

THE CHAMELEON CIPHER-192 (CC-192)
A Polymorphic Cipher

Magdy Saeb
Arab Academy for Science, Tech. & Maritime Transport

Computer Engineering Dept., Alexandria, Egypt
On-leave to: Malaysian Institute of Microelectronic Systems (MIMOS Bhd.)

Kuala Lumpur-57000, Malaysia

Keywords: Polymorphic cipher, Homophonic, Random walks, Key-driven, Cryptanalysis, Hash function.

Abstract: The Chameleon Cipher-192 is a polymorphic cipher that utilizes a variable word size and variable-size
user’s key. In the preprocessing stage, the user key is extended into a larger table or bit-level S-box using a
specially developed hash-function. The generated table is used in a special configuration to substantially
increase the substitution addressing space. Accordingly, we call this table the S-orb. We show that the
proposed cipher provides concepts of key-dependent number of rotations, key-dependent number of rounds
and key-dependent addresses of substitution tables. Moreover, the parameters used to generate the different
S-orb words are likewise key-dependent. We establish that the self-modifying proposed cipher, based on the
aforementioned key-dependencies, provides an algorithm polymorphism and adequate security with a
simple parallelizable structure. The ideas incorporated in the development of this cipher may pave the way
for key-driven encryption rather than merely using the key for sub-key generation. The cipher is adaptable
to both hardware and software implementations. Potential applications include voice and image encryption.

1 INTRODUCTION

A process is ergodic if and only if its’ time averages’
over a single realization of the process converge in
mean square to the corresponding ’ensemble
averages’ over many realizations. As an example,
suppose the process is x = k + f (t) + e where k is
unknown, f (t) is nonlinear and e is a white noise
error. Then any sample of x for a known t gives
information about k and that is enough information
to make predictions at remote times in the future that
are just as good as predictions at nearby times. In
this case one identifies such a process as a “not
ergodic” process. Using this definition, we call a
cipher, when represented by a stochastic process,
“ergodic” if sampling its cipher text does not give
enough information about its key to make
predictions regarding its plain text at subsequent
times (Gray, R.M., 2008). In this work, we apply
this principle to design a polymorphic cipher (K.
Bajalcaliev, 2001) that is based on a specially
developed hash function and ergodic substitutions to
provide the required diffusion and confusion with
aperiodic behavior. The polymorphic nature of the

cipher results from the dependency of some design
parameters on the user key. The truly random
behavior of the white noise error can be
approximated by specific functions in the cipher
structure.

1.1 CC-192 in General

We aim to design a polymorphic secure cipher that
can be efficiently implemented in both software and
hardware. The evolution of superscalar 64-bit word
processors and the expanding use of smart cards
provide the incentive for designing ciphers that are
flexible and better suited for these varying
architectures. CC-192 is a word-based cipher with
variable word and key sizes. The key stream and the
number of rounds are both key-dependent thus
eliminating the possibility of trap door functions.
The proposed ergodic process is also key-dependent
emulating a faulty compass. These key-
dependencies provide the foundation from which
this polymorphic cipher acquired its name.
Furthermore, these substitutions provide the required
aperiodic random walks. We have used the concept

198
Saeb M. (2009).
THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher.
In Proceedings of the International Conference on Security and Cryptography, pages 198-209
DOI: 10.5220/0002228501980209
Copyright c© SciTePress

of a faulty compass rather than chaotic maps since
these chaotic systems usually suffer from
unpredictable reproducibility problems. In summary,
we use a group of transformations leading to an
enhanced homophonic substitution (Penzhorn, W.T.,
1994), (Gunther, C., 1988), (Massey, J. L., 1987),
(Massey, J. L., 1994) in which the mapping of
characters varies depending on the sequence of bits
in the message text. In executing the method,
encryption keys are first generated. Then, enhanced
homophonic substitution is performed. Finally, a
poly-alphabetic substitution is performed on the
data. This involves using bit-wise XOR between the
partially ciphered data and the generated keys. The
operation can be viewed as a linear masking
operation. The high security of this proposed cipher
is a result of the polymorphic key-dependent
operations. The proposed cipher, implemented using
C#, performs data encryption at about 26 cycles per
byte using eight threads and 16 or 32-bit word size.
Key setup consumes about 116 cycles per byte. This
is achieved employing multithreading capabilities of
modern superscalar processors using Intel Core2
Duo CPU E6550 @ 2.33 GHz, 4 GB RAM, 32-bit
operating system. Various tests were performed and
passed with no indication of deviation from random
behavior. The security of the proposed cipher, based
on algorithm polymorphism and a variable size S-
orb, is acceptable for a large number of today’s data
security requirements. This will be established in
detail in sections 3, 5, and 10.

1.2 Organization

This article is organized as follows: in section 2, we
provide a summary of the design objectives of CC-
192. In section 3, the ideas of a polymorphic cipher
and a brief mathematical background are presented.
Section 4 provides a discussion of the cipher basic
building blocks. These are the cipher structure, the
S-orb, the hash function employed, the whitening
and the key scheduling process. In section 5, we
provide our design rationale. The details of the
algorithm are described in section 6. A section on
the key generation procedure is also provided. The
statistical tests, discussion of trap doors, cipher
security, applications and performance are discussed
in detail in sections 8, and 9 respectively. Finally,
we give a summary and our conclusions. The
appendix provides some details of the hash function
utilized.

1.3 Notation

We use the following notation: ⊕denotes logical

XOR, ∧ denotes logical AND, ∨ denotes logical
OR, << and >> denote left and right logical bit-wise
shift, <<< and >>> denote left and right bit-wise
rotation, || denotes concatenation, and Hexadecimal
numbers are prefixed by “0x”. We apply integer
notation for all variables and constants.

2 CC-192 DESIGN OBJECTIVES

The objectives taken into consideration while
designing this cipher include:

• The design of a key-driven, polymorphic highly
secure cipher.

• Applicability to software with the proper
utilization of today’s superscalar processor
architectures.

• Applicability to hardware with a design of a
simple parallelizable cipher for FPGA-based
applications.

• Flexible design; accepts keys and data blocks of
different lengths and provide variable size S-orb
depending on changing security requirements.

• Variable, key-dependent, number of rounds.
• Key setup time is kept to a minimum using a

specially designed hash function.
• Simple construction and simple round function

with minimum internal looping.

3 POLYMORPHIC STRUCTURE

For a true polymorphic cipher design, we propose
three constructs:

• Shuffle
• Select/Remove
• Change parameters

One can visualize this approach as re-programming
the cipher depending on an instruction set (number
and function of various blocks). The micro-program
instructions are actually stored in the user key. The
larger the key size, the more “instructions” one can
store. In conventional ciphers, the attacker uses the
algorithm and the cipher to find a constant which is
the key. However, in the proposed approach, the
attacker has no substantial idea of the form of the
algorithm since it is totally key-dependent. The
attacker has to use the cipher to figure the algorithm

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

199

construction first and then use the discovered
algorithm and the cipher to find the key. The key is
considered the memory of the system that contains
not only the data segment, as in conventional
ciphers, but also the program segment. If Alice
sends the key to Bob, through a secure channel, she
is actually sending both the structure of the
algorithm and the data part used to expand the key.
To approach the problem quantitatively, we provide
the following discussion: In the Shuffle construct,
we use the user’s key to re-arrange the order of the
operations. This idea was clearly used in the eight-
block “Pyramids” block cipher (Hussein A. et al.,
2005). This technique, when applied to an n-
operation structure, provides (n!) different
algorithms. Each one of these algorithms has to be
individually investigated by the attacker. On the
other hand, if we change the parameters of the
different operations with values depending on the
user’s key, one arrives at selection probabilities that
correspond to one-out-of k cases. For example, if we
assume that we can perform a variable number of
rotations that depends on the register size utilized,
say 32-bit register, then the probability of choosing
the correct case is 1/25. The same rationale applies to
a varying number of rounds; say from 1 to 8 with a
probability of choosing the correct one equal to 1/23.
For the correct bit-wise substitution, with a number
of different cases equal to, say, 128 cases or
addresses, the probability is 1/27 . To choose the
correct values of the integers pi and qi, used to
update the next S-orb word, the attacker has to
choose the correct values with a probability of 1 / 2
32. Therefore, for an attacker to attain the correct
probability he or she would have to try 2 47 cases
with a success probability of approximately 7.105 x
10 -15. Now to attack the hash function, acting as
PRNG, using the birthday paradox, the success
probability is given by 1 / 2 96 using a 192-bit hash
function. Thus, the overall probability of a
successful attack on the cipher is 1/ 2 143 or 89.68 x
10 -45 which is smaller than a brute force attack using
a 128-bit key. Future ciphers may embrace both of
the two basic constructs; shuffle and select for
highly secured applications. For the second construct
“Remove”, using the key one can reduce the number
of operations; say L operations, from a maximum
given number (n). Therefore, the attacker has to
investigate a number of algorithms equal to (n! + (n-
L)!). This basic notion of reprogrammable or
polymorphic cipher is shown in Figure 1.
Now to compute the probability of a successful
attack on a general polymorphic cipher, one starts
with the probability of figuring out the algorithm

a) Shuffle rounds

b) Select/Remove

c) Change parameters

Figure 1: The conceptual diagram of the constructs to
realize a polymorphic cipher. Different colors represent
different operations.

utilized from shuffled n blocks. This probability is
given by:

P shuffle = 1/ n! (3.1)

Within each block there are m operations each
operation i requires ki parameters. Therefore, to
select the correct parameter to operation i= 1, 2, …
m

Pi = Pr {correctly selecting the parameter for
operation i} = 1/ki

Then the probability to correctly select all
parameters for all operations is given by:

P select = ∏ ௜ܲ
௠
௜ୀଵ = ∏ 1/݇௜௠

௜ୀଵ (3.2)

Assuming all ki are equal to, say k, then equation 4.2
takes the form:

P select = ∏ 1/݇௠
௜ୀଵ = 1/km (3.3)

Then the overall probability of finding the correct
algorithm, allowing removal of certain blocks is
given by:

P ൌ
1

݇௠ ሺ݊! ൅ ሺ݊ െ ሻ!ሻ (3.4)ܮ

For example, take m=5, k=4, n=8, L=2, then P will
be equal to 2.37954 x 10-8. However, the actual
probability for a practical cipher will be much
smaller than this value since the number of
operations per block and the number of parameters
will be larger than the previously given values. In
Pyramids we have changed the order of operations.
On the other hand, in Chameleon Cipher, we neither

Round
1

Round
2

Round
3

Round
4

Round 2Round 1 Round 3 Round 4

Round 1 Round 3 Round 4

Round 1 Round 2 Round 3 Round 4

SECRYPT 2009 - International Conference on Security and Cryptography

200

change the number of blocks nor their order; we
only change the parameters of various operations
and the number of rounds. Security here is founded
on the notion of producing potentially large number
of forms of a polymorphic algorithm. This is in
contrast to conventional ciphers where it is
implicitly assumed that the cipher machine is not
reprogrammable. In these ciphers, the common
wisdom dictates that there is no need to develop
algorithms that can “Rewire the Enigma Machine”.
However, one can consider the user key as the
system memory where both the user data and cipher
re-programmability parameters are stored. In
designing a cipher, the basic aim is to provide
aperiodic or, in reality, a very long average period of
the key stream. This can be partially achieved by
ensuring a large internal state of the cipher. An
ergodic process, as defined before, when sampling a
cipher text does not give enough information about
its key to make predictions regarding its plain text at
subsequent times. We show that if the internal state
of the cipher, represented by the S-orb address
space, is made large enough such that the ergodic
process can be correctly approximated.

4 CC-192 BUILDING BLOCKS

There are two distinct phases of performing this
algorithm; the initialization of the S-orb and the
encryption phase.

4.1 Initialization

The S-orb initialization of this cipher is performed
“off-line” using the following recursive equation:

hi = h (pi . hi-1 + qi) (4.1)

Where hi is the hash function of the S-orb word (i).
The total number of words of the S-orb (m) varies
depending on the available memory and degree of
security required. This value is taken equal to 6
resulting in an S-orb of six 192-bit words. The
process is initialized with h0 = h (k), where k is the
user key, and pi and qi are two large secret integer
numbers. These two numbers can be also obtained
from the user key. The initial vector of the hash
function (IV) is not necessarily to be kept secret. We
use an assigned field in the round keys or S-orb
words to determine the location of the center of what
we call the “x-blocks”. The contents of each block
are used to perform the required substitution
additions. The next step is to divide the plain text
192-bit block into six 32-bit words, 12 16-bit words

or 24 eight-bit words. The same procedure is applied
to different round keys. Now, we are able to perform
the selective XOR operation, as shown in detail in
the block diagram, in order to realize the required
homophonic substitution. The next step is to perform
a number of rotations to the partially ciphered words
where this number is determined by a five-bit secret
field of the round key. Finally, to perform the poly-
alphabetic substitutions, we use the xor operation
between the resulting partially ciphered word and
the round key. The operation is repeated an
additional number of rounds depending on the value
obtained from the original user key. Other details are
shown in the block diagram of Figure 2. This
diagram illustrates the two basic operations utilized;
initialization of the S-orb and the encryption phases.
Figure 3.a illustrates some conceptual format details
of the user and round keys. The substitution x-block
is shown in at the lower side of Figure 3.b.

Figure 2: The Chameleon Cipher.

4.2 Key Schedule

A cipher, for a given security level, may require a
relatively large number of round keys. Therefore, the
S-orb number of words is intentionally left open to
the user to increase the internal state of the cipher
for added security. The user key can be varied from
one bit to virtually any size key since it will be
hashed using MDP-192 into a 192-bit set of round
keys depending on the size of the S-orb.
Using a preprocessing phase of xoring the plain text
with the user key and a post processing of xoring the
cipher with the user key adds appreciably to the

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

201

Figure 3: 3.a: (from top to bottom) The key format, the
construction of the S-orb and 3.b: the X-blocks.

security of the algorithm as shown by Merkle
(Merkle, R.C., 1991).

4.3 Key setup

There are alternatives available to the cipher
designer to build the S-box. These alternatives are:

1. Fixed S-box such as in DES (ANSI X3.92,
1981), AES (Daemen and V. Rijmen,
1998).

2. Cipher-generated such as in BlowFish
(Bruce Schneier, 1994).

3. SHA (Federal Information Processing
Standard Publication, 1995), (A. Bruen, M.
Forcinito, 2005), hash function-generated
such as in SEAL (Rogaway, P.,
Coppersmith, D., 1994).

4. Based on a specially-designed hash
function

The first alternative may seriously compromise
security. In the case of DES, there were a lot of
conjectures that it contains trap doors. The second
alternative consumes a large amount of key setup
time. The third alternative is susceptible to attacks
since it is based on a well-studied hash function. In
our design, we have chosen the fourth alternative
and designed our own hash function with features
that can stand present and some future attacks.
Moreover, the performance on modern superscalar
processors of this hash and accordingly the key
setup time were optimized and verified.

5 DESIGN RATIONALE

In the design of this cipher, we follow the general
construction, suggested by T. Ritter (Terry Ritter et
al., 2007). In this basic structure, we utilize the ideas
put forward by Ritter regarding the exchange of two
message symbols. The shown transposition provides
the required mathematical “permutation” of the
message contents. However, this type of
transposition notoriously has weaknesses when
performed on the character level, since every
character of the plain text is still visible in the cipher
text. This allows for a chance for rearranging or
“anagram’ the cipher to find the plain text that
makes sense. Nevertheless, if this permutation is
performed on the bit-level, a large number of
“Homophones” can be created. All but one is the
required message. The concept behind this technique
is rather simple. One starts by collecting data in
blocks where the number of ones is almost equal to
the number of zeros. Then the bits of these blocks
are shuffled using a keyed pseudorandom number
generator. We call this PRNG the “S-orb”. If the
sequence reuse is minimized, then one correctly
obtains scrambled words or cipher text. However, it
requires a PRNG with a relatively large internal
state. This, in a sense, partially neutralizes the ability
of the attacker to identify which permutation has
occurred. The size of the S-orb was left variable to
allow applicability to platforms with limited
memory. Using conventional substitution tables may
leak an infinitesimal fraction of these tables. This
may lead to the exploitation of these ciphering
tables. However, dynamic transposition provides an
unbiased basic ciphering operation. Many different
permutations will produce the exact same cipher
from the same plain text. Thus, even known-
plaintext does not expose the exact ciphering
transformation. This is a form of balanced, nonlinear
aggregation of the confusion sequence and data
(Terry Ritter et al., 2007). On the other hand, bit-
permutation does consume a substantial execution
time. However, in modern superscalar processors,
this cost is increasingly becoming quite endurable.
For simpler fine-grained processors, and FPGA-
based implementations, one can always resort to
parallelism or multiple similar data paths to
compensate for this unavoidable increase in
execution time. The proposed simple straight
forward structure with minimal internal sequential
looping makes this algorithm a good candidate for
this type of parallelism. The second adopted
principle in the design of this cipher is based on
“algorithm polymorphism”. The algorithm,

SECRYPT 2009 - International Conference on Security and Cryptography

202

depending on certain values embedded in the user
key, transforms (morphs) into different forms. As
shown in section 3, the attacker has a very small
probability of discovering the correct form of the
algorithm. In Chameleon Cipher, we only use
parameter changes.
The design of the round function is kept simple and
straight forward. It is based on two fast operations
substitute and add (SUBSADD), and XOR. These
two operations are supported in most modern
processors. The rotation operation, while it is
relatively slow, we found it essential for correct data
scrambling and elimination of key leakage. The bit-
wise substitutions are time- consuming. However,
with proper utilization of modern superscalar
processors, the associated delays are kept to a
minimum. Even with such simple round function, it
is well-known that increasing the number of rounds
will provide the required security. This simple round
function when iterated through a key-dependent
number of rounds that is greater than or equal to a
prescribed minimum number of rounds provides the
required security. This approach contradicts
conventional designs where the designers use strong
round functions and less number of iterations. We
view the performance as the overall execution time
not the number of rounds. There is no internal
looping per round. This feature provides the basis
for parallelization on multi-thread superscalar
processors. At the same time, the cipher can be
easily implemented on FPGA using similar multi-
data paths, as mentioned before, for improved
performance.

5.1 The Hash Function MDP-192

Cryptographic hash functions or message digest
have numerous applications in data security. The
recent crypto-analysis attacks on existing hash
functions have provided the motivation for
improving the structure of such functions. The
design of the proposed hash is based on the
principles provided by Merkle’s work (Ralph C.
Merkle, 1979), Rivest MD-5 (Rivest, R. L., 1992),
SHA-1 and RIPEMD (Hans Dobbertin et al., 1996).
However, a large number of modifications and
improvements are implemented to enable this hash
to resist present and some probable future crypto-
analysis attacks. The procedure, shown in Figure 4,
provides a 192-bit long hash that utilizes six
variables for the round function. A 1024-bit block
size, with cascaded xor operations and deliberate
asymmetry in the design structure, is used to provide
higher security with negligible increase in execution

time. The design of new hashes should follow, we
believe, an evolutionary rather than a revolutionary
paradigm. Consequently, changes to the original
structure are kept to a minimum to utilize the
confidence previously gained with SHA-1 and its
predecessors MD4 (Rivest, R.L., 1990) and MD5.
However, the main improvements included in MDP-
1 are: The increased size of the hash; that is 192 bits
compared to 128 and 160 bits for the MD-5 and
SHA-1 schemes. The security bits have been
increased from 64 and 80 to 96 bits. The message
block size is increased to 1024 bits providing faster
execution times. The message words in the different
rounds are not only permuted but computed by xor
and addition with the previous message words. This
renders it harder for local changes to be confined to
a few bits. In other words, individual message bits
influence the computations at a large number of
places. This, in turn, provides faster avalanche effect
and added security. Moreover, adding two nonlinear
functions and one of the variables to compute
another variable, not only eliminates the possibility
of certain attacks but also provides faster data
diffusion. The fifth improvement is based on
processing the message blocks employing six
variables rather than four or five variables. This
contributes to better security and faster avalanche
effect. We have introduced a deliberate asymmetry
in the procedure structure to impede potential and
some future attacks. The xor and addition operations
do not cause appreciable execution delays for
today’s processors. Nevertheless, the number of
rotation operations, in each branch, has been
optimized to provide fast avalanche with minimum
overall execution delays. To verify the security of
this hash function, we discuss the following simple
theorem:

Theorem 5.1.

Let h be an m-bit to n-bit hash function where m >=
n input keys k1, k2 to h.
Then h (k1) = h (k2) with probability equal to:

2-m + 2-n – 2-m-n

Proof.

If k1 = k2 , then h (k1) = h (k2).
However, if k1≠ k2, then h(k1) = h(k2) with
probability 2-n.
k1 = k2 with probability 2-m and k1≠ k2 with
probability 1- 2-m.
Then the probability that h (k1) = h(k2) is given by:

Pr {h (k1) = h (k2)} = 2-m + (1 - 2-m). 2-n

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

203

As an example, assume two 192-bit different keys
x1, x2 then

Pr {h(x1) = h(x2)} = 2. 2-192 – 2-384
= 2-191 (1 - 2-193) ≈ 3.186 x 10-58

This is a negligible probability of collision of two
different keys.

Figure 4: The hash function (MDP-192) used to generate
the S-orb.

5.2 The S-orb

As shown in section 4.1, the S-orb is constructed
using an iterated application of MDP-192 on the
round keys multiplied by and added to two large
numbers. The iteration is initiated using the user’s
key. However, to increase the addressing space, we
use the resulting table by folding it vertically and
diagonally as shown in Figure 5. The resulting
spherical configuration is what we have referred to
as the S-orb. The programming effort involved is
justifiable when one takes into consideration the
potential increase in the number of addressable x-
blocks.

Figure 5: The conceptual S-orb

The generation of the S-orb based on the user key
using a hash function eliminates the possibility of
trap door functions. In addition, the number of
words of the S-orb can be increased for added
security and increasing the internal cipher period.
This set of two large numbers is used to update the
iterative hash calculation and is kept secret. This set
is also user key-dependent. If we use, say six-word
192-bit per word S-box, then the number of x-blocks
will be 128 blocks. However, if we use the S-orb
configuration, then this number is increased to 1152

since each element can serve as the center of the x-
block. Accordingly with such simple transformation
of the S-box to an S-orb, the internal state of the
cipher has been enormously increased. This may
prove to be an important feature of the cipher for
devices with limited memory.

6 THE ALGORITHM

In the next few lines we provide a formal description
of the algorithm round structure.

Algorithm Chameleon-Cipher

[Given a plain text message P, key K, the aim of the
algorithm is to encrypt the plain text into a cipher
text C and decrypt it again. To achieve this the
algorithm utilizes a specially developed hash
function to generate the key stream, and a dynamic
transposition to permute the plain text, and finally
modulo two addition to scramble a varying-size
data unit]

Encrypt:

Input: Plain text P, key K Output: Cipher C, word-
size

Algorithm body:

 Initialize the S-orb

 Input: n is a positive integer ε Ζ+ equal to
number of words of the S-orb, pi, qi are pairs of
large positive integer numbers ε Z+ required to
update the iterative application of the hash function.

 Output: A 192-bit n-word table utilized as a
pseudo random number generator PRNG called the
S-orb.

 {Initialize S-orb body :}

i: = 0;

h0 := p0. h (K) + q0;

{Hash the user key using MDP-192}

While i <= n

 hi+1 := pi+1. hi (k) + qi+1;

SECRYPT 2009 - International Conference on Security and Cryptography

204

 Save in S-orb file;

End while;

End Initialize;

 {Encrypt}

{P[m] = m blocks in P file}

Divide the Plaintext file P into m-1 192-bit blocks;
Append last block if necessary;

Read max-number of rounds from user key; {Input
max-number of rounds from user key from assigned
secret location in user key}

If max-number of rounds < 4 then max-number of
rounds: = 4;

For round = 1 to max-number of rounds

While (P[m] ≠ EOF) {EOF: End Of File}

 j := 0;

 While j ≠ n

Read kw[j] of S file;

Using the round key kw[j], read value of integer
given by bit location 23-to-29; {This address
represents the address of the center element of the
block}

For the next block address, slide the 7-bit window
two bits to the right and find new block address;

Divide the plain text 192-bit block into six 32-bit
words, or twelve 16-bit words, or twenty four 8-bit
words depending on user word-size;

From the LSB and moving to the right of the word-
to- be encrypted: {Input: P[m], kw[j](round key),
Output: Ci1}

If ki =1 then move depending on location weights
0,1,2,...7 to N, NE, …, NW respectively then xor
with corresponding bit of round-key kw[j];

Else do nothing;

ROTL (r); {r is determined from key 5-bit field (16-
20) value, output Ci2}

{Input: Ci2, kw[j](round key), Output: Ci3}

If ki =0 then move depending on location weights
0,1,2,...7 to N, NE, …, NW respectively then xor
with corresponding bit of round-key kw[j];

Else do nothing;

{Input: Ci3, kw[j]i (round key), Output: Ci}

Ci = Ci3 xor kw[j];

Save Ci in output file

End while;

Next round;

End Algorithm.

The substitution operation, using the x-blocks,
explained above, provides homophonic substitutions
that considerably improve the security of the cipher.
In addition it provides the means to overcome the
potential problem of block replay. The cipher is a
binary-additive cipher that emulates a one-time-pad.
The final xor operation between the partially
ciphered text and the round key provides the
polyalphabetic substitution and masking required for
security. Inside the encryption process, the round
keys effectively act as pointers in the homophonic
substitutions without directly be part of the
computations. This contributes to added security to
the cipher. Testing of the cipher shows no bias to
either ones or zeros and an average hamming
distance of 3.8 for each byte encrypted. However,
this value can be substantially increased with the
increase of the minimum number of rounds. Testing
of the cipher conforms to the Strict Avalanche
Criteria (SAC) as required by New European
Schemes for Signal Integrity and Encryption
(NESSIE). The results are summarized and
discussed in section 12. Contrary to conventional
ciphers, the round function is kept simple and, in
general, security is obtained through a relative
increase of the number of rounds. This number of
rounds can be large to ensure security. However, we
adopted the idea of key-dependent number of rounds
as long as it is greater than four rounds. This way,
the security is increased twofold; by having an
adequate number of rounds and at the same time
hiding this number, in most cases, from the attacker.

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

205

7 KEY GENERATION

In this section, we provide a recap on some of the
concepts that have already been presented regarding
key-generation. Using the MDP-192 hash function
recursively, one is able to generate the required
PRNG. Most of the CPU time used in key-setup is
actually consumed by this hash. The tests on this
hash have shown that the average throughput, using
Intel Core2 Duo CPU E6550 @ 2.33 GHz, 4 GB
RAM, 32-bit operating system, is approximately
161.4 Mbps. That is 115.6 cycles per byte. If the key
size is 128 bits, then we require around 1849.6
cycles for key setup. The recursive use of the hash
function, as shown in equation 4.1, requires the
multiplication of the hash by a large integer number
pi. There are a number of methods to achieve this
object (Michael Welschenbach, 2005). We have
adopted a modified version of Karatsuba Algorithm
(Karatsuba A. and Yu Ofman, 1962), to perform this
task. The homophonic selective substitutions were
performed using 1152 x-blocks. No bias to the zeros
or to the ones was completely and absolutely
observed during the design phase. This was later
verified based on the tests performed on the cipher.

8 STATISTICAL TESTS

The essential part of any cryptographic primitive is
to generate a truly pseudo random sequence. A
necessary but not a sufficient condition is to verify
that there is no bias in the number of zeros or ones in
the resulting cipher. This simple fact was repeatedly
verified for various types of encrypted text, graphics
or audio files. The results of these tests are shown in
section 12. The strict avalanche criteria test is
performed by changing one bit of the key and noting
the change in the resulting cipher. As expected, and
as required by NESSIE, the number of bits that have
changed in the cipher is greater than or equal to
50%. The tests proposed by National Institute of
Standards and Technology (NIST) and
recommended by (NESSIE) were performed on the
cipher. These tests are shown in the following list:
Frequency (Mono-bit) Test, Frequency within a
block, Runs Test, Longest Run of ones in a block,
Binary Matrix Rank Test, Discrete, Fourier
Transform (spectral) Test, Overlapping Template
Matching Test, Non-overlapping Template Matching
Test, Maurer’s Universal Test, Lempel-Ziv
Compression Test, Linear Complexity Test, Serial
Test, Approximate Entropy Test, Cumulative Sums,
Random Excursions Test, Random Excursions
Variant Test. All of these tests were passed with no

indication of deviation from random behavior.
However, these tests are necessary but not a
sufficient condition for a viable cipher. The simple
cipher structure, the key-dependent number of
rotations, the key-dependent addresses of the various
x-blocks, the key-dependent number of rounds and
above all the key-dependent S-orb all of these design
parameters help eliminate the possibility of trap
doors. In addition, the trap door has to endure the
proposed variable number of rounds. The idea of a
universal hidden key, in a sense, emulates a public
key cryptography which is definitely not the case in
this cipher (Bruce Schneier et al. 1998).

9 SECURITY & PERFORMANCE

The security features of this cipher are implicitly
discussed in the sections covering polymorphic
structure and design rationale. However, one claims
that differential cryptanalysis, linear cryptanalysis,
Interpolation attack, partial key guessing attacks,
and side-channel attacks, hardly apply in this
proposed cipher. The homophonic selective random
substitutions and the polymorphic nature of the
cipher, we believe, hide most traces that can be
utilized to launch these attacks. Each key has its own
unique “weaknesses” that will affect the new form
of the algorithm utilized. Thus, different keys will
produce different forms of the cipher. Accordingly,
statistical analysis is not sufficient to link the plain
text to the cipher text. With different inputs (user
keys), we end up with a different “morph” of the
cipher, therefore, it is totally infeasible to launch
attacks by varying keys or part of the keys.
Regarding the Key collision probability, it was
shown in section 5.1 that the key collision
probability is negligible when a 192-bit hash is
applied. Moreover, we have proven that the attacker
has a very small probability of guessing the correct
form of the algorithm utilized. As was previously
discussed, the simple structure of the proposed
cipher provides a foundation for efficient software
and hardware-based implementation. It is relatively
easy to parallelize the data path either using multi-
threading on a superscalar processor or by cloning
this path on the FPGA material. The cryptographic
selective substitution and the variable number of
rotations provide a secure barrier against pattern
leakage and block replay attacks in multi-media
applications. Using ECB mode, when encrypting
images with conventional ciphers, a lot of the
structure of the original image will be preserved
(Swenson, C., 2008). This may lead to the problem

SECRYPT 2009 - International Conference on Security and Cryptography

206

of block replay. The selective substitution operation
allows the cipher to encrypt images with no traces of
the original image. This is a major advantage of the
homophonic substitutions. In Figure 6, shown
below, we encrypt part of the image to verify that
there are no visible leaked structures from the
original image. Based on the results shown in Figure
7, we provide a summary of the tests performed on
the cipher in Table 1. The first and second ciphers,
resulting from a one-bit change in key, were XORed
to verify the SAC. The hamming distance is
computed to assert that approximately one half the
bits were changed as a result of the encryption
process.

Figure 6: A partially encrypted image, showing no
structure leakage from the original.

Figure 7: A screen shot showing the tests which results are
summarized in table 1.

The word size and the number of threads were
changed to check for execution time, throughput and
the number of cycles required to encrypt one byte.
The tests were performed using Intel Core2 Duo
CPU E6550 @ 2.33 GHz, 4 GB RAM, 32-bit
operating system.
As seen from Table 1, the SAC is satisfied since the
number of one’s resulting from XOR two ciphers,
encrypted with one-bit difference in key used
(Frankly12345 versus Erankly12345), is about 50%.
We have changed the number of threads and found
the number of cycles per byte to be in the range 26-
31 cycles per byte depending on the CPU usage.
Using only one thread, the throughput is 304.491
Mbps, the cycles per byte is 52, the execution time
with I/O included is 0.499 sec, and the execution
time without I/O is 0.343 sec. As expected, using
multithreading improves the performance

Table 1: Tests to verify SAC and no bias to zeros or ones
in the cipher file.

File Name & Size DSC923,
2.49 MB

DSC923,
2.49 MB

DSC923,
2.49 MB

Keys Frankly
1234,
Erankly
1234

Frankly
1234,
Erankly
1234

Frankly
1234,
Erankly
1234

Cipher1 Beta1 Beta1 Beta2
Cipher2 Beta2 Beta2 Beta2

Cipher1 XOR
Cipher 2

1’s =
49.9994%

1’s =
50.238%

1’s =
50.230%

Word size (bits) 8 16 32
Threads 8 8 8
Rounds 4+1 4+1 4+1

Throughput
(Mbps/round)

514.486 610.764 610.764

Cycles per byte 31 26 26
System Frequency

(MHz)
2.000 2.000 2.000

Execution time
(sec), I/O included

0.219 0.187 0.187

Execution time
(sec), I/O not

included

0.203 0.171 0.171

Hamming distance
(bits per byte

changed)

3.636 3.778 3.804

Number of zeroes
in encrypted file

49.84% 49.95% 49.95%

appreciably. This is result of utilizing the parallelism
in modern superscalar processors. We have not
compromised the security for improved
performance. We rather made full use of
contemporary superior processors’ performance.

10 SUMMARY & CONCLUSIONS

In this work, we have presented a polymorphic
cipher, the rationale of its design and the general
constructs required to build such a cipher.
Throughout the process of implementing the ideas
behind constructing such a cipher, we were able to
demonstrate the following:

Design of a polymorphic secure cipher that can
be efficiently implemented in both software and
hardware. Contrary to conventional ciphers
where it is implicitly assumed that the cipher
machine is not reprogrammable, the proposed
polymorphic cipher utilizes the user key to
change the parameters of its operations. We have
proposed three constructs in a general
polymorphic cipher; Shuffle, Select/Remove and
Change parameters as key-dependent operations.

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

207

One considers the user key as the system
memory where both the user key data and cipher
re-programmability parameters are stored. The
proposed cipher is a word-based cipher with
variable word and key sizes. The bit-level S-orb
replaces the conventional S-box leading to a
noticeable increase in addressing space and
added security. The key stream and the number
of rounds are both key-dependent; thus
eliminating the possibility of trap door functions.
The generated S-orb is key-dependent using a
specially-developed hash- function. The large
integer numbers used in generating the different
S-orb words are also key-dependent. The ergodic
process, on which the cipher is based, is also key
initiated emulating a faulty compass. These key-
dependencies provided the foundation from
which this polymorphic cipher acquired its name.
Furthermore, these substitutions provide the
required aperiodic random walks. We have used
the concept of a faulty compass rather than
chaotic maps since these chaotic systems usually
suffer from unpredictable reproducibility
problems. We have used selective additions
leading to an enhanced homophonic substitution.
In these homophonic bit-level substitutions, the
mapping of characters varies depending on the
sequence of bits in the message text. Inside the
encryption process, the round keys act initially as
pointers in the homophonic substitutions without
directly being part of the computations. This
contributes to added security. Finally, a poly-
alphabetic substitution is performed on the data.
This involves using bit-wise XOR between the
partially ciphered data and the generated keys.
The operation can be viewed as a linear masking
operation. The high security of this cipher is a
direct consequence of the polymorphic key-
dependent design of the cipher operations’
parameters.
The paradigm of polymorphic encryption
provides the required security with relatively
simple round function constructs. The security of
the cipher was not compromised for an increase
in its speed. We have preserved the pseudo-
random permutations using robust bit-wise
homophonic substitutions. In addition, we have
utilized the capabilities of contemporary
processors’ superior performance to achieve
acceptable execution speeds.

REFERENCES

ANSI X3.92, (1981). American National Standard for
Data Encryption Algorithm (DEA). American
National Standards Institute.

Kostadin Bajalcaliev, May (2001). Quasi Functions and
Polymorphic Encryption. http://eon.pmf.ukim.edu.mk/
~kbajalc

Aiden A. Bruen, Mario A. Forcinito, (2005).
Cryptography, Information Theory and Error
Correction, Wiley-Inter-science.

Daemen and V. Rijmen, (1998). AES Proposal: Rijndael.
First AES conference, California, US.

Federal Information Processing Standard Publication,
April 17, (1995). Specifications for Secure Hash
Standard. FIPS PUB 180-1,
http://www.itl.nist.gov/fipspubs/fip180-1.htm

Gray, R.M., (2008). Probability, Random Processes, and
Ergodic Properties. Springer Verlag, New York.

Gunther, C., (1988). A Universal algorithm for
homophonic coding. Advances in Cryptology,
Eurocrypt 88, LNCS No. 330, pages 405-441,
Springer-Verlag.

Hans Dobbertin, Antoon Bosselaers, Bart Preneel, (1996).
RIPEMD-160: A Strengthened Version of RIPEMD.
Fast Software Encryption, LNCS 1039, Springer-
Verlag, pp. 71–82.

Hussein A. AlHassan, Magdy Saeb, Hassan D. Hamed,
(2005). The Pyramids Block Cipher. International
Journal of Network Security, Vol. 1, No., 1, pages 52-
60.

Karatsuba A. and Yu Ofman, (1962). Multiplication of
Many-Digital Numbers by Automatic Computers.
Proceedings of the USSR Academy of Sciences, 145,
pages 293-294.

Ralph C. Merkle, June, (1979). Secrecy, Authentication
and Public Key Systems, Ph.D. Dissertation, Stanford
University.

Merkle, R.C., (1991). Fast Software Encryption Functions.
Advances in Cryptology-CRYPTO ’90 Proceedings,
pages.476-501, Springer Verlag.

Massey, J. L., (1987). On Probabilistic Encipherment.
IEEE Information Theory Workshop, Bellagio, Italy.

Massey, J. L., (1994). Some Applications of Source
Coding in Cryptography. European transactions on
Telecommunications, Vol. 5, No. 4, pp.7/421-15/429.

Penzhorn, W. T., (1994). A fast homophonic coding
algorithm based on arithmetic coding. Fast Software
Encryption, second International Workshop, Leuven,
Belgium, Lecture Notes in Computer Science1008,
pages 329-346.

Discussions by Terry Ritter, et al., 2007.
http://www.ciphersbyritter.com/LEARNING.HTM.

Rivest, R.L., (1990).. The MD4 Message Digest
Algorithm. RFC 1186.

Rivest, R. L., (1992). The MD5 Message Digest
Algorithm. RFC 1321.

Rogaway, P., Coppersmith, D., (1994). A software-
oriented Encryption Algorithm. Fast Software

SECRYPT 2009 - International Conference on Security and Cryptography

208

Encryption Cambridge Security workshop
Proceedings, Springer-Verlag, pages 56-63.

Bruce Schneier, (1994). Description of a New variable-
Length key, 64-bit Block Cipher (Blowfish). Fast
Software Encryption, Cambridge Security Workshop
Proceedings, Springer-Verlag, pages 191-204.

Bruce Schneier, John Kelsey, Doug Whiting, David
Wagner, Chris Hall, Niels Ferguson, , (1998).
Twofish: A 128-bit Block Cipher. First AES
conference, California, US.

Swenson, C., (2008). Modern Cryptanalysis; Techniques
for advanced Code Breaking, Wiley Pub. Inc.

Michael Welschenbach, (2005). Cryptography in C and
C++, Apress.

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

209

