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Abstract: Since its introduction in the early 1980’s, CAN has become the de-facto communications protocol employed 
in vehicle and industrial control applications. Before any new product can claim to support CAN-
connectivity, compliance with the protocol at the physical and data link layers must be tested and verified. 
To help standardize the requirements for such testing, ISO has set a draft standard specifically for CAN 
conformance testing. Traditionally, CAN controllers and transceivers have been implemented at the silicon 
level, either in the form of dedicated IC’s or as on-chip peripherals of embedded devices. The practical 
implementation of CAN conformance testers has been realised using dedicated hardware and specially 
written analysis software; this is a practical approach when testing and verifying conformance prior to high-
volume IC manufacture. However, recent years have seen an increased interest in the employment of CAN-
connected devices implemented by programmable logic devices such as FPGA’s. Such ‘soft core’ 
implementations are often in small-volume (or even one-off) batches. In such circumstances, for cost and 
availability reasons, it may not be practical for developers to use traditional CAN-conformance testing 
equipment. To help alleviate this problem, this paper proposes a low-cost and easily implemented method 
which will allow developers to fully test a CAN soft core implementation. The method is based around 
simple off-the-shelf development boards and the simple analysis tool Chipscope, and allows developers to 
verify a CAN core against the relevant ISO standards. Finally, the paper describes the use of the test bed in 
the verification of an open-source CAN soft core implementation. 

1 INTRODUCTION 

Conformance testing is an integral part of the 
development stage of any network protocol 
implementation. When components (or devices) pass 
such conformance tests this ensures, to an acceptable 
degree of confidence, that the implementation of the 
given set of protocol specifications has been 
correctly interpreted by the designers; and it also has 
been instantiated in a form that is free from errors.  

Since its introduction in the early 1980’s, the 
Controller Area Network (CAN) protocol has 
become the de-facto communications protocol 
employed in vehicle and industrial control 
applications (Bosch, 1991). In light of the popularity 
of CAN, the ISO has developed a standard 
exclusively aimed at CAN conformance testing. 
Before any new equipment design can claim to be 
CAN conformant, evidence is required that shows 
that the testing procedures outlined in ISO 16845 
(ISO, 2000) have been performed and passed 

without problem. The ISO document not only 
specifies different types of tests that must be 
performed for conformance testing, but also 
specifies a Test Plan (TP) architecture based on the 
ISO 9646-1 (ISO, 1994). The required TP is shown 
in figure 1. As can be seen from this figure, the TP 
architecture indicates that the tester should be 
divided into two parts. The first component is the 
Lower Tester (LT) which provides the test pattern 
generation and analysis. The second is termed the 
Upper Tester (UT), which is required to contain the 
software to control the CAN Implementation Under 
Test (IUT). The UT is normally a host processor or 
programmable device of some kind, and also 
provides coordination to conduct the tests between 
the LT and the IUT (Carmes et al, 1996).  The UT 
receives stimulus (with details of the test being 
performed) from the LT, and generates messages 
passed on to the IUT. The IUT then processes these 
messages, and both the UT and LT components 
monitor its behaviour for consistency with the CAN 
protocol. If the result is satisfactory, the test is 
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considered passed and testing proceeds to the next 
conformance test. It should be noted that the testing 
procedures that are required to be implemented 
include coverage of common error conditions, 
randomized tests and also bit timing tests. Most tests 
are critical, and the latter category – bit timing – 
contains a number of tests that can be difficult to 
localize, and a suitable means is required to capture 
and display multiple logic signals over an 
appropriate timescale. This typically requires the use 
of dedicated hardware and Logic Analyzers 
(Lawrenz, 1998a). 

 

 
Figure 1: Conformance TP. 

The motivation for the current work is as 
follows. Recent years have seen an increased interest 
in the employment of CAN-enabled devices 
implemented by programmable hardware devices 
such as FPGA’s. By their very nature, such ‘soft 
core’ implementations are often needed in small-
volume (or even one-off) batches. In these 
circumstances, cost and availability reasons often 
dictate that it is not practical for developers to use 
traditional CAN-conformance testing equipment. To 
help alleviate this problem, this paper proposes a 
low-cost and easily implemented method which will 
allow developers to test a CAN soft core 
implementation for conformance to the relevant 
standard without the need for expensive or 
proprietary hardware interfaces and logic analyzers. 

The remainder of the paper is organized as 
follows. Section 2 discusses several approaches to 
CAN conformance testing that have been previously 
described. Section 3 describes the proposed test bed, 
and Section 4 presents two case studies that illustrate 
its use. Section 5 presents a comparison of the 
proposed approach to several other techniques, 
whilst Section 6 presents our initial conclusions. 

2 PREVIOUS WORK 

One of the earliest CAN prototype controllers was 

named DBCAN (Kirschbaum, 1996). This 
implementation was tested using a logic analyzer 
and a pattern generator circuit. As there was no 
standard for conformance testing at the time the 
prototype was developed, a commercial basic (as 
opposed to full) CAN controller was used as 
benchmark for verification. A major disadvantage of 
this scheme was the use of external interface 
modules to visualize the state of different DBCAN 
registers, and the testing procedure was somewhat 
limited in the number of signal channels that could 
be simultaneously analyzed. Since this is a needed 
requirement in the case of ISO standard 
conformance testing – the ability to visualize the 
state of large numbers of CAN registers 
simultaneously is a prerequisite – such a setup is 
limited in this respect.    

A slightly different verification technique was 
reported by (Nimsub et al, 2005). Their technique 
employed custom design boards with 8051 
microcontrollers and SJA1000 CAN controllers, but 
this method involved the design of specialized 
interface hardware and boards to assist with the 
testing plan. Specialised verification architecture for 
testing automotive protocols (including CAN) at 
both the module and chip level was proposed by 
(Zarri et al. 2006).  Again, this work requires a 
specially designed CAN verification component as 
part of the silicon, while the selection and 
implementation of actual test sequences, along with 
the selection of a suitable means to monitoring bus 
signals, is left open for the tester. 

With respect to soft core CAN implementations, 
the CAN e-Verification (CANeVC) test bench has 
previously been described (CANeVC 2005). This 
commercial test facility requires a CAN 
specification core to be embedded in the netlist; this 
core then runs specific tests to verify the behaviour 
of the CAN soft core. Again, this technique involves 
a time consuming development of a test bench using 
an expensive commercially available verification IP 
; additionally, compatibility issues often arise when 
using CAN implementations other than the 
proprietary implementation (DiBlasi, 2003), and 
only a limited number of programmable logic 
devices are supported. Finally, several experimental 
implementations (such as that reported by (Ferreira 
et al. 2005) to measure single parameters - such as 
CAN bit errors - rather than perform complete 
conformance testing have been described in the 
literature. Such implementations have typically used 
complex and non-trivial means, requiring 
customized hardware and software. In summary 
then, it can be observed that - to date – specialised 
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hardware and / or software has been required to 
assist with CAN testing plans. In the following 
Section, a novel testing approach that relies only 
upon the use of low-cost, standard off-the-shelf 
hardware and software is described. 

3 PROPOSED TEST BED 

An ongoing project required the development of a 
conformant soft core controller for the CAN 
protocol (Sheikh et al. 2008). After the Verilog 
(IEEE, 2001) implementation of the CAN 
specifications for such a controller had been 
completed, it was required to be tested and verified 
in accordance with the relevant ISO standard (ISO 
16845, 2000). Real-time testing of a CAN 
implementation is quite a complicated procedure, 
and – in this case – for practical reasons, no 
specialized hardware and software was available to 
generate the required testing patterns and monitor 
the behavior of the CAN soft core. For this reason, it 
was decided to use only low-cost off the shelf 
components. 

In addition to these standard hardware parts, the 
Chipscope analysis tool (Xlinx, 2000) was used to 
visualize and capture the behavior of the soft core, 
allowing verification of the testing results.  
Chipscope is a Xilinx testing tool which is 
implemented the by inserting a small core onto the 
device to be monitored, allowing multiple signal 
channels to be captured via a JTAG interface. Up to 
16 internal signal ports can be analyzed in a single 
core, and each port can have up to 256 signals. 
Multiple cores can be attached in a FPGA to 
increase the number of signals (Oltu et al. 2005). In 
comparison to other means for capturing multiple 
FPGA signals, Chipscope retains the key features 
required but is a fraction of the cost. Additionally, to 
support one-off conformance testing plans without 
causing excessive costs, a fully-featured evaluation 
version is available for a 60 day period – a full 
testing plan can be performed in such a timeframe. 
Hence these features of Chipscope made it an 
obvious choice for our CAN conformance test bed. 
The new test facility is shown schematically in 
figure 2. In the next paragraphs we give a full list of 
the hardware and software components and tools 
used in building the Test Bed. 

3.1 Hardware 

1) Two FPGA (XC3S500E programmed with 
CAN soft core) + ARM7 (LPC2138 as Host 

controller) boards. These boards are named as 
SC1 and SC2.  

2) Two ARM7 Microcontroller boards with 
Integrated CAN controller and CAN transceiver 
for CAN bus interfacing named as KE and OL.   

3) The SC1 and SC2 are connected to the bus 
using PCA82C250 CAN transceivers. 

4) Parallel JTAG cable for downloading and 
analyzing signals for FPGA. 

5) USB JTAG cable for downloading and 
debugging the ARM7 Microcontroller boards. 

3.2 Software 

1) Xilinx ISE for soft-core programming, 
synthesis, routing and programming the FPGA. 

2) Chipscope Pro (Xilinx, 2000) is used as analysis 
tool (60 day evaluation version available). 

3) The Keil uVision 3 IDE with free ARM tools C 
compiler was chosen for programming and 
debugging the Microcontroller boards. 
 

As can be seen, the test bed has been made using 
COTS hardware and also taking in care the structure  

 

 
Figure 2: CAN Conformance test bed. 
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of the Test Plan given in ISO 9646-1. The test bed 
consists of two instances of the IUT; the main 
purpose of using the second IUT is to generate errors 
on the CAN bus and special conditions which were 
either the pre-requisite for a test case or generating 
special bit stream during a test for verifying the 
behavior of the IUT, hence the second instance of 
IUT is moreover working as the LT in reference to 
the ISO9646-1 TP. The ARM boards with integrated 
CAN Controllers were used either as receivers / 
transmitters to verify the conformance of the IUT 
with widely used CAN controllers, and were also 
employed to generate bit errors on the CAN bus 
using an interrupt generation mechanism. Such a 
scheme is highly synchronized as the bit inversions 
were done at the specific point where it was 
required; the methodology employed for test pattern 
generation is described in the next Section. 

3.3 Test Pattern Generation 

When using pattern generators test vectors are 
required to be first stored, and are sent on the CAN 
bus only when required – thus putting the IUT in 
different states and allowing its behaviour and 
responses to be analyzed. In our proposed test bed 
we have used FPGA based pattern generation, which 
is not only economical as no extra price was added 
to the test setup but also it is added as a Verilog 
module to the main CAN Core (IUT SC2 in Figure 
2). This helped us to accurately produce these 
special conditions; for example in test case 1 (to be 
reported in the next Section) it was needed to 
produce extra dominant bits on the CAN bus after an 
IUT working as a transmitter send an Error Frame 
(ISO 16845, 2000). This test pattern was easily 
achieved by modifying the Verilog module for Error 
Flag generation to produce extra dominant bits, as 
illustrated by the Verilog code fragment shown 
opposite. 

This is a simple example of pattern generation 
using HDL code. All of the required test patterns 
may be generated in this way, giving full 
controllability on the test case generation. In 
addition, tight synchronization of events can be 
achieved – a hardware signal from the core to one of 
the secondary ARM boards, at a certain point during 
the transmission of a CAN message, can be sent. 
This signal may be used to generate an interrupt on 
the ARM board – the interrupt latency is 
significantly less than a CAN bit-time, even at 1 
Mbits/s – and within this ISR the ARM board can, 
for example, inject a bit error, The following Section 
describes  two  case  studies  to  further highlight the 

operation of the test bed. 
 
reg     [3:0] 
Error_Flag_Counter;//changed from reg 
[2:0]  
always @ (posedge Clock or posedge 
Reset) 
begin 
  if (rst) 
     Error_Flag_Counter <= 4'd0; 
  else if (Error_Frame_End | 
Error_frame_Start) 
     Error_Flag_Counter <=#delay 4'd0; 
//changed from 3'd7 
  else if (Error_Frame & 
Transmit_Instance &Error_Flag_Counter < 
4'd11))  
     
Error_Flag_Counter <=#delay 
Error_Flag_Counter + 1'b1; 
end 
always @ (Error_frame or 
Error_Flag_Counter ) 
    begin 
      if (Error_frame)         begin 
if (Error_Flag_Counter < 4'd11) 
//changed from    3'd7 
            begin 
              if (Node_Error_Passive) 
                Tx_CAN = 1'b1; 
              else 
                Tx_CAN = 1'b0; 
            End 

4 CASE STUDIES 

The proposed test facility was employed to test the 
CAN conformance of the custom created CAN soft 
core, written in Verilog. As the number of total 
number of test cases to consider in any single CAN 
conformance test plan is numerous, it is beyond the 
scope of the current paper to present comprehensive 
test results; such test results are available in the form 
of technical report (Sheikh & Short, 2009). 
However, in this Section we will present two test 
cases that help highlight the main features of the 
proposed facility. Both tests were carried out 
successfully, and are described in the following two 
Sections. 

4.1 Error Flag Longer than 7 Bits 

This test is a part of the Error Frame Management 
class in ISO 16845. The purpose of this test is to 
verify that a CAN transmitter will only tolerate 7 
dominant bits after sending its own Error flag. The 
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case described below is for when the Error Flag is 
elongated by 4 Dominant bits. This test involves two 
instances of the IUT and the ARM7 Microcontroller 
boards. The test will be setup using the following 
organization: 
 

1. Both the IUT’s must be in default state ready for 
transmission or reception. 

2. An error bit is to be introduced on the CAN bus 
during an ongoing transmission. 

3. The transmitter - after sensing the error - must 
send an error frame of 6 dominant bits due to its 
Active Error state. 

4. One of the receivers must send more than 7 
dominant bits after receiving the Error flag. 

5. The transmitter must not take these extra 
dominant bits as an Error and shouldn’t send any 
extra Error Frame, and should start to resent the 
corrupted message. 

 
The methodology employed was to modify one 

of the soft core IUTs to carry out this requirement. 
Any of the two IUT’s can take the role of transmitter 
or receiver for any given test. In this case, the IUT 
instance which will be acting as a receiver is 
modified to generate an 11 bit Error Flag. The 
snapshot of the events on the CAN bus was captured 
with the help of Chipscope trigger mechanism 
(Woodward, 2003). The observations on the 
transmitter node from the Chipscope snapshot – 
shown in figure 3 - are as follows: 
 

1. On the Left of Marker ‘T’, the TX_state high 
indicates an ongoing transmission. During data 
transmission a Bit_Error is injected, indicated by 
the bit inversion as CAN_Tx is recessive while 
CAN_Rx is dominant (Bit inversion is done by 
the KE node). 

2. The Error Frame exists between markers ‘T’ and 
‘O’ indicated by signal ‘Error_Frame’, the 
Error_Flag is between Marker ‘T’ and ‘X’. The 
end of Error Flag is indicated by a high 
Error_Flag_Tx_over signal. The 
Error_Flag_Counter  three  bit  bus  is  indicating  
the count of Error Flag bits sent. 

3. If we note at Marker ‘X’ the CAN_Tx signal has 
changed to Recessive but the CAN_Rx signal 
remains Dominant for next 4 bits which is 
because of the superimposition of the Error Flag 
sent by the nodes on the CAN network. 

4. The Error Frame is continued till Marker ‘O’ and 
the end is shown by a low Error_Frame Signal 
and a high Error_Frame_End Signal. 

5. On the right of Marker ‘O’ we can clearly see 
that after three sample points (intermission Field) 

a new frame transmission has started indicated 
by Tx_State, while Tx_State_ID[10:0] and 
Tx_State_Data indicating different states of 
transmission cycle. 
 

The observations at the receiver node (shown in 
figure 4) are as follows: 
 

1. Marker ‘O’ indicates start of an Error_Frame, the 
Tx_State low indicating the node is a receiver. 

2. The Error_Flag_Counter is a 4 bit wide bus 
which counts up to 11 bits i.e. it is sending 4 
extra Dominant bits to the CAN bus to verify the 
behaviour of transmitter node. The Dominant 
bits can also be verified by the CAN_Tx and 
CAN_Rx bits.  

3. After the Error_Flag_Over Signal is set high the 
CAN_Rx and CAN_Tx signals turns to dominant 
for next seven bits indicating an Error frame 
Delimiter. 

4. Right of Marker 'X’ the Error_Frame signal is 
low and after three Recessive bits (Intermission 
Field) a new frame is started to be received 
(Tx_State is low, CAN_Tx is recessive), 
indicated by different Recieve_State_xxxx 
signals).  

4.2 Overload Frame Management 

This test is a part of the Overload Frame 
Management class (ISO, 2000). This test verifies 
that an IUT will be able to transmit a data frame 
starting with the identifier and without transmitting 
SOF, when detecting a dominant bit on the third bit 
of the intermission field. This test involves two 
instances of the IUT and the ARM7 Microcontroller 
boards. The test will be setup using the following 
organization: 
1. Both of the IUT’s must be in default state ready 

for transmission or reception according to the 
setup sent by the Host Controller. 
The IUT acting as the Transmitter is set to 
transmit  two  data  frames as programmed in the 
Host processor. 

2. The Receiver IUT will be set to request an 
Overload frame after reception of the first frame. 

3. After the completion of the Overload Frame on 
the third bit of the Intermission field (Normally 
the Intermission field is a sequence of three 
Recessive bits) is set to dominant by the Fault 
injector node i.e. K.E. 

4.  The transmitter must not consider it as a bit error 
and shouldn’t send a Dominant level SOF and 
consider the dominant bit of the Intermission 
field as the SOF. 
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Figure 3: Transmitter snapshot for Test Case 1.

Figure 4: Receiver snapshot for Test Case 1. 

 
Figure 5: Transmitter snapshot for Test Case 2.
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5. Normal reception of the message should take 
place. 

 
This test was successful with desired results as 
stated in the purpose of the test; the observation on 
the transmitter node from the Chipscope - shown in 
figure 5 – is as follows: 
1. Left of Marker ‘T’ The Tx_state flag is high 

indicating ongoing transmission, 
Receive_state_Data and ACK_DELIM 
indicating a successful transmission while the 
node is error active. 

2. At Marker ‘T’ there is an error on the 
Receive_state_intermission field generating an 
overload frame with Overload Flag of six 
dominant and Overload delimiter of 8 bits as can 
be seen by the count of sample point. 

3. After the Overload frame an intermission field 
signal can be seen at the Marker ‘X’. 

4. The third bit of intermission field is is a 
dominant bit as can be counted between Markers 
‘X’ and ‘O’ the number of sample points is 2 and 
the third sample point is a dominant bit.  

5. Just after the Marker ‘O’ we can see the 
Receive_State_ID [10:0] going high without any 
SOF. The Identifier first 4 bits are dominant as 
required by the Test case. 

5 COMPARATIVE STUDY 

When comparing the proposed testbed with previous 
methods, the first observation is that the current 
facility does not require the use of expensive CAN 
PC interface cards which are normally required for 
CAN conformance testing (Lawrenz, 1998b). Such 
cards also require specialized software (along 
hardware and interface cables) which can adds to the 
cost and complexity of the setup. In the proposed 
implementation the internal state of CAN IUT is 
analyzed directly using Chipscope, and also by using 
the Keil uVision to debug on the ARM boards. In 
addition, there are several key advantages of our 
proposed test bed using Chipscope over hardware 
logic analyser systems: 
1. The standard bench analyzers doesn’t show 

enough signals as required in case of CAN 
conformance as illustrated in section 4. There are 
Logic analyzer systems which can show large 
number of signals simultaneously with large data 
widths but there prices are 10 times more than 
Integrated Logic analyzer. 

2. Normal Bench analysers can show Mega 
samples, while the Chipscope is limited to a 
Sample width of 16K, we overcome this problem 
by using Digital clock Manager which can divide 
or multiply the system clock by ‘n’ times, the 
board we used in our system can divide the 
system clock by 16 times hence we were able to 
capture 16 times more sample than on system 
clock which can easily capture 3 to 4 complete 
CAN messages in a single trigger. 

3. Additional probes with wide numbers of I/O pins 
are required to interface with the Logic analysers 
while Chipscope can carry magnitude of these 
signals using a simple JTAG cable, although 
there are few solution like Agilent’s FPGA trace 
port (Agilent, 2003) which use a simple interface 
to analyse multiple signals but it also requires a 
specialized hardware and Chipscope pro tool.  

4. Not only all I/O signals are accessible through 
Chipscope but also internal wires can be traced 
(Lee, 2007) which are really helpful in 
Conformance testing specially when setting up 
triggering conditions we have lot more options to 
setup a trigger condition for example in the test 
cases discussed it is really easy to setup a trigger 
condition to wait for an Error Frame flag signal 
goes to high to analyze an error condition, while 
for external Logic analyzers only I/O signals are 
available. 

6 CONCLUSIONS 

In this paper we have presented a low cost and 
flexible approach to CAN conformance testing in 
accordance with the ISO standards. It has been 
shown that the facility is capable of performing the 
full range of test required to show conformance to 
the relevant CAN standard (Bosch, 1991), (ISO, 
2003). In conclusion, this facility can be assembled 
and used for a fraction of the cost of a ‘regular’ test 
facility for CAN conformance. A full list of the how 
each individual test may be implemented when using 
a facility such as this has been described in a 
technical report (Sheik & Short, 2009), allowing the 
facility to be implemented by any third-parties 
requiring a low-cost methodology to test for 
conformance of a CAN soft-core. 

As a final note, it can be seen that test facility 
that has been described is not restricted to the CAN 
protocol, and – with suitable modifications – can be 
used to test conformance of many alternate network 
protocols, for example TTP/C (TTA, 2003). 
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