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Abstract: In a (t,n) secret sharing scheme, a mutually trusted dealer divides a secret inton shares in such a way that any
t or more thant shares can reconstruct the secret, but fewer thant shares cannot reconstruct the secret. When
there is no mutually trusted dealer, a(n, t,n) secret sharing scheme can be used to set up a(t,n) secret sharing
because each shareholder also acts as a dealer to decide a master secret jointly and divide each selected secret
for others. Averifiable secret sharing(VSS) allows each shareholder to verify that all shares aret-consistent
(i.e. every subset oft of the n shares defines the same secret). In this paper, we show that(t,n)-VSS and
(n, t,n)-VSS proposed by Pedersen can only ensure that all shares aret-consistent; but shares may not satisfy
the security requirements of secret sharing scheme. Then, we introduce a new notion ofstrongVSS. A strong
VSS scheme can ensure that (a) all shares aret-consistent, and (b) all shares satisfy the security requirements
of secret sharing scheme. We propose two simple ways to convert Pedersen’s VSS schemes into strong VSS
schemes, which are information-theoretically secure. We also prove that our proposed VSS schemes satisfy
the strong verifiable property.

1 INTRODUCTIONS

Secret sharing schemes were introduced by both
Blakley (Blakley, 1979) and Shamir (Shamir, 1979)
independently in 1979 as a solution for safeguarding
cryptographic keys and have been studied extensively
in the literatures. In a secret sharing scheme, a secret
s is divided inton sharesand shared amongn share-
holders by a mutually trusteddealer in such a way
that anyt or more thant shares can reconstruct this
secret, but fewer thant shares cannot reconstruct the
secrets. Such a scheme is called a(t,n) secret shar-
ing, denoted as(t,n)-SS.

In 1990, Ingemarsson and Simmon (Ingemars-

son and Simmons, 1991) first considered the secret
sharing scheme without the assistance of a mutually
trusted third party. When there is no mutually trusted
dealer, a(n,t,n) secret sharing scheme can be used to
set up a(t,n) secret sharing because each shareholder
also acts as a dealer to decide a master secret jointly
and divide each selected secret for others.

Shamir’s(t,n)-SS is based on the polynomial in-
terpolation and is information-theoretically secure.
However, since shareholders have no information
about the secret, each shareholder must uncondition-
ally trust that the received share is valid and the dealer
has not made any fault in computing shares. In 1985,
Chor et al. (Chor et al., 1985) extended the notion
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of the original secret sharing and presented a new no-
tion of verifiable secret sharing(VSS). The property
of verifiability allows shareholders to verify that all
shares aret-consistent (i.e. every subset oft of then
shares defines the same secret). VSS(Benaloh, 1986;
Feldman, 1987; Pedersen, 1992) is a fundamental tool
for many research areas in cryptography, such as se-
cure multi-party computation (Cramer et al., 2000)
and Byzantine agreement (Cachin et al., 2005). Re-
cent researches on VSS have studied asynchronous
VSS (Cachin et al., 2002), multi-secrets VSS (Dehko-
rdi and Mashhadi, 2008) and optimal round complex-
ity of VSS (Katz et al., 2008), etc.

There are VSS schemes based on some compu-
tational assumptions. For example, Feldman’s VSS
scheme (Feldman, 1987) is based on the discrete log-
arithm assumption. Later, Pedersen (Pedersen, 1992)
used a commitment scheme to remove the assumption
in Feldman’s VSS scheme to propose a VSS scheme
which is information-theoretically secure. However,
in Pedersen’s VSS scheme the dealer can succeed in
distributing incorrect shares if the dealer can solve the
discrete logarithm problem.

In this paper, we will show that(t,n)-VSS scheme
and (n,t,n)-VSS scheme proposed by Pedersen can
only ensure that all shares are generated by interpo-
lated polynomial with degreeat most(t − 1). This
result only ensures that all shares aret-consistent,
but shares may not satisfy the security requirements
of secret sharing scheme. More specifically, Peder-
sen’s VSSs cannot guarantee that at leastt shares are
needed to reconstruct the secret. Then, we introduce a
new notion ofstrongVSS. A strong VSS scheme can
ensure that (a) all shares aret-consistent, and (b) all
shares satisfy the security requirements of secret shar-
ing scheme. We propose two simple ways to convert
Pedersen’s VSS schemes into strong VSS schemes.
We also prove that our proposed VSS schemes satisfy
the strong verifiable property.

The Rest of this Paper is Organized as Follows.In
the next section, we provide some preliminaries. In
Section 3, we formally define and introduce the notion
of strong VSS scheme. In Section 4, we propose two
simple ways to convert Pedersen’s VSSs into strong
VSSs. We conclude in Section 5.

2 PRELIMINARIES

Shamir’s (t,n)-SS. In Shamir’s(t,n) scheme based
on Lagrange interpolating polynomial, there aren
shareholders,P = {P1, . . . ,Pn}, and a dealerD. The
scheme consists of two steps:

Scheme 1.Shamir’s(t,n) threshold scheme.

1. Share generation: dealerD does as follows.

• dealerD first picks a polynomialf (x) of degree(t −
1) randomly: f (x) = a0 + a1x+ · · ·+ at−1xt−1, in
which the secrets = a0 = f (0) and all coefficients
a0,a1, . . . ,at−1 are in a finite fieldFp = GF(p) with
p elements, wherep is large prime.

• D computes all shares:

s1 = f (1),s2 = f (2), . . . ,sn = f (n).

• Then, D outputs a list ofn shares,(s1,s2, . . . ,sn),
and distributes each sharesi to corresponding share-
holderPi privately.

2. Secret reconstruction: with any t shares,(si1, . . . ,sit ),
where A = {i1, . . . , it} ⊆ {1,2, . . . ,n} can reconstruct
the secrets as follows.

s= f (0) = ∑
i∈A

siβi = ∑
i∈A

si( ∏
j∈A−{i}

x j

x j −xi
),

whereβi for i ∈ A are Lagrange coefficients.

We note that the above scheme satisfies basic se-
curity requirements of secret sharing scheme as fol-
lows: 1) with knowledge of anyt or more thant
shares can reconstruct the secrets; and 2) with knowl-
edge of any fewer than(t − 1) shares cannot recon-
struct the secrets. Shamir’s scheme isinformation-
theoretically securesince the scheme satisfies these
two requirements without making any computational
assumption. For more information on this scheme,
readers can refer to the original paper (Shamir, 1979).

Secret Sharing Homomorphism. Benaloh (Be-
naloh, 1986) introduced the property ofhomomor-
phism in the secret sharing scheme to combine two
shares of two different secrets by just adding these
shares together.

Let S be the domain of a secret andT be the do-
main of shares corresponding to the secret. We say
that the functionFI : Tt → S is an inducedfunction
of the(t,n)-SS for eachI ⊂ {1,2, . . . ,n} with |I | = t.
This function defines the secrets with any set oft
sharessi1, . . . ,sit as

s= FI (si1, . . . ,sit ), where I = {i1, . . . , it}.

Definition 1 (Homomorphism (Benaloh, 1986)).
Let ⊕ and⊗ be two binary functions on elements of
the setS andT , respectively. We say that a(t,n)-
SS has the(⊕,⊗)-homomorphic property if for any
subsetI , whenever

s= FI (si1, . . . ,sit ) and s′ = FI (s
′
i1, . . . ,s

′
it ),

then
s⊕s′ = FI (si1 ⊗s′i1, . . . ,sit ⊗s′it ).

SECRYPT 2009 - International Conference on Security and Cryptography

234



t-consistency.Benaloh (Benaloh, 1986) presented a
notion of t-consistencyand proposed VSS to deter-
mine whether shares aret-consistent or not. We de-
scribe this notion as follows.

Definition 2 (t-consistency). A set of n shares
s1,s2, . . . ,sn is said to bet-consistent, if any subset
of t of then shares reconstructs the same secret.

Benaloh claimed that the sharess1,s2, . . . ,sn in
Shamir’s(t,n)-SS aret-consistent if and only if the
interpolation of the points(1,s1),(2,s2), . . . ,(n,sn)
yields a polynomial of degreeat most(t − 1). This
implies that if the interpolated polynomial ofn shares
is with degree at most(t − 1), then all shares aret-
consistent. However, the property oft-consistency
does not guarantee that all shares satisfy the secu-
rity requirements of a(t,n)-SS. For example, if the
interpolated polynomial ofn shares is with degree
(t −2), then all shares are(t −1)-consistent and also
t-consistent. The polynomial with degree(t −2), can
be reconstructed with only(t −1) (but not t) shares.
This condition violates the security requirements of a
(t,n)-SS that at leastt shares are needed to reconstruct
the secret.

It is easy to know that if all shares in Shamir’s
(t,n)-SS are generated by a polynomial with degree
exactly(t−1), then (a) all shares aret-consistent, and
(b) all shares satisfy the security requirements of a
(t,n)-SS.

Pedersen’s VSS Scheme.We note that the disadvan-
tage in Feldman’s VSS scheme (Feldman, 1987) is
that the committed valuec0 = gs is publicly known
and the privacy of secrets depends on the diffi-
culty of solving the discrete logarithm problem. In
other words, Feldman’s scheme is computationally
secure. Pedersen (Pedersen, 1992) proposed a non-
interactive and information-theoretically secure VSS
scheme based on Feldman’s VSS scheme.

Let p andq be two large primes such thatq|(p−
1), andg,h∈ Z

∗
p are two elements of orderq. There

are n shareholdersP = {P1, . . . ,Pn} and a dealerD
who will divide a secrets∈ Zq. We describe Peder-
sen’s scheme in three steps.

Scheme 2.Pedersen’s(t,n) VSS scheme.

1. Share generation: dealerD does as follows.

• D first picks a polynomialf (x) of degree at most
(t −1) randomly: f (x) = a0 +a1x+ · · ·+at−1xt−1,
in which the secrets= a0 = f (0) and all coefficients
a0,a1, . . . ,at−1 are inZq.

• D picksb0,b1, . . . ,bt−1 ∈ Zq at random. Letk(x) =

b0 +b1x+ · · ·+bt−1xt−1.

• D computes shares(si ,ti) for i = 1, . . . ,n and each
coefficient’s commitment of added sum of polyno-
mials of f (x) andk(x) as follows:

(si ,ti) = ( f (i),k(i)), for i = 1, . . . ,n, and

c j = gaj hbj (mod p), for j = 0,1, . . . ,t −1.

• Then, D outputs a list of n shares
((s1,t1), . . . ,(sn,tn)) and distributes each share
(si ,ti) to corresponding shareholderPi privately. D
also broadcastsc0,c1, . . . ,ct−1.

2. Share verification: each shareholderPi , who has re-
ceived the share(si ,ti) and all broadcasted information,
can verify that share(si ,ti) defines a secret by testing
that

gsi hti =
t−1

∏
j=0

ci j

j (mod p). (1)

3. Secret reconstruction: it is same as Shamir’s scheme.

In Pedersen’s scheme, the valuegs is not made
publicly known, that is, the secrets is embedded in the
commitmentc0 = gshb0 = gs+ub0 whereb0 is a ran-
dom number inZq andu = loggh. Thus, no informa-
tion about the secrets is revealed even if an attacker
with unlimited computing power can solveu= logg h,
the attacker still gets no information about the secret
s. It implies that Pedersen’s scheme is information-
theoretically secure.

3 DEFINITION OF STRONG VSS

We claim that the verification algorithm in Pedersen’s
scheme can only guarantee that the degree of inter-
polated polynomialf (x) is at most(t − 1); but not
exactly(t −1). Let u = logg h. Then, we get the fol-
lowing result from equation 1.

gsi+uti = gf (i)+uk(i)
, (2)

for i = 0,1, . . . ,n. Thus, after successfully completing
Pedersen’s VSS, each shareholder can be convinced
that the degree of the polynomiald(x) = f (x)+uk(x)
is exactly(t −1). Since polynomiald(x) is a combi-
nation of two polynomials,f (x) andk(x), each share-
holder can conclude that the degree of polynomial
f (x) is at most(t − 1). However, this result does
not guarantee that all shares satisfy the basic security
requirements mentioned in previous section. More
specifically, Pedersen’s VSS cannot guarantee that at
leastt shares are needed to reconstruct the secret. For
example, if polynomialf (x) is with degree exactly
(t−2) and the polynomialk(x) is with degree exactly
(t −1), then shares off (x) can be successfully verifi-
able according to Pedersen’s VSS. Since the polyno-
mial f (x) is with degree exactly(t −2), any (t − 1)
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(but not t) shares can reconstructed the secret. This
condition violates the basic security requirements that
at leastt shares are needed to reconstruct the secret.
In summary, Pedersen’s VSS can only guarantee that
all shares aret-consistent; but shares may not satisfy
the security requirements of a secret sharing scheme.
In this section, we propose a new notion of strong ver-
ifiable secret sharing that ensures all shares are gener-
ated by a polynomial with degree exactly(t −1). We
give the definition.

Definition 3 (Strong VSS). In a strong(t,n) verifi-
able secret sharing scheme, all shares are generated
by a polynomial with degree exactly(t −1).

It is easy to understand that if all shares are gener-
ated by a polynomial with degree exactly(t−1), then
(a) all shares aret-consistent, and (b) all shares satisfy
the basic security requirements.

Remark 1. Feldman’s VSS scheme satisfies the defi-
nition of a strong VSS scheme.

4 OUR PROPOSED SCHEMES

4.1 Strong(t,n)-VSS

We use apublicpolynomial f ′(x) and a secret polyno-
mial f (x) to generate real shares. This public polyno-
mial will play an important role to ensure all shares
are generated by a polynomial with degree exactly
(t − 1) in our proposed scheme. The secret sharing
homomorphism ensures that the secrets = F(0) =
f ′(0)+ f (0) can be reconstructed by shares with the
form as

si = f ′(i)+ f (i).

Also, each sharesi still remains to be a secret even
f ′(i) is made publicly known.

There aren shareholders,P = {P1, . . . ,Pn}, and a
dealerD who will divide a secrets∈ Zq. We describe
our (t,n)-VSS as follows.

Scheme 3.Our strong(t,n)-VSS scheme.

1. Share generation: dealerD does the following proce-
dures.

• D first picks two polynomialf ′(x) and f (x) of de-
gree with exactly(t − 1) randomly: f ′(x) = a′0 +

a′1x + · · · + a′t−1xt−1 and f (x) = a0 + a1x + · · · +

at−1xt−1, where all coefficientsa′i and ai for i =
0,1, . . . ,t − 1 are inZq. We note thatf (x) is kept
secret by the dealer andf ′(x) is made publicly
known. SetF(x) = f ′(x) + f (x), thus the secret
S= F(0) = f ′(0)+ f (0) = a′0 +a0 andFi = a′i +ai
for i = 0,1, . . . ,t −1.

• D picksb0,b1, . . . ,bt−1 ∈ Zq at random. Letk(x) =

b0 +b1x+ · · ·+bt−1xt−1.
• D computes shares(si ,ti) and each coefficient’s com-

mitment of added sum of polynomials ofF(x) and
k(x)as follows:

(si ,ti) = ( f (i),g(i)), for i = 1, . . . ,n, and

c j = gFj hbj (mod p), for j = 0,1, . . . ,t −1.

• Then, D outputs a list of n shares,
((s1,t1), . . . ,(sn,tn)), and distributes each share
(si ,ti) to corresponding shareholderPi privately. D
also broadcastsc0,c1, . . . ,ct−1.

• Each shareholderPi computes the real shareSi = si +
f ′(i).

2. Share verification: each shareholderPi , who has share
(Si ,ti) and all broadcasted information, can verify that
the real shareSi defines a secret by testing that

gSi hti =
t−1

∏
j=0

ci j

j (mod p). (3)

3. Secret reconstruction: it is the same as Shamir’s
scheme.

Theorem 1.Our proposed(t,n)-VSS satisfies the def-
inition of a strong VSS scheme.

Proof 1. Following above(t,n)-VSS scheme success-
fully, each shareholder can be convinced that the de-
grees of polynomials G(x) = F(x) + k(x) is exactly
(t −1). Thus, each shareholder can conclude that the
degree of polynomial F(x) = f ′(x)+ f (x) is at most
(t −1). This conclusion is similar to the conclusion
of Pedersen’s scheme that ensures each shareholder
that the interpolated polynomial of all shares is with
degree at most(t − 1). Since the degree of the pub-
lic polynomial f′(x) is exactly(t − 1), each share-
holder can finally conclude that the degree of poly-
nomial F(x) is exactly(t −1). �

4.2 Strong(n, t,n)-VSS

In (t,n)-SS, there is a mutually trusted party who di-
vides the secret and distributes shares to sharehold-
ers. For some applications, it is impossible to iden-
tify such a mutually trusted dealer. In 1990, Inge-
marsson and Simmon (Ingemarsson and Simmons,
1991) first considered the secret sharing scheme with-
out the assistance of a mutually trusted third party.
The basic idea of their proposed(t,n)-SS is that there
are n dealers (or shareholders) who want to gener-
ate a master secrets jointly for some special appli-
cation. Each shareholderi first chooses a secretsi
randomly and the master secrets is determined by
s = ∑n

i=1si = s1 + · · ·+ sn. Each shareholder shares
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his chosen secretsi with other shareholders using the
Shamir’s(t,n−1)-SS. Then, any shareholder has re-
ceived(n− 1) shares from other shareholders. Any
subset oft of then shareholders know their own cho-
sen secrets (i.e. t secrets) and work together to recon-
struct(n−t) other secrets. Thus, any subset oft of the
n shareholders can generate the master secret. Their
proposed secret scheme enablesn users to set up a
(t,n)-SS without the assistance of a mutually trusted
dealer. This approach can be denoted as the model of
a (n,t,n)-SS, wheren refers to the number of dealers
and shareholders.

In a (n,t,n)-SS, each shareholder also acts as a
dealer to generate master secret and sub-shares for
all other shareholders. This kind of secret sharing is
very difficult to set up especially when it involves a
large number of shareholders. In addition, since the
number of shares kept by each shareholder is pro-
portional to the number of shareholders involved in
(Ingemarsson and Simmons, 1991), the storage and
management of shares of each shareholder becomes
very complicated. When the number of sharehold-
ers becomes very large, the reasonable approach is to
divide shareholders into several groups. Each group
will then elect a mutually trusted dealer to represent
this group to join other dealers from other groups to
set up the secret sharing. The dealers are not mu-
tually trusted. In fact, the number of shareholdersn
can be much larger than the number of dealersd (i.e.
d << n). This approach to manage a large number of
users can be found in many practical applications, for
example in Public-Key Infrastructure (PKI) (Housley
et al., 2002) for issuing public-key digital certificates
by Certificate Authorities (CA), and in ad-hoc net-
works (Zhou and Haas, 1999; Ma and Cheng, 2008)
for managing user registration by distributed registra-
tion centers, etc. This approach can be denoted as the
model of(d,t,n)-SS, whered is the number of deal-
ers, t is the threshold value andn is the number of
shareholders. Specially, whend = 1, (1, t,n)-SS be-
comes the original Shamir’s(t,n)-SS. This indicates
that(d,t,n)-SS is a generalization of(t,n)-SS.

In (n,t,n)-SS involving multiple dealers, the veri-
fiability is more desirable than in(t,n)-SS since these
dealers are mutually distrusted. Pedersen (Pedersen,
1992) presented a(n, t,n)-VSS. However, Pedersen’s
(n,t,n)-VSS, is not a strong VSS. In other words,
Pedersen’s scheme only ensures each shareholder that
the interpolated polynomial of all shares is with de-
gree at most(t −1).

In this section, we propose a strong(n, t,n)-VSS
based on Pedersen’s(n, t,n)-VSS. We note that the
main difference between our proposed scheme and
the Pedersen’s scheme is that it requires each dealer

(shareholder) must pick a random polynomial with
degree exactly(t − 1) in our scheme. We will proof
that our proposed scheme is a strong VSS.

There are n dealers (shareholders),
P = {P1, . . . ,Pn}, who want to define a secret
s ∈ Zq and distribute it among themselves. We
describe our(n,t,n)-VSS as follows.

Scheme 4.Our strong(n,t,n)-VSS scheme.

1. Share generation: dealer (shareholder)Pw does as fol-
lows.

• Pw first picks a sub-polynomialfw(x) of degree ex-
actly (t −1) randomly: fw(x) = aw0 + aw1x+ · · ·+
aw(t−1)x

t−1, in which the sub-secretsw = aw0 =

fw(0) and all coefficientsww0,aw1, . . . ,awt−1 are in
Zq. We note that the master secret iss = s1 +
s2+ · · ·+sn corresponding to the master polynomial
F(x) = ∑n

w=1 fw(x).
• Pw picks bw0,bw1, . . . ,bw(t−1) ∈ Zq at random. Let

kw(x) = bw0 +bw1x+ · · ·+bw(t−1)x
t−1.

• Pw compute all sub-shares(swi,twi) and coefficient’s
commitment offw(x) andkw(x) as follows:

(swi,twi) = ( fw(i),kw(i)), for i = 1, . . . ,n, and

cw j = gaw j hbw j (mod p), for j = 0,1, . . . ,t −1.

• Then,Pw distributes each sub-share(swi,twi) to cor-
responding shareholderPi privately and broadcasts
cw0,cw1, . . . ,cw(t−1).

• After Pw has received all sub-shares and broadcasted
information from others,Pw computes the mas-
ter share(sw,tw) wheresw = s1w + s2w + · · ·+ snw
(mod q) andtw = t1w + t2w + · · ·+ tnw (mod q). Pw
also computesc j = c1 jc2 j · · ·cn j (mod p) for j =
0,1, . . . ,t −1.

2. Share verification: each shareholderPw who has ob-
tained the master share(sw,tw) and all commitment val-
uesc j for j = 0,1, . . . ,t −1, can verify that all master
sharessi really define a secret by testing that

gswhtw =
t−1

∏
j=0

cw j

j (mod p). (4)

3. Secret reconstruction: it is same as Shamir’s scheme.

Remark 2. The property of secret sharing homo-
morphisms ensures that all master shares(sw,tw) for
w = 1,2, . . . ,n of the master polynomials,F(x) =
∑n

w=1 fw(x) andK(x) = ∑n
w=1kw(x), are the additive

sum of all shares corresponding to sub-polynomials,
fw(x) andkw(x). In addition, it ensures that the size of
each master share is the same as the size of the master
secret.

Theorem 2. Our proposed(n,t,n)-VSS satisfies the
definition of a strong VSS scheme.
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Proof 2.According to our discussion presented in sec-
tion 4.1, each shareholder can conclude that the de-
gree of master polynomial F(x) = ∑n

w=1 fw(x) is at
most(t − 1) if our proposed(n, t,n)-VSS is success-
fully completed. This result is the same as Peder-
sen’s (t,n)-VSS. As long as the degree of the sub-
polynomial selected by the shareholder is exactly
(t − 1), this shareholder can therefore be convinced
that, the degree of the master polynomial F(x) must
be exactly(t −1) due to linear property of polynomi-
als. �

Remark 3. Our proposed(n, t,n)-VSS is almost the
same as Pedersen’s(n, t,n)-VSS. However, the main
difference between our proposed scheme and the Ped-
ersen’s scheme is that it requires each dealer (share-
holder) must pick random polynomials with degree
exactly(t − 1) in our scheme; but polynomials with
degree at most(t − 1) in Pedersen’s scheme. With
this difference, our scheme is a strong(n, t,n)-VSS;
but Pedersen’s scheme is not a strong(n, t,n)-VSS.
Pedersen’s scheme can only ensure that all shares are
t-consistent; but all shares may not satisfy the security
requirements of a secret sharing scheme. Our pro-
posed(n,t,n)-VSS can ensure that (a) all shares are
t-consistent, and (b) all shares satisfy the security re-
quirements of a secret sharing scheme.

5 CONCLUSIONS

In this paper, we first show that VSS schemes pro-
posed by Pedersen can only ensure that shares are
t-consistent, but shares may not satisfy the security
requirements of secret sharing scheme. Then, we in-
troduce a new notion of strong VSS. A strong VSS
scheme can ensure that (a) all shares aret-consistent
and (b) all shares satisfy the security requirements
of secret sharing scheme. Based on Pedersen’s VSS
schemes, we propose two VSS schemes,(t,n)-VSS
and(n,t,n)-VSS, which are information-theoretically
secure. We also prove that our proposed VSS schemes
satisfy the strong verifiable property.
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