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Abstract: Forward and inverse kinematics operations are important in the operational space control of mechanical ma-
nipulators. In case of a parallel manipulator, the forward kinematics function relates the joint variables of
the active joints to the position of end-effector. This paper finds analytically forward kinematics function
by exploiting the position-closure property. Using the proposed function along with the analytical Jacobian
presented in the literature, the forward and the inverse kinematics blocks are formulated for a prospective
operational space control scheme. Finally, an example is presented for R BRHR.

1 INTRODUCTION A

The end-effector of a parallel manipulator is con-
nected to itdase via a number of serial manipulators
in parallel. In these manipulators, there are always
more joints than the number of degrees of freedom
(DOF) of the end-effector. This places constraints on
the structure such that all the joints cannot be actu-
ated at the same time. If the end-effector h&OF,
then there arkactive joints wheré < 6. All the other
joints are passive and their motion is dependant on the
motion of the active joints. The most famous family
of such manipulators are call&ewart-Gough plat-
forms (Bhattacharya et al., 1997). These platforms
are widely used in simulators (Yamane et al., 2005),
low impact docking systems for space vehicles (Tim- )
mons and Ringelberg, 2008), and in form of a hexa- Figure 1: A 3-RIR planar parallel manipulatoB;, B, and
pod for precise machining (Warnecke et al., 1998).  Bs are connected to a stationary base.

Figure 1 shows a 3-R® robot, which has three
joints in each serial linkR stands for a rotatory joint  sions for the forward kinematics of a 3-RFPobot and
andP stands for a prismatic joint whereby the under- analyzed its singularities. (Collins, 2002) used pla-
line signifies the joint which is actuated (Siciliano and nar quaternions to formulate kinematic constraints in
Khatib, 2007). equations for a 3-RR robot. (Murray et al., 1997)

The forward kinematics function of a parallel has used coefficients of aonstraint manifold, which are
been studied in detail in the literature, especially for a functions of the locations of the base and platform
3-RPR robot. (Kong, 2008) derived algebraic expres- joints and the distance between them, for the kine-
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matics synthesis of a 3-FRProbot. (Wenger et al.,
2007) studied thdegeneracy in the forward kinemat-
ics of a 3-RIR robot. (Kim et al., 2000; Dutre et al.,

whereF; £ % is the forward kinematics function that
relates the active joints to the end-effector position
and

1997) found the analytical Jacobian for a parallel ma- F. 0 O
nipulator. However, there is no attempt in literature Nt2 |0 J Of en®nexd (6)
to formulate analytically the forward kinematics func- 0 J I
tion for non-redundant parallel manipulators. The for-
ward kinematics function relates the joint variables of Operational space _ _
the active joints to the position of the end-effector. trajectory Inverse kinematicy—3

In the following section , the structure of the for- Joint
ward and inverse kinematics blocks is layed out. Then . . space
forward kinematics function of a parallel manipulator Forward kinematicig—

IS d?r'ved usm_g the pOSItlon-closur_e proper_ty. The an- Figure 2: Operational space control of a parallel manipula-
alytical Jacobian of a parallel manipulator is also ob- gy,

tained as described in the literature. Finally, a frame-

work to control a parallel manipulator is proposed,  The above matrix produces large values for small
followed by an example for the forward kinematics \jyes ofg,. To avoid this situation, a limit is im-
function of a 3-RR robot. posed here on the value of each componenj;a$o
that there is always a valid solution available.

The difference between the reference operational
space trajectory and the output of the forward kine-
matics block is referred to in this paper as system
If the task is given in operational space then it be- error. Let [AX,AX,AX}T be this error in operational

comes inevitable to cater for the non-linearities in- space. If this error is small, then (2) can be approxi-
troduced by the forward and inverse kinematics func- mated to

2 KINEMATICSFRAMEWORK

tions. First, the joint variables are translated into op- ~

; . AX =~ JcAGa (7)
erational space. The resultant is compared to the ref- : ] _
erence trajectory and the error is then converted back ~ However, it can be stated, without any approxima-
to joint space, as shown in Figure 2. tion, that

Suppose there areserial manipulators in a paral- AX JAq 8)
lel manipulator that has, active joints anchy, pas- ) AR )
sive joints such that the total number of joints is AX = JoAGa+ JeAla (9)

Nc = Na+Np. If X is the end-effector position arfel
is the forward kinematics function then the following
definitions can be introduced;

Itis a common practice that when end-effector tra-
jectory is formulated in operational spads is cho-
sen in (7) such that the approximate movement of the

x = F Q) end-effector partially matches the target velocities in
) F 00a _ (8) (Whitney, 1969). Equation (7) is only valid for a
XK g od JeGa (2)  small value ofAx. If the target position is too distant,

., - it is important to bring the target closer. This way, the
X = JeGa+ JOa 3)

manipulator reaches its final target in smaller steps.
wheres signifies differentiation with respect to time, ~ For this reason)x needs to be clamped such that
Jc is the systems JacobiaR, is its time-derivate, and
Ja is a vector of active joint variables. These variables
are in radians if the joint is revolute or in meters if the
joint is prismatic.

Equations (1), (2), and (3) can be combined as fol-

AXif ||AX|| < Dimax
Dmaxuﬁ—ﬁu otherwise

clamp(AX, Dyyax) = { (10)

where|| e || is the Euclidean norm. The value of the
scalaDmax should be at least several times larger than

lows;
X Fe 0 Of |ga what end-effector moves in a single step and less than
x|=10 J O] |Ga (4) half the length of a typical link. This heuristic ap-
X 0 J J| |ta proach has also been reported to reduce oscillations in
or the system, which allows the designer to use a smaller
X value for damping constant. This usually results in a
x| =Nyy (5) quicker response (Buss and Kim, 2005). To calculate
X the error in joint space, (7), (8), and (9) can be written
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as The DLS solution is equal to (Buss and Kim,
Ma = Kb an 209 Yo = (3T e+ A21) 1375 18
A = Jiax (12) _ IQa—( e Je +AT) e X (18)
) P or alternative
Do = IO JoAGa) y -
= JAx— 313k (13) Ge =0 (JeI +A1) % (19)
In matrix form, these equations can be written as Equation (18) requires an inversion ofar nma-

trix, while (19) requires an inversion of only arx |
matrix, which is computationally more efficient. In
terms of SVD, the singular values change frénfor

I to #2)\2 for (JoJ7 +A21)"* (Buss and Kim, 2005).

AQa J 0 071 [Ax
AGa| = | O b 0] |Ax (14)
AGa 0 —JJJab | |Ax

or alternatively

AX If 0; — 0, oi. — oo, while in the other caseo,{%z - 712
Ay =N, | Ax (15) whena; — 0. Therefore, a stable solution is observed
AX even near singularities f&f\ : A # 0. Using (19)N,
can be redefined as

whereJ(;r is the pseudoinverse df. Pseudoinverse is
defined for all matrices including the ones which are N y 3%3n
not square or are not full rank. It also gives the best Nz = 8 J‘g‘j 7 J(l = ¥ (20)
solution in terms of least squares. Except near sin- | i CUc w-=C

gularities, the pseudoinverse gives a stable solutionwhereJ* = 3T (3T +>\2|)_1 The value of\ is set
even in those cases when the target end-effector posiﬂby e aesigcner(.: ?_arge values can result in a slower

tion (_10esn’t|ie in the wo.rk vqumg of.the mechanical convergence rate and very small values can reduce
manipulator. The resulting solution is the clozsest 10 the effectiveness of the method. In literature, there
cation to its target which minimizggl:Aq — AX[|. In are many methods proposed to select the valug of
the vicinity of singularity, the pseudoinverse creates gynamically (Mayorga et al., 1990; Nakamura and
large changes in joint variables, even for very small {anafusa, 1986; Chiaverini et al., 1994).
changes in the end-effector position, resulting in an
unstable system. One imQrortant feature of pseudoin-
verse is that the terrfl — J!J;) projects on the null
space ofl.. This feature can be exploited for redun- 3 FORWARD KINEMATICS
dant manipulators. It is possible to generate internal FUNCTION
motions in a redundant manipulator, i.ge, Without
changing its end-effector position (Sciavicco and Si- In order to formulate the forward and inverse kine-
ciliano, 2000). For redundant manipulators, (2) can matics matricesN; andNy, it is important to formu-
be written as late analytically the forward kinematics function of

% = g+ (1 —Jch)QO (16) a pgrallel manipullatqr. The derivation is som.ewhat

similar to the derivation of the analytic Jacobian of

a parallel manipulator by (Dutre et al., 1997), which
was derived using the velocity-closure property. The
derivation is given as follows;

0 0

However, in this paper it is assumed that the paral-
lel manipulator is not redundant, i.e., number of active
joints is equal to the DOF of the end-effector.

_ The damped least-squares (DLS) method, which — \g 5| the manipulators are connected to the same
is also referred to the Levenberg-Marquardt method, end-effector, it can be stated, using the position-
solves many problems related to pseudoinverse. Theclosure property, that

method gives a numerically stable solution near sin- ’
gularities, and was first used in inverse kinematics FeGa = F101 = Fo02 = -+ - = Fn0n (21)
by (Wampler, 1986) and (Nakamura and Hanafusa, whereq; is the vector of joint variables of" ma-

(1895I?<'31n grma\?vsseor,uzsoeodz;?r theodolite calibration by nipulator and=j(q) £ %q) is the forward kinematics
Not only does DLS minimize the tertfleta — X||> function of thej" manipulator.
but it also minimizes the joint velocities with a damp- ~ Each column of the functioR corresponds to ro-
ing factor, i.e.\2|¢a/|2 where\ € O andA # 0. The tational angle or displacement of an active joint, de-
function to be minimized can be written as pending on whether the joint is rotatory or prismatic.
. . L2 2114 112 Hence . .
min{|l9eda —X(*+ 221Gl 7} (17) F—Fd 22)

282



ANALYTICAL KINEMATICS FRAMEWORK FOR THE CONTROL OF A PARALLEL MANIPULATOR - A
Generalized Kinematics Framework for Parallel Manipulators

whereF! € 0" is thei" column of F; and qij is a
vector of joint variables of th¢!" manipulator when
theith active joint is moved one unit while all the other
active joints are locked. Ifi; is the vector of all the
joint variables, i.e.,

1
qo=| | o (23)
i
then (22) can be written as
Fe =FiSide (24)

whereq], is a vector of all the joints when th# active
joint is moved one unit while all the other active joints
are locked and5; is a selection matrix to select the
variables of thg'™" manipulator, i.e.,

0 1 0 0
0 0 1 0
S = o
0 0 0 1

wheren; is the number of joints in th¢" manipula-
tor. Letqp be the vector of passive joint variables and
0a be the vector of active joint variables such that

dp Sple (25)
Oa Salc (26)

whereqp € 0" andgs € 0™ andS, and S, are se-
lection matrices for passive and active joints, respec-
tively. Typical values o5, andS; can be written as

010 0

0 0
S= SR 7 e Onerte
... 000 010 ..
and
... 0 0 O 01 0 ..
S= 3 O . € Qhaxe
... 010 000 .|

Both of these matrices are sparse and orthogonal,
i.e.,SpSE =1 andS,S! = I, which implies

Uep Shap (27)

Oc, SI Oa (28)

whereq, is equivalent togc except that the active
joints are set to zero and similarly, is equivalent to

gc except that the passive joints are set to zero such
that

Oc = Ocp +ca (29)

Substituting (27) and (28) in (29) yields

Gc = S)0p+ Si0a (30)

In reference to the position-closure property (21),
let

where
R L 0
B o _E
0 0
A— q.l . IQ3 c Dna(n—l)xnc
: : : :Fn
x 0 0 ~n
(32)
Substituting the value aj; from (30) gives
Adc A(Ccp 1 ea)
= ASjdp+ASida
= Aplp+Aala (33)
Applying (31)
Op = —AlAala (34)

Substituting this expression in (30) yields
Ge =S\ da— SEAEAaQa

As d. is defined for a unit displacement of ti@
active joint, hencegy can be replaced with a column
of Sy which correspondsto th® active joint, denoted
by (S1)', to evaluatey, i.e.,

te = SH(S)' — SHALA(S)!
Substituting the above value in (24) gives
Fe=FiSid

(35)

(36)

37)

or

Fe=FiSi[g o qea ] (38)

4 ANALYTICAL JACOBIAN AND
ITSDERIVATIVE

(Dutre et al., 1997) evaluated the analytical Jacobian
for a parallel manipulator using the velocity-closure
property. The Jacobian can also be derived by replac-
ing F¢ in (38) byJ; andq, by g, i.e.,
k=JS [ & ] (39)

wherel; is the analytical Jacobian that relates the ve-
locities of the active joints to the end-effector velocity.
Jj andgj are the Jacobian and the vector of joint ve-

locities of thejt" manipulator, respectively. can be
stated using (36) as follows;

=S (S)' - S B}Ba(S)

“Na
C

de (40)
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whereBp = BSp Bs = BSa and
Jb —-J O 0
B— J1 0 _J3 0 c Dna(nfl)xnc
J 0 0 0 -

(41)
UsingB, the velocity-closure property of a parallel
manipulator can be written as

BQC:O

The derivative of the closed-loop Jacobial)(
givenin (39) is

J=JS (6 @

whereq'i;; can be calculated by differentiating (40), i.e.,

G = Sp<

whereq is theit" driving joint.
The time derivative of a Jacobian column for a se-
rial manipulator is the sum of the partial derivatives of
this column with respect to joint variables, multiplied
by the time-derivates of these variables (Bruyninckx
and De Schutter, 1996). As such, time-derivative of
thei" column of the Jacobian is given by
) og!

ot

(42)

..na}
o}

0B,
p Ba+

0B
BT a
aq

P ) (S (43)

n aJl n aJI

Z an Z an qJ

Similarly, the derivative of the Jacobian of each

manipulator of a parallel manipulator can be ex-
Na nj

K=1

pressed using (44), i.e.,
Z > ) G (45)

wherek is a joint of thejt" manipulator anq% rep-

(44)

Na 9J; J
6q.

an 6qj7k

j—
- 0qjk 00

resents Jacobian derivative of tji serial manipula-
tor. The factor,%q—éi‘k in (45), is thek™ component in
Sidh.

5 PROPOSED CONTROL
FRAMEWORK

Figure 3 shows the structure of the proposed con-
trol framework for parallel manipulators. As only ac-

tive joints are actuated, it is important to incorporate
the contribution of the passive joints onto the active

284

joints. If joint friction is ignored, the relationship be-
tween the torque of active joints and passive joints is
given by the following equation (Cheng et al., 2003);

0dp
e (32)'
wheretp € 0™ is the torque measured from strain
gauges on passive jointg, € 0™ is the torque pro-
duced by the actuators on active joints, agd: 1"

is the torque measured by strain gauges mounted on
active joints. From (Dutre et al., 1997), it can be in-

(46)

ferred that 5
Op +
— =B/B
g P2
Using the above value in (46) yields
Tc = Ta - (BEBa)TT
or

Te=Ta—BI(B)1p (47)

The passive joints project torque onto the active
joints with a factor of-Bf (B,)T. This will be used as
the exogenous force disturbance signal in the hybrid
controller, as shown in Figure 3.

To ease the implementation of thamp block, it
can be taken out of the closed loop. This can be done
by redefiningy using

rk = clamp(roriginal — N1yk) + Nayk — (48)

6 EXAMPLE

As the proposed kinematics framework is evaluated
analytically, it can be applied on any non-redundant
parallel manipulator. However, in this section, for the
sake of demonstration, a simple case of a RRébot
is presented, shown in Figure 1.

The forward kinematics function for the first ma-
nipulator can be stated as

(X1, + 01,2 +X1,2) €OY0f1,1) 4+ X1,3CO 01,1 + 01, 3)
(X1,1+ G2 +X1,2) SiN(01,1) +X1,3SIN(A1,1 + Ga.3)
O1,1+013

wherex; » andqy > denote the length of the second
link and the second joint variable, respectively. The
expressions for other links can be written in the same
way. Using this kinematic model for the values given
in Table 1, the end-effector position was found to be
at

FL= (49)

15
2.5981
1.0472

where the first two elements represent the position in
x—Yy plane and the third element represents the angu-
lar rotation of the end-effector.

Xend, =
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—BI(BY) 1o
A>_< Aq
A 5 i Y :
k= [% clamp > N2 >| Controller Manipulator y=|q
X _ o]
N1 <

Figure 3: Operational space control of a parallel manijpulat

Table 1: Assumed values for a 3-RFobot.

| Manipulator 1]| Manipulator 2] Manipulator 3]

g1 = T[/3 Q21 = 2T[/3 gz1= 4T[/3
Qu2=1 Go2=1 gz2=1
Q3=0 O23=—TY3 Oz3=—TI

X11= 0.5 X271 =05 X31= 0.5

X12 = 0.5 X202 = 0.5 X32 = 0.5
X1 3=1 Xo3=1 X33=1

The forward kinematics functiork., gives the
following end-effector position for the active joints
T
[1,1,1];
1.498
2597
1.048

Xend =

7 CONCLUSIONS

Similar to the analytical Jacobian for a parallel ma-
nipulator, which is a function of joint variables and

relates the velocity of the active joints to the velocity
of the end-effector, the analytical forward kinematics
function is also a function of the joint variables that
relates the position of the active joints to the position
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