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Abstract: The basic principles of Bounded Exhaustive Testing (BET) are reviewed, as well as the concept of an 
Elusive Bug (EB). Initial work on the application of BET to EB's previously indicated that it provides a new 
and promising approach to this problem. A four-part BET/EB oriented test framework involving: fault 
model development, BET test generation design, failure model identification and automated oracle design is 
introduced. The framework provides a systematic approach to BET/EB. It was applied to three very 
different areas of application. The research indicated the general applicability of BET and the BET/EB 
framework. It resulted in increased insight into BET/EB including the development of new techniques, such 
as the BET/EB "inverse oracle". The research illustrated how fault models can be used to put BET 
application bounding on a systematic basis. It also illustrated how failure models can be used to facilitate 
the development of automated oracles, and how they can be used, along with fault models, to systematically 
define the effectiveness scope of a BET testing strategy. 

1 INTRODUCTION 

1.1 Exhaustive Testing 

BET is based on the observation that the set of 
possible inputs to a program can be classified 
according to the "size" of the application instance, 
and that defects will occur for small versions in the 
same way that they will occur for larger versions. 
For example, a sort routine can have input arrays of 
different sizes but many failures are as likely to 
occur for arrays of small size as easily as they are for 
larger arrays. This leads to the idea of exhaustively 
testing over "bounded" versions of an application. 

Similar finite testing ideas also occur in model 
analysis and testing, in which abstraction may be 
used to create a finite version of a program or 
system e.g. (Artho, 2008). 

The BET approach was recently popularized as 
an automated class testing method, e.g. (Sullivan, 
2004). More recent work has generalized BET, with 
more flexible test data generation mechanisms, e.g. 
(Howden, 2007), and the identification of BET 
oriented test oracles that may not be "complete" but 
are more powerful than simple crash detection. 
(Howden, 2008). In this paper we are specifically 

concerned with the use of BET as a testing method 
for attacking the Elusive Bug problem. 

1.2 Elusive Bugs 

An Elusive Bug has been characterized as one in 
which its manifestation depends on a combination of 
conditions (Howden, 2008). Elusive bugs often 
involve conditions which are individually 
meaningful, but for which a combination may have 
no meaning other than the post facto discovery that 
it causes a failure. Instead of trying to second guess 
which combinations might be useful, or how to 
define and select them, the idea in BET is to test 
them all, within application instance bounds. 

1.3 Fault and Failure Models 

In order to use BET to systematically test for elusive 
bugs we need a general framework for its 
application. It should be general enough to be useful 
in diverse application areas and at all levels of 
testing. The generic approach that we followed has 
four parts to it: fault model identification, BET test 
generator design, failure model identification and 
automated oracle design. We investigated this 
approach to BET in three application areas. 
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Fault models for software describe software 
defects, as opposed to failure models which describe 
invalid behavior. Fault models can be categorized as 
white or black box. White box fault models, as in the 
case of white box testing, are defined directly in 
terms of program constructs. Mutation testing is 
based on white box fault models, in which program 
faults are defined in terms of perturbations of 
program statements. Black box fault models, as in 
the case of black box testing, define faults indirectly 
in terms of classes of inputs.   

In general, EB-oriented fault models associate 
faults with combinations of behaviour-affecting 
conditions. The conditions may originate from black 
or white box views of the software. One of the 
purposes of developing fault models is to 
characterize the defects for which a related testing 
method is effective. Another, for fault models 
associated with BET, is to help identify the size of 
the application instance which BET is going to have 
to test over to achieve fault model coverage. 

Since BET can generate a large number of tests, 
it is desirable to develop an automated oracle for 
checking its results. It is not always possible to 
construct a "complete" oracle. An oracle is complete 
if it can compute a necessary and sufficient relation 
for the validity of all observed input-output 
behavior. An incomplete oracle computes a relation 
that is necessary or sufficient but not both. The 
simplest incomplete oracle is a robustness checker, 
e.g. (Miller, 2006), which determines whether or not 
a program has crashed or delivered an unexpected 
exception on a test. Although it may not be possible 
to develop a complete automated oracle, it is often 
possible to devise a necessity oracle that will do 
better than simple robustness checking. The first 
step in designing an oracle is to develop a failure 
model which characterizes the class of invalid 
behavior that can be detected. A framework for 
defining and developing incomplete oracles and 
failure models was previously described in 
(Howden, 2008).  

When a BET testing strategy is designed, its 
effectiveness is circumscribed by the fault and 
failure model(s) that characterize the kinds of faults 
it will be able to detect. We note that the four parts 
of the approach are not always applied in order. The 
availability of a certain kind of automated oracle 
may determine the failure model, or the fault model 
and the BET test generator may be identical. 

1.4 Diverse Application Areas 

Programs from three application areas were 
considered: graphics, numerical simulation, and 

distributed systems. For each of these we describe 
the application of the four-part BET procedure and 
consider its applicability. 

2 GRAPHICS  

One of the more important contemporary graphics 
applications involves rendering.  Rendering provides 
a visual representation of simulated objects 
illuminated by simulated lighting. Part of the 
rendering process involves the determination of light 
ray intersections with an object surface (Kensler, 
2006).   

One common way of representing surfaces is to 
use contiguous triangles. Both the triangle surfaces 
and a light ray can be considered to exist in a 3d 
grid, in which points represent vertices and line 
endpoints. A variety of algorithms have been 
developed. The testing problem is difficult because 
there has not been a programmable way of 
determining if the results of a test are correct, i.e. no 
automated oracle. Previous practice includes visual 
examination of the output from a rendering program. 
A failure to detect an intersection point may show up 
as a black dot on the screen (Woo, 1996). 

The BET approach to this application area led to 
a way of automatically testing intersection programs 
using an automated oracle.  

2.1 Fault Model 

In this application, we considered both white and 
black box fault models. The first was used to 
motivate the second.   

a) White box. There are three kinds of faults that 
can occur: computational expressions, precision, and 
program logic. The first can be covered by testing 
the computational expressions in isolation. The other 
two by considering their role in the generation of 
black box faults. 

b) Black box. The program input consists of 
surfaces and light rays. Round-off errors may result 
in failures in which an intersection at an exact vertex 
or surface boundary is missed. If a boundary divides 
two surfaces, then a ray passing through a common 
boundary may be missed during calculations made 
for one surface but not the other, so a correct result 
could be determined. If the boundary is a surface 
edge, then the same calculations could produce an 
incorrect result, indicating that an input based fault 
model should include examples in which surface 
boundaries are both internal and external. 

Precision faults may also occur when a ray 
passes very close to a surface without intersecting it. 
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Intersection computations for the case where a ray 
intersects a surface at its interior may be less likely 
to fail due to precision problems, and more likely to 
fail due to program logic errors that do not show up 
elsewhere.   

These considerations lead to a fault model in 
which differently directed rays are combined with 
one or more surfaces. The elusive bug (EB) fault 
model, which consists of all combinations of 
relevant behavioral conditions, will include 
combinations such as a ray passing at a sharp angle 
through a three-way vertex. This is typical of the 
kinds of combinations that black box testing may not 
test for since there is no obvious cause-effect 
relationship here, and the combination is not 
semantically meaningful. Yet it is typical of the kind 
of unexpected combinations that can unexpectedly 
cause problems. 

2.2 BET Test Data Generation 

The above fault model can be covered with a BET 
testing approach having the following properties.  
First construct a cube containing possible 
intersection and vertex points that is large enough to 
include representative surfaces constructed from 
three contiguous triangles. The cube also includes 
rays which begin at locations in the cube and are 
directed at different possible angles. Ray generation 
can be simplified by considering the object surface 
triangle to be a subsurface of a larger super-surface. 
Rays are constructed that connect each possible 
originating location with a location on the surface. If 
the surface location is in the object subsurface, the 
algorithm should determine that an intersection 
exists. If outside the object subsurface, no object 
subsurface intersection should be identified.   

2.3 Failure Model 

In this example, we have a simple failure model. The 
program fails if it identifies a ray surface 
intersection when none exists, or fails to identify an 
intersection when it does exist. 

2.4 Automated Oracle 

One of the more interesting general concepts that we 
discovered during the investigation of this example 
was that of an inversion oracle. In this approach, the 
test generator starts with an output result and then 
constructs all inputs that should lead to that result. In 
this way it knows what the output should be for any 
test. In the surface intersection example, output can 
be True (intersection) or False (no intersection). 

2.5 Evaluation 

Previous experience with this problem domain 
provided examples of incorrect rendering in which 
an intersection was not observed by the graphics 
rendering tool. Standard test practice, which was 
both awkward and unreliable, was to choose random 
input data and to visually examine the output for 
problems. Failed intersection detections showed up 
as a black spot in the display. A sample BET testing 
system was constructed using the design described 
above and run on the examples defined by the EB 
fault model. The use of the inversion oracle made it 
possible to reliably and automatically detect 
intersection defects. 

3 FINITE ELEMENT 
SIMULATION  

A common method of simulating physical objects is 
to construct a grid or mesh. Each cell in the grid is 
associated with an equation that describes the 
properties of the cell. The cell takes inputs from one 
or more units surrounding it, and then produces 
outputs which become inputs to its neighbours. The 
properties of the corresponding physical entity are 
simulated over a sequence of steps, at the beginning 
of which inputs are produced at one or more "input" 
cells and then at the end outputs measured at one or 
more "output" cells. 

The Continuity simulation program (Bioeng., 
2008) can be used to simulate electrophysiology of 
living structures, and in particular to determine the 
transmitted effects of a stimulus. For example, a 
voltage could be supplied to one surface, and the 
model used to measure the transmitted effects 
arriving at some other location or surface. 

3.1 Fault Model 

This application involves a variety of conditions, 
corresponding to different kinds of inputs that will 
affect behavior. The EB-oriented fault model is 
associated with combinations of these conditions. 

The Continuity program can accommodate a 
wide variety of problem applications. For our 
experiment, we used a generic simple version, in 
which a voltage is transmitted by "pure diffusion" 
through a cell, rather than through a means involving 
more complex equations. The input conditions that 
could vary were: mesh shape, stimulus location, 
mesh dimensionality, basis functions, derivative 
type, solution steps, rendering, and boundary 
condition constraints. 
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3.2 BET Test Generation 

As in other BET applications, a central concern is 
the application bounding issue. For some of the 
conditions the values are binary, so both can be 
chosen. For others, the possibilities are large or 
unbounded. Examples of the latter are: model size, 
number of simulation steps, and location of stimulus. 

The mesh size is related to the problem of 
solution convergence. The idea is to try models with 
different numbers of mesh elements and observe if 
important phenomena are observed. If not, then the 
model is too coarse. The size is increased until that 
behavior is observed and if the behavior stabilizes 
then the model size is fixed. In our experiments, a 
mesh with a stack of four elements was found to be 
sufficient. 

The number of steps is also related to behavior 
convergence. Once a certain number of simulation 
cycles have been performed, if the behavior 
converges then that is considered adequate. In our 
experiments, between 6 and 10 steps was found 
sufficient so these two values were chosen for the 
tests. 

Finally, the stimulus could be located in any 
location in the model. We chose the following set of 
six representative possibilities: top line, middle line, 
top left point, top middle point, point at the center of 
the mesh, and simultaneously at all points 
throughout the mesh. 

The above choices, with a simple diffusion 
model, resulted in a set of 1536 tests. 

3.3 Failure Model 

Our failure models included a robustness model.  An 
output value is referred to as NaN (not a number) if 
it is not numeric. The occurrence of this output 
indicates failure, since numeric output is a necessary 
condition for validity.  

We were interested in detecting functional 
failures. Even if they corresponded to incomplete, 
necessity property, this would be stronger than 
simple robustness. To do this, we considered 
different output relationships that must occur for 
different stimulus conditions and mesh geometry. As 
an example of this, consider a simple 4-by-4, 2D 
mesh, with a stimulus that occurs simultaneously 
across the middle of the mesh. The "output" value at 
the middle of the top and bottom at the end of the 
simulation must be the same. These necessary 
relationships, together with the NaN robustness 
requirements, constituted our failure model. 

3.4 Automated Oracle 

Our test oracles paralleled the above failure models: 
a robustness oracle determined if outputs were NaN, 
and our (incomplete) functional oracle measured 
required relationships between output values. 

Previous automated oracles for testing this 
application involved the use of regression tests. The 
dependency of a relation-based failure model, like 
the one we used, on a class of inputs requires more 
initial test planning than the use of a simple 
regression failure-model/oracle, but it is less fragile 
and more reliable in the following sense. If a set of 
regression tests fails, then new tests may have to be 
established as the gold standard. It may not be clear 
which set of results are the valid ones. In the case of 
a necessity relationship, it is always valid.   

3.5 Evaluation 

For this example, BET tests based on our failure 
model were run against the Continuity system. They 
revealed a known existing bug as well as many 
additional problems. The existing bug was of the EB 
type, in the sense that it only occurs when one of our 
fault model suggested combinations is used.   

Other defects that were discovered included 
memory leaks and problems with certain kinds of 
boundary constraints. They also included a classic 
elusive bug in which some functionally meaningless 
combination of input types caused a design and 
coding defect to surface. BET provided the first 
systematic rigorous approach to testing that has been 
available for this application. 

4 DISTRIBUTED SYSTEMS 

We viewed distributed systems as those in which a 
set of processes communicates with each other to 
perform some function. In our investigation of 
distributed systems, instead of looking at a particular 
application we considered previous approaches to 
the testing problem, to see where BET might fit in, 
and whether or not it could be an improvement. 

The first approach (Boy, 2004), which we will 
refer to as "Random", uses randomized testing. A set 
of clients is simulated, and for each client a set of 
random requests is sent to the server. The test driver 
keeps track of the sequence of calls that are made 
from the simulated clients, along with the received 
responses. Failures correspond to invalid sequences. 
A set of invariants is created which all sequences 
must satisfy. In the vocabulary of this paper, the test 
oracle is a necessity oracle. 
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There are several possible problems with this 
kind of approach. The first is characteristic of all 
automated testing methods that depend on random 
inputs. If there are a large number of possible 
sequences, random selection may easily miss the 
small number of them that cause failures. Also, if the 
selection is truly random, then arbitrarily long 
sequences must be included, which will exacerbate 
this problem. Another problem, not connected to the 
randomness of test input, is a lack of control over the 
communications medium. Some faults may involve 
network transmission race conditions, which cannot 
be directly explored. 

The first problem, random selection, is avoidable 
with BET, provided the bounding constraint does 
not exclude a fault. (Boy, 2004) describes a bug that 
was found by random testing but whose discovery 
seems to require luck when random testing is used. 
The same defect would have been found every time 
using a straightforward application of BET.  

The second drawback to Random, the inability to 
explore network induced failures, can be overcome 
using a test strategy in which the network is 
simulated, as in Cesium. In this approach, the 
application processes run in the same network 
environment as a test driver. This enables the driver,  
at each moment of simulation time, to check process 
queues for required consistency relationships and 
other properties. It can also manipulate the queues to 
simulate failures such as lost messages and so on. 

A drawback to Cesium is that the tester is still 
responsible for constructing all test scenarios. There 
may be combinations of events that could cause a 
failure that the test designer did not think of. The 
advantage of Random is that there is always some 
probability of these occurring, even if it is very 
small. BET combines the potential inclusiveness of 
Random, with the guarantee of execution of Cesium.   

4.1 Fault Model 

We considered faults that correspond to sequences 
of interactions between the processes in the system. 
For example, a race condition caused by a long 
delay in a message making its way through the 
system corresponds to a sequence of 
communications in which a request and its receipt 
are separated by a certain sequence of events that 
were made possible by that delay, and which causes 
consequent invalid behavior.  

4.2 BET Test Generation 

There are two principal issues here: test generation 
and the bounded application specification. 

In a BET-oriented approach, a simulated 
environment like that used in Cesium, would be 
employed, but with a generic test driver and network 
simulator that would implement an all-combinations 
approach to test construction.   

The first bounding consideration is the number 
of processes that we included in our test sequences. 
If our fault model is concerned with faults resulting 
from the simultaneous use of shared resources, then 
BET will have to generate tests in which up to three 
processes are involved.   

A second consideration is a bound on "amount of 
time" (i.e. number of simulation cycles), for which a 
message to another process can be stalled inside the 
simulated network before delivery. In (Guillarmo, 
2000), the authors incorporate lower and upper 
bound communication delays. These could be 
incorporated into the fault model. Communications 
that take longer than this are treated as network 
failures, and the corresponding messages left 
undelivered. This aspect of a fault model guides the 
construction of the corresponding aspect of the BET 
test generator. 

Assuming that we can make the tests long 
enough to cover race condition message sequences, 
the length of a test is still an open issue. In the case 
where there are finite resources such as message 
queues, a state can be reached in which system 
behavior is altered due to the exhaustion of this 
resource. If we can test all combinations of messages 
that are long enough to cause this situation, then we 
would cover this aspect of the fault model. But if 
this only occurs after lengths of message sequences 
for which the consideration of all combinations is 
impractical, then it is necessary to have tests which 
set the system to the necessary intermediate state 
before the exhaustive all-combinations part of the 
test generation process begins.    

4.3 Failure Model 

Generic failure conditions for distributed systems 
include: failure to send a message and failure to 
receive a message. Automated oracles need to cover 
this simple failure model. 

Failure models may also be more specific to the 
application such as the assignment of the same lock 
to two processes by a lock server. This is the kind of 
failure described below in the Evaluation Section.   

4.4 Automated Oracle 

The approach suggested in (Boy, 2004) involves the 
detection of illegal patterns in sequences of 
messages and responses. For example, certain 
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requests will require a response, and a missing 
response failure will show up in the invoking 
sequence as an illegal pattern. This was the approach 
we followed. 

4.5 Evaluation 

The BET approach to this problem was analyzed 
with respect to the sample defect described in (Boy, 
2004). In this example there are 2 or more clients, A 
and B, and a lock server.  The code was apparently 
written so that if a client does not receive a 
requested lock after a certain amount of time, then it 
sends a release() for the lock to the server. Suppose 
that the grant() message had been issued by the 
server but not yet received by process A when it 
sends the release(). The logic written into the server 
is such that when it gets the release() it assumes the 
lock is free, so that it can allocate it to a subsequent 
request() from process B. As soon as A receives the 
tardy grant() we will have a situation in which both 
A and B have the same lock. 

The random testing experiments described in 
(Boy, 2004) resulted in the detection of this bug. 
However, a different set of tests, just as likely to be 
chosen, would have missed it. On the other hand, the 
more precise approach described in the Cesium 
paper would have repeatably and reliably found the 
defect, provided the tester had thought to construct 
such a test. BET would reliably generate a defect-
revealing sequence every time. 

5 CONCLUSIONS 

The results of our investigation were positive in two 
ways. The four-part framework was an effective, 
generic approach to the application of BET, in which 
the essential concerns are identified and separated. 
In addition, BET was found to be an effective defect 
detection technique across the wide range of 
examples that were considered.  

Fault models can be used to specifically 
document the defects for which a set of tests will be 
effective. They proved to be a convenient way to 
consider the application-bounding aspect of BET, in 
order to systematically define minimal bounds for 
reliable fault detection. In all three application 
examples, the requirement that the BET test 
generator "cover" the fault model facilitated the 
identification of necessary lower bounds on the 
"size" of the bounded application to be used in test 
construction. 

Failure models were found to be useful in 
identifying a class of failures that can be observed. 

Taken together, the fault and failure methods 
circumscribe the defects for which a BET testing 
effort is guaranteed to be effective.   

Our BET-oriented test procedure led to 
significant paradigm shifts in the way that two of our 
applications could be tested. For the graphics 
application it led to the creation of an inverse oracle. 
For the finite element simulation, it led to a failure 
model that was stronger than simple robustness and 
more consistent than regression testing. Both of 
these novelties were due to the very essence of BET 
– bounding the complete problem domain into 
meaningful subdomains by some central 
characteristics. By considering these central 
characteristics, stronger correctness oracles naturally 
become apparent. This is not likely to occur during 
simple random testing in which the test domain does 
not have the sort of structure that lends itself to the 
discovery of stronger failure models and automated 
oracles. While this kind of paradigm shift may not 
be unique to our testing methodology, and may not 
occur for every application, our experience indicated 
that our systematic testing framework facilitates this 
kind of change in thinking. 
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