically
generate ‘p’, the first factor of the prime from a
variable that changes with time.

Case 2: Now if the attacker has full control over
the zombies which he is using to launch the DDoS
attack, he can compute the value of ‘p’ on one
system and propagate it quickly to all the remaining
systems and launch a replay attack in the time slot.
To guard against this our solution generates ‘q’
dynamically as a function of client’s IP address.

Fixed cost functions are used to generate these
values dynamically so that there is no over head on
the server. Such attacks are extremely unlikely as the
communication delay to propagate the computation
to all the systems will be comparable to the cost of
computing it at the individual node itself.

Case 3: He may try to pre compute the primes in
the entire prime space. As per Table 1, the number
of primes (NP) increases with the number of digits
and becomes too huge and storage becomes a
limiting factor and such attacks are difficult with
zombie machines which have limited amount of
resources. The communication overhead of drawing
it from a central database will make such attacks
infeasible.

Case 4: The attacker might try to guess the value
of ‘N’ from its previous values, the IP address, the
server time and other variables that he can find out.
He may even get access to the exact code or
algorithm that we use to generate ‘p’ and ‘q’. So we
select a random combination of primes from the set
of primes and design the mapping functions such
that the selected primes are uniformly chosen across
this combination. We further change this
combination periodically to prevent the attacker
from tabulating the combination restriction the
usefulness of such tabulation further.

Case 5: In this extreme case when the attacker
has access to fast interconnects and resources if he
successfully launches the attack in case 2 and also
has access to all the mapping functions in case 4, he
may find out that the value of ‘q’ is reused on
individual nodes. To ward off this attack we can
compute ‘q’ from a different source with sufficient
entropy or flush the combination at a much faster
rate. As a result of this flushing all existing
connections will need to be reset and hence we
would not suggest this to be applied unless needed.

Case 6: In this case the attacker satisfies the
condition N=p*q, but the factors sent by the attacker
are bluffed. To counter this we generate ‘q’ from the
IP address using a hash function that is changed
periodically. The server then verifies that the ‘q’
value sent in the request is not bluffed by
recalculating it from the source IP after verifying
‘N’. The drawback of this algorithm is that once the
value of ‘q’ is computed by the client, he can reuse
the same in further requests thereby necessitating a
periodic change of algorithm to compute ‘q’. In
another countermeasure to this type of attack the
server maintains a table in which the ‘N’ values sent
to every client for every request has to be stored. But
this will be a memory storage load on the server and
can be a problem at the server if the attacker is

THROTTLING DDoS ATTACKS

123

sending large number of rps. We have implemented
this step for the sake of completeness but this part of
the algorithm is not activated unless this particular
attack profile is matched.

4.1.3 Algorithms

The two algorithms that can be used to generate the
‘p’ and ‘q’ dynamically are presented in this section.
The first algorithm is for selecting the ‘q’ which is
based on the client’s IP address (cip) and the second
algorithm is for selecting the ‘p’ which is based on
the time in milliseconds from when the server is
booted to the current time (st).

The server should select the ‘Ndigits’ based on
the number of requests coming to the server and this
should be varying between 8 to16 digits. Based on
the selection of ‘Ndigits’, ‘pdigits’ and ‘qdigits’
should be selected on the following criteria.

pdigits = Ndigits/2, qdigits = (Ndigits+1)/2 (1)
The above criterion (1) is to ensure that there are

no easy factors served out. To implement the
dynamically generation of ‘p’ and ‘q’ values we first
stored pre-computed primes between 4 and 8 digits
in a two dimensional array called primes. The
number of primes (NP) in each digit (i.e., 4, 5, 6, 7,
and 8) is tabulated below in Table 1.

Table 1: Number of primes in each digit.

Ndigits 4 5 6 7 8
NP 1061 8363 68906 586081 5096871

Algorithm 1: Generate q
GenerateQ(qdigits,NP,primes,cip)
{
 cip=”A.B.C.D”

ipMapValue=224*A+216*B+28*C+D
 qMapValue=(ipMapValue) mod NP
 return primes[qdigits][qMapValue]
}

In the above algorithm the cip represents the
clients IP address and it is in the form of A.B.C.D.
ipMapValue is the value that is generated from the
client IP address and this value is unique for each
client. From the total set of primes, we choose a
random combination and call it ‘selectedPrimes’
array. So the ‘q’ value generated for each client will
be unique. The ‘NP’ in the above algorithm
represents the number of primes in ‘selectedPrimes’
array.

Algorithm 2: Generate p
GenerateP(pdigits,NP,primes,st)
{

pMap=(st) mod NP
 return primes[pdigits][pMap]
}

In the above algorithm the st represents the
number of milliseconds since the server boot. As st
differs for every millisecond the ‘p’ value generated
will be unique for each client.

5 APPLICATION

Now continuing the http://www.mysearch.com
example that we used earlier in section 2, we are
serving 2000 dynamic plus 1000 static rps during the
normal traffic profile. In the worst case, the attacker
is sending an additional 40,000 void searches. So we
are receiving 42,000 search requests and 1000 static
requests. We now respond to the attack by
prepending a JavaScript that does the stamping
computation and sets a valid stamp in the HTTP
header to every request received. So out of the
42,000 search requests, we should be able to respond
with a static redirect page with the JavaScript for at
least 39,000 of them. A genuine user should be able
to get this new page by repeating his requests to the
main page. Now the attacker usually would have
stored the old request and will not be able to modify
his request to include the stamp and all his requests
will be redirected only to a static page. The genuine
users will be using popular browsers and will be
able to get a new page with the JavaScript within a
few refreshes. Now the JavaScript does a second
long computation for every request that the browser
sends and the user will be able to continue working
with a tolerable latency. When this new search
request comes in with the stamp, we treat it with
higher priority and open up the server resources to it.
Eventually we will converge to a point around which
we will be able to serve all the stamped search
requests while using the remaining resources to
serve the requests without a stamp with a new page.
If we are serving 2000 searches, we can still serve
20,000 static pages. Over a period of time the
genuine users cross the filter after a few retries. If
the attacker is able to reconfigure his resources to
calculate the stamp, then he will be able to send only
a fraction of his original requests. He will be able to
send in something like 400 search requests instead
of 40,000 and the damage will be contained if not
eliminated. Now, if the attacker attaches an invalid
stamp, he may pass through the initial filter, but we
can still verify the stamp with a fraction of the cost
of serving the request and drop it pretty early in the
pipeline. Once the attack stops, we can remove the
JavaScript attachment and restore normalcy. We also
have the flexibility of changing the JavaScript to
invalidate any pre-computation efforts by the

SECRYPT 2009 - International Conference on Security and Cryptography

124

attacker. Further a simple inexpensive hardware can
be installed to send this static redirect, reducing the
load on the server almost completely.

6 IMPLEMENTATION RESULTS

In this section we present the results obtained by
implementing the proposed solution.
• Clients: Intel core2 Duo CPU with processor

speed 3.00 GHz and 2.99 GHz, 2 GB RAM,
Windows XP professional operating system.

• Server: Intel Xeon Quad CPU, processor speed
3.60 GHz each, 4 GB RAM, Win 2003 server.

To study the effectiveness of the proposed
solution, we developed a website that represents a
typical portal. We developed a version incorporating
the solution (WSolution) and other without it
(WoSolution). The WoSolution website consists of
27 pages each having multiple database connections
in it. The WSolution website consists of an extra
HTML page with of a JavaScript which makes the
client browser to factorize ‘N’. When a request
comes to the website without the proper cookies,
this static page is served and the client is then
redirected to the proper web page. The server
retrieves the number of rps from the Windows
performance counters, and when it exceeds a
threshold value the server invokes the proposed
solution and starts sending out a ‘N’ value using
cookies in each response. The client responds with
the factors and the server will verify it. If the
proposed condition (N=p*q) is satisfied by the
client, the server will then respond with the actual
page and the ‘N’ value in the session variable will be
flushed out.

Table 2: Latency in milliseconds of browsers to calculate
factors.

Ndigits IE Mozilla Opera Chrome CCB
5 0 0.2 0 0.2 0
6 0 0.2 0 0.2 0
7 0 0.2 0 0.4 0
8 0 1.8 0 2.2 0.01
9 6 1.8 3 2.2 0.05
10 34 16 22 18 0.05
11 44 23 28 25 0.07
12 265 134 147 147 0.43
13 318 163 169 173 5.60
14 2512 1269 1347 1398 6.62
15 4975 2475 2659 2866 44.6
16 49820 25069 19859 28173 67.5

We measured the latencies of different web
browsers to factor the primes and tabulated it in
Table 2. CCB in the above table represents a custom
command line browser written in C#.Net. By

measuring the latencies of the JavaScript
computation on most popular browsers, we observe
that a 14 digit ‘N’ values give about 2 seconds
latencies on the browsers, which should be tolerable
to an end-user.

0
500

1000
1500
2000
2500
3000

8 9 10 11 12 13 14 15 16

N
um

be
r o

f r
ps

Number of digits in N

Max Client Req/sec Vs Ndigit

Graph 1: Overhead on requests/sec with fixed N.

From Graph 1 we can see that the overhead of
our solution is not significant when ‘N’ is fixed.

Graph 2: Server load relief on server.

In the Graph 2 we sent a steady 1000 rps through
client 1 which can compute ‘p’ and ‘q’. This causes
a steady load of about 25% on the server. After 1
minute we sent an attack traffic of about 2000 rps
from client 2 which does not compute ‘p’ and ‘q’.
The server load increases till our threshold limit is
hit. Then our solution is invoked and we start
serving ‘N’. The server drops the attack traffic and
treats them as static pages. We can see that the
server load falls down once our solution kicks in.

0

10

20

30

40

50

60

1 2 3 4 5

Se
rv

er
 lo

ad

Time (minutes)

Server load relief

Mixed traffic
(1000 good
traffic + 2000
bad traffic)
Good traffic
(1000 req/sec)

Graph 3: Max client requests/sec Vs Number of digits in
N.

THROTTLING DDoS ATTACKS

125

From Graph 3 we can clearly the throttling effect
on the malicious clients where in the total number of
requests that they can send can be made to fall down
by a factor of 100 by increasing the number of digits
to 14. This means that an attacker who has
compromised 100 zombies will be able to inflict
only the damage possible by one such machine
thereby loosing the effectiveness of the attack.

Now in graphs numbered 4, 5, and 6 we list the
overhead on the server in terms of reduced number
of dynamic requests that are served at 100% CPU
load. As expected this loss does not increase
significantly even when we are generating the values
‘p’ and ‘q’ dynamically for every request. The
overhead is bounded by 120 rps in all cases which is
less than 4% for our application.

0
20
40
60
80

100
120

8 9 10 11 12

O
ve

rh
ea

d
(r

eq
/se

c)

Number of digits in N

Overhead with dynamic p (timestamp)

Graph 4: Overhead at server when p is generated
dynamically.

0
20
40
60
80

100
120
140

8 9 10 11 12

O
ve

rh
ea

d
(r

eq
/s

ec
)

Number of digits in N

Overhead with dynamic p and q

Graph 5: Overhead at server when p and q are dynamic.

85
90
95

100
105
110
115

8 9 10 11 12

O
ve

rh
ea

d
(r

eq
/s

ec
)

Number of digits in N

Number of request/sec with 30 sec flush

Graph 6: Overhead on number of rps with p and q
generated dynamically from selected primes.

7 CONCLUSIONS

In this paper we proposed an approach to contain a
DDoS attack at the application level. We came up
with a solution to generate stamps on the web
browsers that are easily verifiable at the server. Our
algorithm is further tuneable to throttle the client
CPU when the attack deepens. We come up with a
strategy to distinguish between genuine requests and
malicious requests and drop the later much earlier in
the transaction during a DDoS attacks. We proposed
two different algorithms for dynamic generation of
primes. There is no considerable overhead on the
web server because of deploying the proposed
solution. As a whole we saw less than 5% overhead
on the server to verify the timestamp and serve the
additional JavaScript.

REFERENCES

L. Stein, 2002. The World Wide Web security faq,
http://www.w3.org/Security/Faq/

Rob Malda, 1997. Slash dot faq. http://slashdot.org/faq/
slashmeta.shtml#sm600

B. Clifford Neuman and Stuart G. Stubblebine, 1993. A
Note on the Use of Timestamps as Nonce.

Roger M. Needham and Michael D.Schroeder, 1978.
Using encryption for authentication in large networks
of computers.

Adam Back, 2002. Hashcash - A Denial of Service
Counter-Measure.

XiaoFeng Wang and Michael K. Reiter, 2003. Defending
against denial-of-service attacks with puzzle auctions.

Tuomas Aura, P Nikander and Jussipekka Leiwo, 2000.
DOS-Resistant Authentication with Client Puzzles.

Martin Abadi, M Burrows, Mark Manasse, and T Wobber,
2003. Moderately hard, memory-bound functions.

Drew Dean and Adam Stubblefield, 2001. Using client
puzzles to protect TLS.

Cynthia Dwork and Moni Naor, 1992. Pricing via
processing or combatting junk mail.

Ari Juels and John Brainard, 1999. Client puzzles: A
cryptographic countermeasure against connection
depletion attacks.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
1996. Handbook of Applied Cryptography.

D. J. Bernstein, 2006. Integer factorization.

SECRYPT 2009 - International Conference on Security and Cryptography

126

