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Abstract: Distributed Denial of Service poses a significant threat to the Internet today. In these attacks, an attacker 
runs a malicious process in compromised systems under his control and generates enormous number of 
requests, which in turn can easily exhaust the computing resources of a victim web server within a short 
period of time. Many mechanisms have been proposed till date to combat this attack. In this paper we 
propose a new solution to reduce the impact of a distributed denial of service attack on a web server by 
throttling the client’s CPU. The concept of source throttling is used to make the client pay a resource stamp 
fee, which is negligible when the client is making a limited number of requests but becomes a limiting 
restriction when he is making a large number of requests. The proposed solution makes use of the integer 
factorization problem to generate the CPU stamps. We have packaged our solution as an API so that 
existing web applications can easily deploy our solution in a layer that is transparent to the underlying 
application.  

1 INTRODUCTION 

In modern web applications, the web client makes a 
request which takes very little effort to compose, but 
causes the server to process lots of data and compose 
the response. This disparity in the computation 
efforts of the server and the client is usually of an 
order of magnitude and works very well in the 
favour of an attacker when he modifies a web client 
to launch an application level attack against a server. 
Hence a bunch of compromised machines in the 
hands of an attacker can easily launch a denial of 
service attack against even the biggest server farms 
and succeed. The fundamental flaw in such a web 
transaction is that the entire cost of processing the 
request falls more or less on the server end and very 
little is shared by the client. Hence learning from the 
postal system, we can impose a cost to a web client 
to make each such request. This cost can be 
collected in different ways and in our work we 
propose to collect it in terms of CPU cycles and call 
them CPU stamps which have to accompany each 
request. Collection of these CPU stamps has a 
source throttling effect on the web application, 
thereby reducing the impact of the attack by an order 
of magnitude. 

For such a scheme to work, we have to exploit an 
algorithm that takes lot of CPU cycles to calculate a 
stamp (which the client has to pay) but very few 
cycles to verify the stamp (which the server 
computes). In our solution we propose to use the 
popular integer factorization problem as the 
mathematical complexity to impose and tune the 
computation difficulty on the client. Any system that 
uses a server and a client that can be subjected to a 
denial of service attack can use our solution, but for 
our study we take a web application server which 
has some unique needs making it difficult to use 
existing solutions.  

A web server is designed to accept requests from 
multiple clients across the internet which makes it 
difficult to filter requests based on IP address which 
can be easily accomplished in hardware. In most 
cases the clients are unauthenticated and even if we 
impose certain kind of authentication, most 
applications allow creation of users on the internet 
which involves little or no manual verification of 
end-user information provided. Even if we manually 
verify all the end-users of the application, a single 
user who bears malice in his heart can inflict all the 
necessary damage to bring the web application to a 
grinding halt by sending valid requests through his 
authenticated account by tweaking the web client a 
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bit. Our solution aims to make the web server 
responsive to legitimate users with reasonable 
overhead and tolerable failure rates when the server 
is actively being subject to a denial of service attack.  

In this paper we propose a technique to generate 
CPU stamps, force an attacker to recompute the 
stamp when the source address or the request 
changes. We provide a heuristic to guard replay 
attack by discarding requests at the beginning of 
processing.  

The rest of the paper is organised as follows. 
Section 2 will describe about the problem. Related 
work is presented in section 3. Section 4 shows the 
working of the proposed solution. Section 5 
describes about the application of the proposed 
solution. Implementation results will be presented in 
section 6 and section 7 will conclude this paper. 

2 PROBLEM DESCRIPTION 

To clarify our idea, we will use the following 
hypothetical profile and work with some 
hypothetical numbers. Suppose 
http://www.mysearch.com is designed to handle a 
maximum of 4000 searches per second (sps). A 
search requires the application server to talk to a 
database server. Serving a search request is more 
expensive than serving a static page. During peak 
day times the traffic reaches around 3000 requests 
per second (rps) and drops to 500 in the early hours 
of morning. There are roughly 2000 searches and 
1000 main page accesses every second. A valid 
search request for a nonexistent keyword in the 
database is probably the most expensive as it misses 
all caches and in the worst attack, the attacker 
creates the keyword dynamically. Now a distributed 
attack is launched against the website and it starts 
receiving 40,000 sps. The website will be able to 
respond to only 1 out of 11 requests and the number 
of valid users who get a response will be lesser than 
10%. Now instead of wasting valuable resources to 
respond to the fake requests, we propose a solution 
to filter them out so that after a period of time, the 
site will be able to service at least 2500 genuine rps.  

3 RELATED WORK 

Adam Back (Adam Back, 2002) proposed a 
Hashcash based solution for Denial of Service. He 
computes a token which can be used as a proof-of-
work.  

XiaoFeng Wang (XiaoFeng Wang and Michael 
K. Reiter, 2003) proposed a puzzle mechanism 
called puzzle auction. In this, the auction lets each 
client determine the difficulty of the puzzle it solves 
and allocates server resources first to the client that 
solved the difficult puzzle when the server is busy. 

T.Aura (Tuomas Aura, Pekka Nikander and 
Jussipekka Leiwo, 2000) showed how the robustness 
of authentication protocols against DoS attacks can 
be improved by asking the client to commit its 
computational resources to the protocol run before 
the server allocates its resources. 

M.Abadi (Martin Abadi, Mike Burrows, Mark 
Manasse, and Ted Wobber, 2003) proposed memory 
bound functions for use in cryptographic puzzles. 
Drew Dean (Drew Dean and Adam Stubblefield, 
2001) implemented puzzles for protection of SSL 
against DoS attacks.  

Ari Juels (Ari Juels and John Brainard, 1999) 
had proposed a cryptographically based 
countermeasure against connection depletion attacks 
like TCP SYN flooding.  

4 PROPOSED SOLUTION  

Prime Factoring is the act of splitting an integer 
into the unique set of primes (factors) which, when 
multiplied together, form the original integer. No 
good algorithms exist to solve this problem in 
polynomial time and the best algorithm which solves 
this problem in less complexity is general number 
field sieve in O(exp((64/9b)1/3.(log b)2/3)) for a b-bit 
integer.  

Threshold Value is the number of requests that 
a server can handle without straining its resources. It 
is defined as a predetermined percentage of the 
maximum number of requests that a server can 
handle. 

4.1 Proposed Solution 

Notations:  
• N: An integer and a product of two primes 
• p, q: prime factors of N. 
• Ndigits, pdigits, qdigits: Number of digits in 

N,p,q. 
The sequence of operation is as follows. 

• A client sends a request to the web server for a 
webpage. 

• The Server starts a session and sends ‘N’ along 
with the JavaScript to factorize it. 

• The Client computes p and q values and sends 
‘N, p, q’ values to the server. 
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• The server verifies whether the product of the 
factors sent by the client is equal to the ‘N’ 
value sent by the server (N=p*q). If this 
condition is not satisfied or the values not sent 
by the client, the server will drop the request. 

4.1.1 Description of our Solution 

When the server is facing normal flow of traffic, we 
do not interfere with the web application. When the 
number of requests arriving at the server crosses the 
threshold value, our solution is invoked and the 
server starts sending ‘N’ to all the clients.  

A user using a web browser will experience a 
momentary delay when the JavaScript calculates the 
values ‘p’ and ‘q’ on his client machine but then his 
request gets through when presented to the server.  

An attacker who is using a malicious client will 
not send these ‘p’ and ’q’ values and his requests get 
dropped. If he now modifies his client to read the 
JavaScript and compute ‘p’ and ‘q’, the number of 
requests that he can send will drop down drastically. 
If the distributed attack sustains or deepens, we can 
increase the number of digits in ‘N’ and this will 
throttle the malicious clients further without 
increasing any load on the server. 

4.1.2 Countermeasures Against the 
Throttling 

The strength of our solution lies in the mathematical 
complexity of the integer factorization problem. 
Since no algorithms exist to solve this problem in 
polynomial time the attacker will not try to optimize 
this computation but will try to get around the 
computation by finding a hole in the protocol. In this 
section we discuss various scenarios where the 
attacker actively modifies his malicious client and 
tries to tweak the hosts launching the distributed 
attack and the countermeasures that we need to have 
in place to defend against such modifications. 

Case 1: At this case the attacker observes that 
the server is sending the same ‘N’ for all requests. 
He computes the prime factors once and appends 
these factors to every request. This is a form of 
replay attack. To counter this we will dynamically 
generate ‘p’, the first factor of the prime from a 
variable that changes with time. 

Case 2: Now if the attacker has full control over 
the zombies which he is using to launch the DDoS 
attack, he can compute the value of ‘p’ on one 
system and propagate it quickly to all the remaining 
systems and launch a replay attack in the time slot. 
To guard against this our solution generates ‘q’ 
dynamically as a function of client’s IP address. 

Fixed cost functions are used to generate these 
values dynamically so that there is no over head on 
the server. Such attacks are extremely unlikely as the 
communication delay to propagate the computation 
to all the systems will be comparable to the cost of 
computing it at the individual node itself. 

Case 3: He may try to pre compute the primes in 
the entire prime space. As per Table 1, the number 
of primes (NP) increases with the number of digits 
and becomes too huge and storage becomes a 
limiting factor and such attacks are difficult with 
zombie machines which have limited amount of 
resources. The communication overhead of drawing 
it from a central database will make such attacks 
infeasible. 

Case 4: The attacker might try to guess the value 
of ‘N’ from its previous values, the IP address, the 
server time and other variables that he can find out. 
He may even get access to the exact code or 
algorithm that we use to generate ‘p’ and ‘q’. So we 
select a random combination of primes from the set 
of primes and design the mapping functions such 
that the selected primes are uniformly chosen across 
this combination. We further change this 
combination periodically to prevent the attacker 
from tabulating the combination restriction the 
usefulness of such tabulation further. 

Case 5: In this extreme case when the attacker 
has access to fast interconnects and resources if he 
successfully launches the attack in case 2 and also 
has access to all the mapping functions in case 4, he 
may find out that the value of ‘q’ is reused on 
individual nodes. To ward off this attack we can 
compute ‘q’ from a different source with sufficient 
entropy or flush the combination at a much faster 
rate. As a result of this flushing all existing 
connections will need to be reset and hence we 
would not suggest this to be applied unless needed. 

Case 6: In this case the attacker satisfies the 
condition N=p*q, but the factors sent by the attacker 
are bluffed. To counter this we generate ‘q’ from the 
IP address using a hash function that is changed 
periodically. The server then verifies that the ‘q’ 
value sent in the request is not bluffed by 
recalculating it from the source IP after verifying 
‘N’. The drawback of this algorithm is that once the 
value of ‘q’ is computed by the client, he can reuse 
the same in further requests thereby necessitating a 
periodic change of algorithm to compute ‘q’. In 
another countermeasure to this type of attack the 
server maintains a table in which the ‘N’ values sent 
to every client for every request has to be stored. But 
this will be a memory storage load on the server and 
can be a problem at the server if the attacker is 
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sending large number of rps. We have implemented 
this step for the sake of completeness but this part of 
the algorithm is not activated unless this particular 
attack profile is matched. 

4.1.3 Algorithms 

The two algorithms that can be used to generate the 
‘p’ and ‘q’ dynamically are presented in this section. 
The first algorithm is for selecting the ‘q’ which is 
based on the client’s IP address (cip) and the second 
algorithm is for selecting the ‘p’ which is based on 
the time in milliseconds from when the server is 
booted to the current time (st). 

The server should select the ‘Ndigits’ based on 
the number of requests coming to the server and this 
should be varying between 8 to16 digits. Based on 
the selection of ‘Ndigits’, ‘pdigits’ and ‘qdigits’ 
should be selected on the following criteria. 

pdigits = Ndigits/2, qdigits = (Ndigits+1)/2 (1)
The above criterion (1) is to ensure that there are 

no easy factors served out. To implement the 
dynamically generation of ‘p’ and ‘q’ values we first 
stored pre-computed primes between 4 and 8 digits 
in a two dimensional array called primes. The 
number of primes (NP) in each digit (i.e., 4, 5, 6, 7, 
and 8) is tabulated below in Table 1. 

Table 1: Number of primes in each digit. 

Ndigits 4 5 6 7 8 
NP 1061 8363 68906 586081 5096871 

Algorithm 1: Generate q 
GenerateQ(qdigits,NP,primes,cip) 
{ 
 cip=”A.B.C.D” 

ipMapValue=224*A+216*B+28*C+D 
 qMapValue=(ipMapValue) mod NP 
 return primes[qdigits][qMapValue] 
} 

In the above algorithm the cip represents the 
clients IP address and it is in the form of A.B.C.D. 
ipMapValue is the value that is generated from the 
client IP address and this value is unique for each 
client. From the total set of primes, we choose a 
random combination and call it ‘selectedPrimes’ 
array. So the ‘q’ value generated for each client will 
be unique. The ‘NP’ in the above algorithm 
represents the number of primes in ‘selectedPrimes’ 
array.  

Algorithm 2: Generate p 
GenerateP(pdigits,NP,primes,st) 
{  

pMap=(st) mod NP 
 return primes[pdigits][pMap] 
} 

In the above algorithm the st represents the 
number of milliseconds since the server boot. As st 
differs for every millisecond the ‘p’ value generated 
will be unique for each client.  

5 APPLICATION  

Now continuing the http://www.mysearch.com 
example that we used earlier in section 2, we are 
serving 2000 dynamic plus 1000 static rps during the 
normal traffic profile. In the worst case, the attacker 
is sending an additional 40,000 void searches. So we 
are receiving 42,000 search requests and 1000 static 
requests. We now respond to the attack by 
prepending a JavaScript that does the stamping 
computation and sets a valid stamp in the HTTP 
header to every request received. So out of the 
42,000 search requests, we should be able to respond 
with a static redirect page with the JavaScript for at 
least 39,000 of them. A genuine user should be able 
to get this new page by repeating his requests to the 
main page. Now the attacker usually would have 
stored the old request and will not be able to modify 
his request to include the stamp and all his requests 
will be redirected only to a static page. The genuine 
users will be using popular browsers and will be 
able to get a new page with the JavaScript within a 
few refreshes. Now the JavaScript does a second 
long computation for every request that the browser 
sends and the user will be able to continue working 
with a tolerable latency. When this new search 
request comes in with the stamp, we treat it with 
higher priority and open up the server resources to it. 
Eventually we will converge to a point around which 
we will be able to serve all the stamped search 
requests while using the remaining resources to 
serve the requests without a stamp with a new page. 
If we are serving 2000 searches, we can still serve 
20,000 static pages. Over a period of time the 
genuine users cross the filter after a few retries. If 
the attacker is able to reconfigure his resources to 
calculate the stamp, then he will be able to send only 
a fraction of his original requests. He will be able to 
send in something like 400 search requests instead 
of 40,000 and the damage will be contained if not 
eliminated. Now, if the attacker attaches an invalid 
stamp, he may pass through the initial filter, but we 
can still verify the stamp with a fraction of the cost 
of serving the request and drop it pretty early in the 
pipeline. Once the attack stops, we can remove the 
JavaScript attachment and restore normalcy. We also 
have the flexibility of changing the JavaScript to 
invalidate any pre-computation efforts by the 
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attacker. Further a simple inexpensive hardware can 
be installed to send this static redirect, reducing the 
load on the server almost completely. 

6 IMPLEMENTATION RESULTS 

In this section we present the results obtained by 
implementing the proposed solution. 
• Clients: Intel core2 Duo CPU with processor 

speed 3.00 GHz and 2.99 GHz, 2 GB RAM, 
Windows XP professional operating system. 

• Server: Intel Xeon Quad CPU, processor speed 
3.60 GHz each, 4 GB RAM, Win 2003 server. 

To study the effectiveness of the proposed 
solution, we developed a website that represents a 
typical portal. We developed a version incorporating 
the solution (WSolution) and other without it 
(WoSolution). The WoSolution website consists of 
27 pages each having multiple database connections 
in it. The WSolution website consists of an extra 
HTML page with of a JavaScript which makes the 
client browser to factorize ‘N’. When a request 
comes to the website without the proper cookies, 
this static page is served and the client is then 
redirected to the proper web page. The server 
retrieves the number of rps from the Windows 
performance counters, and when it exceeds a 
threshold value the server invokes the proposed 
solution and starts sending out a ‘N’ value using 
cookies in each response. The client responds with 
the factors and the server will verify it. If the 
proposed condition (N=p*q) is satisfied by the 
client, the server will then respond with the actual 
page and the ‘N’ value in the session variable will be 
flushed out. 

Table 2: Latency in milliseconds of browsers to calculate 
factors. 

Ndigits IE Mozilla Opera Chrome CCB 
5 0 0.2 0 0.2 0 
6 0 0.2 0 0.2 0 
7 0 0.2 0 0.4 0 
8 0 1.8 0 2.2 0.01 
9 6 1.8 3 2.2 0.05 
10 34 16 22 18 0.05 
11 44 23 28 25 0.07 
12 265 134 147 147 0.43 
13 318 163 169 173 5.60 
14 2512 1269 1347 1398 6.62 
15 4975 2475 2659 2866 44.6 
16 49820 25069 19859 28173 67.5 

We measured the latencies of different web 
browsers to factor the primes and tabulated it in 
Table 2. CCB in the above table represents a custom 
command line browser written in C#.Net. By 

measuring the latencies of the JavaScript 
computation on most popular browsers, we observe 
that a 14 digit ‘N’ values give about 2 seconds 
latencies on the browsers, which should be tolerable 
to an end-user. 
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Graph 1: Overhead on requests/sec with fixed N. 

From Graph 1 we can see that the overhead of 
our solution is not significant when ‘N’ is fixed. 

 
Graph 2: Server load relief on server. 

In the Graph 2 we sent a steady 1000 rps through 
client 1 which can compute ‘p’ and ‘q’. This causes 
a steady load of about 25% on the server. After 1 
minute we sent an attack traffic of about 2000 rps 
from client 2 which does not compute ‘p’ and ‘q’. 
The server load increases till our threshold limit is 
hit. Then our solution is invoked and we start 
serving ‘N’. The server drops the attack traffic and 
treats them as static pages. We can see that the 
server load falls down once our solution kicks in. 
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Graph 3: Max client requests/sec Vs Number of digits in 
N. 
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From Graph 3 we can clearly the throttling effect 
on the malicious clients where in the total number of 
requests that they can send can be made to fall down 
by a factor of 100 by increasing the number of digits 
to 14. This means that an attacker who has 
compromised 100 zombies will be able to inflict 
only the damage possible by one such machine 
thereby loosing the effectiveness of the attack. 

Now in graphs numbered 4, 5, and 6 we list the 
overhead on the server in terms of reduced number 
of dynamic requests that are served at 100% CPU 
load. As expected this loss does not increase 
significantly even when we are generating the values 
‘p’ and ‘q’ dynamically for every request. The 
overhead is bounded by 120 rps in all cases which is 
less than 4% for our application. 
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Graph 4: Overhead at server when p is generated 
dynamically. 
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Graph 5: Overhead at server when p and q are dynamic. 
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Graph 6: Overhead on number of rps with p and q 
generated dynamically from selected primes. 

7 CONCLUSIONS 

In this paper we proposed an approach to contain a 
DDoS attack at the application level. We came up 
with a solution to generate stamps on the web 
browsers that are easily verifiable at the server. Our 
algorithm is further tuneable to throttle the client 
CPU when the attack deepens. We come up with a 
strategy to distinguish between genuine requests and 
malicious requests and drop the later much earlier in 
the transaction during a DDoS attacks. We proposed 
two different algorithms for dynamic generation of 
primes. There is no considerable overhead on the 
web server because of deploying the proposed 
solution. As a whole we saw less than 5% overhead 
on the server to verify the timestamp and serve the 
additional JavaScript. 
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