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Abstract: The Chameleon Cipher-192 is a polymorphic cipher that utilizes a variable word size and variable-size 
user’s key. In the preprocessing stage, the user key is extended into a larger table or bit-level S-box using a 
specially developed hash-function. The generated table is used in a special configuration to substantially 
increase the substitution addressing space. Accordingly, we call this table the S-orb. We show that the 
proposed cipher provides concepts of key-dependent number of rotations, key-dependent number of rounds 
and key-dependent addresses of substitution tables. Moreover, the parameters used to generate the different 
S-orb words are likewise key-dependent. We establish that the self-modifying proposed cipher, based on the 
aforementioned key-dependencies, provides an algorithm polymorphism and adequate security with a 
simple parallelizable structure. The ideas incorporated in the development of this cipher may pave the way 
for key-driven encryption rather than merely using the key for sub-key generation. The cipher is adaptable 
to both hardware and software implementations. Potential applications include voice and image encryption. 

1 INTRODUCTION 

A process is ergodic if and only if its’ time averages’ 
over a single realization of the process converge in 
mean square to the corresponding ’ensemble 
averages’ over many realizations. As an example, 
suppose the process is x = k + f (t) + e where k is 
unknown, f (t) is nonlinear and e is a white noise 
error. Then any sample of x for a known t gives 
information about k and that is enough information 
to make predictions at remote times in the future that 
are just as good as predictions at nearby times. In 
this case one identifies such a process as a “not 
ergodic” process. Using this definition, we call a 
cipher, when represented by a stochastic process, 
“ergodic” if sampling its cipher text does not give 
enough information about its key to make 
predictions regarding its plain text at subsequent 
times (Gray, R.M., 2008). In this work, we apply 
this principle to design a polymorphic cipher (K. 
Bajalcaliev, 2001) that is based on a specially 
developed hash function and ergodic substitutions to 
provide the required diffusion and confusion with 
aperiodic behavior. The polymorphic nature of the 

cipher results from the dependency of some design 
parameters on the user key. The truly random 
behavior of the white noise error can be 
approximated by specific functions in the cipher 
structure.  

1.1 CC-192 in General  

We aim to design a polymorphic secure cipher that 
can be efficiently implemented in both software and 
hardware. The evolution of superscalar 64-bit word 
processors and the expanding use of smart cards 
provide the incentive for designing ciphers that are 
flexible and better suited for these varying 
architectures. CC-192 is a word-based cipher with 
variable word and key sizes. The key stream and the 
number of rounds are both key-dependent thus 
eliminating the possibility of trap door functions. 
The proposed ergodic process is also key-dependent 
emulating a faulty compass. These key-
dependencies provide the foundation from which 
this polymorphic cipher acquired its name. 
Furthermore, these substitutions provide the required 
aperiodic random walks. We have used the concept 
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of a faulty compass rather than chaotic maps since 
these chaotic systems usually suffer from 
unpredictable reproducibility problems. In summary, 
we use a group of transformations leading to an 
enhanced homophonic substitution (Penzhorn, W.T., 
1994), (Gunther, C., 1988), (Massey, J. L., 1987), 
(Massey, J. L., 1994) in which the mapping of 
characters varies depending on the sequence of bits 
in the message text. In executing the method, 
encryption keys are first generated. Then, enhanced 
homophonic substitution is performed. Finally, a 
poly-alphabetic substitution is performed on the 
data. This involves using bit-wise XOR between the 
partially ciphered data and the generated keys. The 
operation can be viewed as a linear masking 
operation. The high security of this proposed cipher 
is a result of the polymorphic key-dependent 
operations. The proposed cipher, implemented using 
C#, performs data encryption at about 26 cycles per 
byte using eight threads and 16 or 32-bit word size. 
Key setup consumes about 116 cycles per byte. This 
is achieved employing multithreading capabilities of 
modern superscalar processors using Intel Core2 
Duo CPU E6550 @ 2.33 GHz, 4 GB RAM, 32-bit 
operating system. Various tests were performed and 
passed with no indication of deviation from random 
behavior. The security of the proposed cipher, based 
on algorithm polymorphism and a variable size S-
orb, is acceptable for a large number of today’s data 
security requirements. This will be established in 
detail in sections 3, 5, and 10. 

1.2 Organization 

This article is organized as follows: in section 2, we 
provide a summary of the design objectives of CC-
192. In section 3, the ideas of a polymorphic cipher 
and a brief mathematical background are presented. 
Section 4 provides a discussion of the cipher basic 
building blocks. These are the cipher structure, the 
S-orb, the hash function employed, the whitening 
and the key scheduling process. In section 5, we 
provide our design rationale. The details of the 
algorithm are described in section 6. A section on 
the key generation procedure is also provided. The 
statistical tests, discussion of trap doors, cipher 
security, applications and performance are discussed 
in detail in sections 8, and 9 respectively. Finally, 
we give a summary and our conclusions. The 
appendix provides some details of the hash function 
utilized. 
 
 

1.3 Notation 

We use the following notation: ⊕denotes logical  
 

XOR, ∧  denotes logical AND, ∨  denotes logical 
OR, << and >> denote left and right logical bit-wise 
shift, <<< and >>> denote left and right bit-wise 
rotation, || denotes concatenation, and Hexadecimal 
numbers are prefixed by “0x”. We apply integer 
notation for all variables and constants. 

2 CC-192 DESIGN OBJECTIVES 

The objectives taken into consideration while 
designing this cipher include:  

• The design of a key-driven, polymorphic highly 
secure cipher. 

• Applicability to software with the proper 
utilization of today’s superscalar processor 
architectures.  

• Applicability to hardware with a design of a 
simple parallelizable cipher for FPGA-based 
applications. 

• Flexible design; accepts keys and data blocks of 
different lengths and provide variable size S-orb 
depending on changing security requirements. 

• Variable, key-dependent, number of rounds. 
• Key setup time is kept to a minimum using a 

specially designed hash function. 
• Simple construction and simple round function 

with minimum internal looping. 

3 POLYMORPHIC STRUCTURE 

For a true polymorphic cipher design, we propose 
three constructs: 

• Shuffle 
• Select/Remove 
• Change parameters 

One can visualize this approach as re-programming 
the cipher depending on an instruction set (number 
and function of various blocks). The micro-program 
instructions are actually stored in the user key. The 
larger the key size, the more “instructions” one can 
store. In conventional ciphers, the attacker uses the 
algorithm and the cipher to find a constant which is 
the key. However, in the proposed approach, the 
attacker has no substantial idea of the form of the 
algorithm since it is totally key-dependent. The 
attacker has to use the cipher to figure the algorithm 
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construction first and then use the discovered 
algorithm and the cipher to find the key. The key is 
considered the memory of the system that contains 
not only the data segment, as in conventional 
ciphers, but also the program segment. If Alice 
sends the key to Bob, through a secure channel, she 
is actually sending both the structure of the 
algorithm and the data part used to expand the key. 
To approach the problem quantitatively, we provide 
the following discussion: In the Shuffle construct, 
we use the user’s key to re-arrange the order of the 
operations. This idea was clearly used in the eight-
block “Pyramids” block cipher (Hussein A. et al., 
2005). This technique, when applied to an n-
operation structure, provides (n!) different 
algorithms. Each one of these algorithms has to be 
individually investigated by the attacker. On the 
other hand, if we change the parameters of the 
different operations with values depending on the 
user’s key, one arrives at selection probabilities that 
correspond to one-out-of k cases. For example, if we 
assume that we can perform a variable number of 
rotations that depends on the register size utilized, 
say 32-bit register, then the probability of choosing 
the correct case is 1/25. The same rationale applies to 
a varying number of rounds; say from 1 to 8 with a 
probability of choosing the correct one equal to 1/23. 
For the correct bit-wise substitution, with a number 
of different cases equal to, say, 128 cases or 
addresses, the probability is 1/27 . To choose the 
correct values of the integers pi and qi, used to 
update the next S-orb word, the attacker has to 
choose the correct values with a probability of 1 / 2 
32. Therefore, for an attacker to attain the correct 
probability he or she would have to try 2 47 cases 
with a success probability of approximately 7.105 x 
10 -15. Now to attack the hash function, acting as 
PRNG, using the birthday paradox, the success 
probability is given by 1 / 2 96 using a 192-bit hash 
function. Thus, the overall probability of a 
successful attack on the cipher is 1/ 2 143 or 89.68 x 
10 -45 which is smaller than a brute force attack using 
a 128-bit key. Future ciphers may embrace both of 
the two basic constructs; shuffle and select for 
highly secured applications. For the second construct 
“Remove”, using the key one can reduce the number 
of operations; say L operations, from a maximum 
given number (n). Therefore, the attacker has to 
investigate a number of algorithms equal to (n! + (n-
L)!). This basic notion of reprogrammable or 
polymorphic cipher is shown in Figure 1. 
Now to compute the probability of a successful 
attack on a general polymorphic cipher, one starts 
with the probability of figuring out the algorithm  
 

a) Shuffle rounds 

b) Select/Remove 

c) Change parameters 

Figure 1: The conceptual diagram of the constructs to 
realize a polymorphic cipher. Different colors represent 
different operations. 

utilized from shuffled n blocks. This probability is 
given by: 

P shuffle = 1/ n! (3.1)

Within each block there are m operations each 
operation i requires ki parameters. Therefore, to 
select the correct parameter to operation i= 1, 2, … 
m 

Pi = Pr {correctly selecting the parameter for 
operation i} = 1/ki 

Then the probability to correctly select all 
parameters for all operations is given by: 

P select = ∏ ௜ܲ
௠
௜ୀଵ  = ∏ 1/݇௜௠

௜ୀଵ  (3.2)

Assuming all ki are equal to, say k, then equation 4.2 
takes the form: 

P select = ∏ 1/݇௠
௜ୀଵ  = 1/km (3.3)

Then the overall probability of finding the correct 
algorithm, allowing removal of certain blocks is 
given by: 

P ൌ
1

݇௠ ሺ݊! ൅ ሺ݊ െ ሻ!ሻ (3.4)ܮ

For example, take m=5, k=4, n=8, L=2, then P will 
be equal to 2.37954 x 10-8. However, the actual 
probability for a practical cipher will be much 
smaller than this value since the number of 
operations per block and the number of parameters 
will be larger than the previously given values. In 
Pyramids we have changed the order of operations. 
On the other hand, in Chameleon Cipher, we neither 
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change the number of blocks nor their order; we 
only change the parameters of various operations 
and the number of rounds. Security here is founded 
on the notion of producing potentially large number 
of forms of a polymorphic algorithm. This is in 
contrast to conventional ciphers where it is 
implicitly assumed that the cipher machine is not 
reprogrammable. In these ciphers, the common 
wisdom dictates that there is no need to develop 
algorithms that can “Rewire the Enigma Machine”. 
However, one can consider the user key as the 
system memory where both the user data and cipher 
re-programmability parameters are stored. In 
designing a cipher, the basic aim is to provide 
aperiodic or, in reality, a very long average period of 
the key stream. This can be partially achieved by 
ensuring a large internal state of the cipher. An 
ergodic process, as defined before, when sampling a 
cipher text does not give enough information about 
its key to make predictions regarding its plain text at 
subsequent times. We show that if the internal state 
of the cipher, represented by the S-orb address 
space, is made large enough such that the ergodic 
process can be correctly approximated. 

4 CC-192 BUILDING BLOCKS 

There are two distinct phases of performing this 
algorithm; the initialization of the S-orb and the 
encryption phase. 

4.1 Initialization 

The S-orb initialization of this cipher is performed 
“off-line” using the following recursive equation: 
 

hi = h (pi . hi-1 + qi) (4.1)

Where hi is the hash function of the S-orb word (i). 
The total number of words of the S-orb (m) varies 
depending on the available memory and degree of 
security required. This value is taken equal to 6 
resulting in an S-orb of six 192-bit words. The 
process is initialized with h0 = h (k), where k is the 
user key, and pi and qi are two large secret integer 
numbers. These two numbers can be also obtained 
from the user key. The initial vector of the hash 
function (IV) is not necessarily to be kept secret. We 
use an assigned field in the round keys or S-orb 
words to determine the location of the center of what 
we call the “x-blocks”. The contents of each block 
are used to perform the required substitution 
additions. The next step is to divide the plain text 
192-bit block into six 32-bit words, 12 16-bit words 

or 24 eight-bit words. The same procedure is applied 
to different round keys. Now, we are able to perform 
the selective XOR operation, as shown in detail in 
the block diagram, in order to realize the required 
homophonic substitution. The next step is to perform 
a number of rotations to the partially ciphered words 
where this number is determined by a five-bit secret 
field of the round key. Finally, to perform the poly-
alphabetic substitutions, we use the xor operation 
between the resulting partially ciphered word and 
the round key. The operation is repeated an 
additional number of rounds depending on the value 
obtained from the original user key. Other details are 
shown in the block diagram of Figure 2. This 
diagram illustrates the two basic operations utilized; 
initialization of the S-orb and the encryption phases. 
Figure 3.a illustrates some conceptual format details 
of the user and round keys. The substitution x-block 
is shown in at the lower side of Figure 3.b.  

 
Figure 2: The Chameleon Cipher. 

4.2 Key Schedule 

A cipher, for a given security level, may require a 
relatively large number of round keys. Therefore, the 
S-orb number of words is intentionally left open to 
the user to increase the internal state of the cipher 
for added security. The user key can be varied from 
one bit to virtually any size key since it will be 
hashed using MDP-192 into a 192-bit set of round 
keys depending on the size of the S-orb.  
Using a preprocessing phase of xoring the plain text 
with the user key and a post processing of xoring the 
cipher with the user key adds appreciably to the  
 

THE CHAMELEON CIPHER-192 (CC-192) - A Polymorphic Cipher

201



 

 

 
Figure 3: 3.a: (from top to bottom) The key format, the 
construction of the S-orb and 3.b: the X-blocks. 

security of the algorithm as shown by Merkle 
(Merkle,  R.C., 1991).  

4.3 Key setup  

There are alternatives available to the cipher 
designer to build the S-box. These alternatives are: 

1. Fixed S-box such as in DES (ANSI X3.92, 
1981), AES (Daemen and V. Rijmen, 
1998). 

2. Cipher-generated such as in BlowFish 
(Bruce Schneier, 1994). 

3. SHA (Federal Information Processing 
Standard Publication, 1995), (A. Bruen, M. 
Forcinito, 2005), hash function-generated 
such as in SEAL (Rogaway, P., 
Coppersmith, D., 1994). 

4. Based on a specially-designed hash 
function 

The first alternative may seriously compromise 
security. In the case of DES, there were a lot of 
conjectures that it contains trap doors. The second 
alternative consumes a large amount of key setup 
time. The third alternative is susceptible to attacks 
since it is based on a well-studied hash function. In 
our design, we have chosen the fourth alternative 
and designed our own hash function with features 
that can stand present and some future attacks. 
Moreover, the performance on modern superscalar 
processors of this hash and accordingly the key 
setup time were optimized and verified.  
 

5 DESIGN RATIONALE 

In the design of this cipher, we follow the general 
construction, suggested by T. Ritter (Terry Ritter et 
al., 2007). In this basic structure, we utilize the ideas 
put forward by Ritter regarding the exchange of two 
message symbols. The shown transposition provides 
the required mathematical “permutation” of the 
message contents. However, this type of 
transposition notoriously has weaknesses when 
performed on the character level, since every 
character of the plain text is still visible in the cipher 
text. This allows for a chance for rearranging or 
“anagram’ the cipher to find the plain text that 
makes sense. Nevertheless, if this permutation is 
performed on the bit-level, a large number of 
“Homophones” can be created. All but one is the 
required message. The concept behind this technique 
is rather simple. One starts by collecting data in 
blocks where the number of ones is almost equal to 
the number of zeros. Then the bits of these blocks 
are shuffled using a keyed pseudorandom number 
generator. We call this PRNG the “S-orb”. If the 
sequence reuse is minimized, then one correctly 
obtains scrambled words or cipher text. However, it 
requires a PRNG with a relatively large internal 
state. This, in a sense, partially neutralizes the ability 
of the attacker to identify which permutation has 
occurred. The size of the S-orb was left variable to 
allow applicability to platforms with limited 
memory. Using conventional substitution tables may 
leak an infinitesimal fraction of these tables. This 
may lead to the exploitation of these ciphering 
tables. However, dynamic transposition provides an 
unbiased basic ciphering operation. Many different 
permutations will produce the exact same cipher 
from the same plain text. Thus, even known-
plaintext does not expose the exact ciphering 
transformation. This is a form of balanced, nonlinear 
aggregation of the confusion sequence and data 
(Terry Ritter et al., 2007). On the other hand, bit-
permutation does consume a substantial execution 
time. However, in modern superscalar processors, 
this cost is increasingly becoming quite endurable. 
For simpler fine-grained processors, and FPGA-
based implementations, one can always resort to 
parallelism or multiple similar data paths to 
compensate for this unavoidable increase in 
execution time. The proposed simple straight 
forward structure with minimal internal sequential 
looping makes this algorithm a good candidate for 
this type of parallelism. The second adopted 
principle in the design of this cipher is based on 
“algorithm polymorphism”. The algorithm, 
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depending on certain values embedded in the user 
key, transforms (morphs) into different forms. As 
shown in section 3, the attacker has a very small 
probability of discovering the correct form of the 
algorithm. In Chameleon Cipher, we only use 
parameter changes. 
The design of the round function is kept simple and 
straight forward. It is based on two fast operations 
substitute and add (SUBSADD), and XOR. These 
two operations are supported in most modern 
processors. The rotation operation, while it is 
relatively slow, we found it essential for correct data 
scrambling and elimination of key leakage. The bit-
wise substitutions are time- consuming. However, 
with proper utilization of modern superscalar 
processors, the associated delays are kept to a 
minimum. Even with such simple round function, it 
is well-known that increasing the number of rounds 
will provide the required security. This simple round 
function when iterated through a key-dependent 
number of rounds that is greater than or equal to a 
prescribed minimum number of rounds provides the 
required security. This approach contradicts 
conventional designs where the designers use strong 
round functions and less number of iterations. We 
view the performance as the overall execution time 
not the number of rounds. There is no internal 
looping per round. This feature provides the basis 
for parallelization on multi-thread superscalar 
processors. At the same time, the cipher can be 
easily implemented on FPGA using similar multi-
data paths, as mentioned before, for improved 
performance. 

5.1 The Hash Function MDP-192 

Cryptographic hash functions or message digest 
have numerous applications in data security. The 
recent crypto-analysis attacks on existing hash 
functions have provided the motivation for 
improving the structure of such functions. The 
design of the proposed hash is based on the 
principles provided by Merkle’s work (Ralph C. 
Merkle, 1979), Rivest MD-5 (Rivest, R. L., 1992), 
SHA-1 and RIPEMD (Hans Dobbertin et al., 1996). 
However, a large number of modifications and 
improvements are implemented to enable this hash 
to resist present and some probable future crypto-
analysis attacks. The procedure, shown in Figure 4, 
provides a 192-bit long hash that utilizes six 
variables for the round function. A 1024-bit block 
size, with cascaded xor operations and deliberate 
asymmetry in the design structure, is used to provide 
higher security with negligible increase in execution 

time. The design of new hashes should follow, we 
believe, an evolutionary rather than a revolutionary 
paradigm. Consequently, changes to the original 
structure are kept to a minimum to utilize the 
confidence previously gained with SHA-1 and its 
predecessors MD4 (Rivest,  R.L., 1990) and MD5. 
However, the main improvements included in MDP-
1 are: The increased size of the hash; that is 192 bits 
compared to 128 and 160 bits for the MD-5 and 
SHA-1 schemes. The security bits have been 
increased from 64 and 80 to 96 bits. The message 
block size is increased to 1024 bits providing faster 
execution times. The message words in the different 
rounds are not only permuted but computed by xor 
and addition with the previous message words. This 
renders it harder for local changes to be confined to 
a few bits. In other words, individual message bits 
influence the computations at a large number of 
places. This, in turn, provides faster avalanche effect 
and added security. Moreover, adding two nonlinear 
functions and one of the variables to compute 
another variable, not only eliminates the possibility 
of certain attacks but also provides faster data 
diffusion. The fifth improvement is based on 
processing the message blocks employing six 
variables rather than four or five variables. This 
contributes to better security and faster avalanche 
effect. We have introduced a deliberate asymmetry 
in the procedure structure to impede potential and 
some future attacks. The xor and addition operations 
do not cause appreciable execution delays for 
today’s processors. Nevertheless, the number of 
rotation operations, in each branch, has been 
optimized to provide fast avalanche with minimum 
overall execution delays. To verify the security of 
this hash function, we discuss the following simple 
theorem: 

Theorem 5.1. 

Let h be an m-bit to n-bit hash function where m >= 
n input keys k1, k2 to h.  
Then h (k1) = h (k2) with probability equal to: 

2-m + 2-n – 2-m-n  

Proof. 

If k1 = k2 , then h (k1) = h (k2).  
However, if k1≠ k2, then h(k1) = h(k2) with 
probability 2-n. 
k1 = k2 with probability 2-m and k1≠ k2 with 
probability 1- 2-m. 
Then the probability that h (k1) = h(k2) is given by: 

Pr {h (k1) = h (k2)} = 2-m + (1 - 2-m). 2-n 
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As an example, assume two 192-bit different keys 
x1, x2 then  

Pr {h(x1) = h(x2)} = 2. 2-192 – 2-384 
= 2-191 (1 - 2-193) ≈ 3.186 x 10-58 

This is a negligible probability of collision of two 
different keys. 

 
Figure 4: The hash function (MDP-192) used to generate 
the S-orb. 

5.2 The S-orb 

As shown in section 4.1, the S-orb is constructed 
using an iterated application of MDP-192 on the 
round keys multiplied by and added to two large 
numbers. The iteration is initiated using the user’s 
key. However, to increase the addressing space, we 
use the resulting table by folding it vertically and 
diagonally as shown in Figure 5. The resulting 
spherical configuration is what we have referred to 
as the S-orb. The programming effort involved is 
justifiable when one takes into consideration the 
potential increase in the number of addressable x-
blocks. 

 
Figure 5: The conceptual S-orb 

The generation of the S-orb based on the user key 
using a hash function eliminates the possibility of 
trap door functions. In addition, the number of 
words of the S-orb can be increased for added 
security and increasing the internal cipher period. 
This set of two large numbers is used to update the 
iterative hash calculation and is kept secret. This set 
is also user key-dependent. If we use, say six-word 
192-bit per word S-box, then the number of x-blocks 
will be 128 blocks. However, if we use the S-orb 
configuration, then this number is increased to 1152 

since each element can serve as the center of the x-
block. Accordingly with such simple transformation 
of the S-box to an S-orb, the internal state of the 
cipher has been enormously increased. This may 
prove to be an important feature of the cipher for 
devices with limited memory.  

6 THE ALGORITHM 

In the next few lines we provide a formal description 
of the algorithm round structure.  

Algorithm Chameleon-Cipher 

[Given a plain text message P, key K, the aim of the 
algorithm is to encrypt the plain text into a cipher 
text C and decrypt it again. To achieve this the 
algorithm utilizes a specially developed hash 
function to generate the key stream, and a dynamic 
transposition to permute the plain text, and finally 
modulo two addition to scramble a varying-size 
data unit] 

Encrypt: 

Input: Plain text P, key K Output: Cipher C, word-
size 

Algorithm body: 

 Initialize the S-orb 

 Input: n is a positive integer ε Ζ+ equal to 
number of words of the S-orb, pi, qi are pairs of 
large positive integer numbers ε Z+ required to 
update the iterative application of the hash function.

 Output: A 192-bit n-word table utilized as a 
pseudo random number generator PRNG called the 
S-orb. 

 {Initialize S-orb body :} 

i: = 0; 

h0 := p0. h (K) + q0;   

{Hash the user key using MDP-192} 

While i <= n 

 hi+1 := pi+1. hi (k) + qi+1; 
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 Save in S-orb file; 

End while; 

End Initialize; 

 {Encrypt} 

{P[m] = m blocks in P file} 

Divide the Plaintext file P into m-1 192-bit blocks; 
Append last block if necessary;  

Read max-number of rounds from user key; {Input 
max-number of rounds from user key from assigned 
secret location in user key} 

If max-number of rounds < 4 then max-number of 
rounds: = 4;  

For round = 1 to max-number of rounds 

While (P[m] ≠ EOF)  {EOF: End Of File} 

 j := 0; 

 While j ≠ n 

Read kw[j] of S file; 

Using the round key kw[j], read value of integer 
given by bit location 23-to-29;  {This address 
represents the address of the center element of the 
block}  

For the next block address, slide the 7-bit window 
two bits to the right and find new block address; 

Divide the plain text 192-bit block into six 32-bit 
words, or twelve 16-bit words, or twenty four 8-bit 
words depending on user word-size; 

From the LSB and moving to the right of the word-
to- be encrypted: {Input: P[m], kw[j](round key), 
Output: Ci1} 

If ki =1 then move depending on location weights 
0,1,2,...7 to N, NE, …, NW respectively then xor 
with corresponding bit of round-key kw[j];  

Else do nothing; 

ROTL (r); {r is determined from key 5-bit field (16-
20) value, output Ci2} 

{Input: Ci2, kw[j](round key), Output: Ci3} 

If ki =0 then move depending on location weights 
0,1,2,...7 to N, NE, …, NW respectively then xor 
with corresponding bit of round-key kw[j]; 

Else do nothing;  

{Input: Ci3, kw[j]i (round key), Output: Ci} 

Ci = Ci3 xor kw[j];  

Save Ci in output file  

End while; 

Next round; 

End Algorithm. 

The substitution operation, using the x-blocks, 
explained above, provides homophonic substitutions 
that considerably improve the security of the cipher. 
In addition it provides the means to overcome the 
potential problem of block replay. The cipher is a 
binary-additive cipher that emulates a one-time-pad. 
The final xor operation between the partially 
ciphered text and the round key provides the 
polyalphabetic substitution and masking required for 
security. Inside the encryption process, the round 
keys effectively act as pointers in the homophonic 
substitutions without directly be part of the 
computations. This contributes to added security to 
the cipher. Testing of the cipher shows no bias to 
either ones or zeros and an average hamming 
distance of 3.8 for each byte encrypted. However, 
this value can be substantially increased with the 
increase of the minimum number of rounds. Testing 
of the cipher conforms to the Strict Avalanche 
Criteria (SAC) as required by New European 
Schemes for Signal Integrity and Encryption 
(NESSIE). The results are summarized and 
discussed in section 12. Contrary to conventional 
ciphers, the round function is kept simple and, in 
general, security is obtained through a relative 
increase of the number of rounds. This number of 
rounds can be large to ensure security. However, we 
adopted the idea of key-dependent number of rounds 
as long as it is greater than four rounds. This way, 
the security is increased twofold; by having an 
adequate number of rounds and at the same time 
hiding this number, in most cases, from the attacker. 
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7 KEY GENERATION 

In this section, we provide a recap on some of the 
concepts that have already been presented regarding 
key-generation. Using the MDP-192 hash function 
recursively, one is able to generate the required 
PRNG. Most of the CPU time used in key-setup is 
actually consumed by this hash. The tests on this 
hash have shown that the average throughput, using 
Intel Core2 Duo CPU E6550 @ 2.33 GHz, 4 GB 
RAM, 32-bit operating system, is approximately 
161.4 Mbps. That is 115.6 cycles per byte. If the key 
size is 128 bits, then we require around 1849.6 
cycles for key setup. The recursive use of the hash 
function, as shown in equation 4.1, requires the 
multiplication of the hash by a large integer number 
pi. There are a number of methods to achieve this 
object (Michael Welschenbach, 2005). We have 
adopted a modified version of Karatsuba Algorithm 
(Karatsuba A. and Yu Ofman, 1962), to perform this 
task. The homophonic selective substitutions were 
performed using 1152 x-blocks. No bias to the zeros 
or to the ones was completely and absolutely 
observed during the design phase. This was later 
verified based on the tests performed on the cipher. 

8 STATISTICAL TESTS 

The essential part of any cryptographic primitive is 
to generate a truly pseudo random sequence. A 
necessary but not a sufficient condition is to verify 
that there is no bias in the number of zeros or ones in 
the resulting cipher. This simple fact was repeatedly 
verified for various types of encrypted text, graphics 
or audio files. The results of these tests are shown in 
section 12. The strict avalanche criteria test is 
performed by changing one bit of the key and noting 
the change in the resulting cipher. As expected, and 
as required by NESSIE, the number of bits that have 
changed in the cipher is greater than or equal to 
50%. The tests proposed by National Institute of 
Standards and Technology (NIST) and 
recommended by (NESSIE) were performed on the 
cipher. These tests are shown in the following list:  
Frequency (Mono-bit) Test, Frequency within a 
block, Runs Test, Longest Run of ones in a block, 
Binary Matrix Rank Test, Discrete, Fourier 
Transform (spectral) Test, Overlapping Template 
Matching Test, Non-overlapping Template Matching 
Test, Maurer’s Universal Test, Lempel-Ziv 
Compression Test, Linear Complexity Test, Serial 
Test, Approximate Entropy Test, Cumulative Sums, 
Random Excursions Test, Random Excursions 
Variant Test. All of these tests were passed with no 

indication of deviation from random behavior. 
However, these tests are necessary but not a 
sufficient condition for a viable cipher. The simple 
cipher structure, the key-dependent number of 
rotations, the key-dependent addresses of the various 
x-blocks, the key-dependent number of rounds and 
above all the key-dependent S-orb all of these design 
parameters help eliminate the possibility of trap 
doors. In addition, the trap door has to endure the 
proposed variable number of rounds. The idea of a 
universal hidden key, in a sense, emulates a public 
key cryptography which is definitely not the case in 
this cipher (Bruce Schneier et al. 1998). 

9 SECURITY & PERFORMANCE 

The security features of this cipher are implicitly 
discussed in the sections covering polymorphic 
structure and design rationale. However, one claims 
that differential cryptanalysis, linear cryptanalysis, 
Interpolation attack, partial key guessing attacks, 
and side-channel attacks, hardly apply in this 
proposed cipher. The homophonic selective random 
substitutions and the polymorphic nature of the 
cipher, we believe, hide most traces that can be 
utilized to launch these attacks. Each key has its own 
unique “weaknesses” that will affect the new form 
of the algorithm utilized. Thus, different keys will 
produce different forms of the cipher. Accordingly, 
statistical analysis is not sufficient to link the plain 
text to the cipher text. With different inputs (user 
keys), we end up with a different “morph” of the 
cipher, therefore, it is totally infeasible to launch 
attacks by varying keys or part of the keys. 
Regarding the Key collision probability, it was 
shown in section 5.1 that the key collision 
probability is negligible when a 192-bit hash is 
applied. Moreover, we have proven that the attacker 
has a very small probability of guessing the correct 
form of the algorithm utilized. As was previously 
discussed, the simple structure of the proposed 
cipher provides a foundation for efficient software 
and hardware-based implementation. It is relatively 
easy to parallelize the data path either using multi-
threading on a superscalar processor or by cloning 
this path on the FPGA material. The cryptographic 
selective substitution and the variable number of 
rotations provide a secure barrier against pattern 
leakage and block replay attacks in multi-media 
applications. Using ECB mode, when encrypting 
images with conventional ciphers, a lot of the 
structure of the original image will be preserved 
(Swenson, C., 2008). This may lead to the problem 
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of block replay. The selective substitution operation 
allows the cipher to encrypt images with no traces of 
the original image. This is a major advantage of the 
homophonic substitutions. In Figure 6, shown 
below, we encrypt part of the image to verify that 
there are no visible leaked structures from the 
original image. Based on the results shown in Figure 
7, we provide a summary of the tests performed on 
the cipher in Table 1. The first and second ciphers, 
resulting from a one-bit change in key, were XORed 
to verify the SAC. The hamming distance is 
computed to assert that approximately one half the 
bits were changed as a result of the encryption 
process.  

 
Figure 6: A partially encrypted image, showing no 
structure leakage from the original. 

 
Figure 7: A screen shot showing the tests which results are 
summarized in table 1. 

The word size and the number of threads were 
changed to check for execution time, throughput and 
the number of cycles required to encrypt one byte. 
The tests were performed using Intel Core2 Duo 
CPU E6550 @ 2.33 GHz, 4 GB RAM, 32-bit 
operating system. 
As seen from Table 1, the SAC is satisfied since the 
number of one’s resulting from XOR two ciphers, 
encrypted with one-bit difference in key used 
(Frankly12345 versus Erankly12345), is about 50%. 
We have changed the number of threads and found 
the number of cycles per byte to be in the range 26-
31 cycles per byte depending on the CPU usage. 
Using only one thread, the throughput is 304.491 
Mbps, the cycles per byte is 52, the execution time 
with I/O included is 0.499 sec, and the execution 
time without I/O is 0.343 sec. As expected, using 
multithreading improves the performance  
 
 

Table 1: Tests to verify SAC and no bias to zeros or ones 
in the cipher file. 

File Name & Size DSC923, 
2.49 MB 

DSC923, 
2.49 MB 

DSC923, 
2.49 MB 

Keys Frankly 
1234, 
Erankly 
1234 

Frankly 
1234, 
Erankly 
1234 

Frankly 
1234, 
Erankly 
1234 

Cipher1 Beta1 Beta1 Beta2 
Cipher2 Beta2 Beta2 Beta2 

Cipher1 XOR 
Cipher 2 

1’s = 
49.9994% 

1’s = 
50.238% 

1’s = 
50.230% 

Word size (bits) 8 16 32 
Threads 8 8 8 
Rounds 4+1 4+1 4+1 

Throughput 
(Mbps/round) 

514.486 610.764 610.764 

Cycles per byte 31 26 26 
System Frequency 

(MHz) 
2.000 2.000 2.000 

Execution time 
(sec), I/O included

0.219 0.187 0.187 

Execution time 
(sec), I/O not 

included 

0.203 0.171 0.171 

Hamming distance 
(bits per byte 

changed) 

3.636 3.778 3.804 

Number of zeroes 
in encrypted file 

49.84% 49.95% 49.95% 

appreciably. This is result of utilizing the parallelism 
in modern superscalar processors. We have not 
compromised the security for improved 
performance. We rather made full use of 
contemporary superior processors’ performance. 

10 SUMMARY & CONCLUSIONS 

In this work, we have presented a polymorphic 
cipher, the rationale of its design and the general 
constructs required to build such a cipher. 
Throughout the process of implementing the ideas 
behind constructing such a cipher, we were able to 
demonstrate the following: 

Design of a polymorphic secure cipher that can 
be efficiently implemented in both software and 
hardware. Contrary to conventional ciphers 
where it is implicitly assumed that the cipher 
machine is not reprogrammable, the proposed 
polymorphic cipher utilizes the user key to 
change the parameters of its operations. We have 
proposed three constructs in a general 
polymorphic cipher; Shuffle, Select/Remove and 
Change parameters as key-dependent operations. 
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One considers the user key as the system 
memory where both the user key data and cipher 
re-programmability parameters are stored. The 
proposed cipher is a word-based cipher with 
variable word and key sizes. The bit-level S-orb 
replaces the conventional S-box leading to a 
noticeable increase in addressing space and 
added security. The key stream and the number 
of rounds are both key-dependent; thus 
eliminating the possibility of trap door functions. 
The generated S-orb is key-dependent using a 
specially-developed hash- function. The large 
integer numbers used in generating the different 
S-orb words are also key-dependent. The ergodic 
process, on which the cipher is based, is also key 
initiated emulating a faulty compass. These key-
dependencies provided the foundation from 
which this polymorphic cipher acquired its name. 
Furthermore, these substitutions provide the 
required aperiodic random walks. We have used 
the concept of a faulty compass rather than 
chaotic maps since these chaotic systems usually 
suffer from unpredictable reproducibility 
problems. We have used selective additions 
leading to an enhanced homophonic substitution. 
In these homophonic bit-level substitutions, the 
mapping of characters varies depending on the 
sequence of bits in the message text. Inside the 
encryption process, the round keys act initially as 
pointers in the homophonic substitutions without 
directly being part of the computations. This 
contributes to added security. Finally, a poly-
alphabetic substitution is performed on the data. 
This involves using bit-wise XOR between the 
partially ciphered data and the generated keys. 
The operation can be viewed as a linear masking 
operation. The high security of this cipher is a 
direct consequence of the polymorphic key-
dependent design of the cipher operations’ 
parameters.  
The paradigm of polymorphic encryption 
provides the required security with relatively 
simple round function constructs. The security of 
the cipher was not compromised for an increase 
in its speed. We have preserved the pseudo-
random permutations using robust bit-wise 
homophonic substitutions. In addition, we have 
utilized the capabilities of contemporary 
processors’ superior performance to achieve 
acceptable execution speeds. 
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