
MINIMIZING THE MAKESPAN IN TWO-MACHINE JOB SHOP
SCHEDULING PROBLEMS WITH NO MACHINE IDLE-TIME

Fatma Hermès
Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Département Informatique, Laboratoire LI3

Campus Universitaire, 1060 Tunis, Tunisia

Jacques Carlier, Aziz Moukrim
Université de Technologie de Compiègne, Centre de Recherches de Royallieu

Laboratoire Heudiasyc, UMR CNRS 6599, BP 20529, 60205 Compiègne cedex, France

Khaled Ghédira
Institut Supérieur de Gestion de Tunis, Laboratoire LI3

Université de Tunis, 41 Rue de la Liberté – Bouchoucha, 2000 Bardo, Tunisia

Keywords: Scheduling, Job Shop, Two Machines, No-idle Constraint, Makespan, Optimal Solution.

Abstract: This paper deals with two-machine job shop scheduling problems working under the no-idle constraint, that
is, machines must work continuously without idle intervals. The makespan (Cmax) has to be minimized.
First, we study the problem where each job consists of at most two operations and we show that it can be
solved polynomially using Jackson’s rule (Jackson, 1956). Second, we study the problem where the number
of operations per job can be greater than two and all operations are of unit time and we extend the results of
(Hefetz and Adiri, 1982). Finally, we discuss the possibility of getting feasible solutions and then optimal
solutions in the general case where the number of operations per job can be greater than two and all
operations do not have the same processing time.

1 INTRODUCTION

Frequently, the cost of making machines wait is so
high that a no-idle constraint is imposed on
machines and no intermediate idle time between
operations processed by the same machine is
allowed. For example, if the machine is an oven that
must cook some pieces at a given high temperature
then maintaining the required temperature of the
oven while it is empty may be too costly. However,
studies of problems on this topic have not attracted a
great deal of attention. In the literature, we find
some works, most of which are recent, on the
permutation flow shop ((Adiri and Pohoryles, 1982),
(Baptiste and Lee, 1997), (Kalczynski and
Kamburowski, 2007), (Saadani, Guinet and Moalla,
2001), (Saadani, Guinet and Moalla, 2003)). There
are also some recent works discussing one machine
scheduling problems ((Chrétienne, 2008), (Valente
and Alves, 2005), (Valente, 2006)).

The aim of this paper is to study two-machine
job shop problems where a set I of n jobs, I = {1, ...,
n}, has to be scheduled without intermediate delay
on two machines in order to minimize the maximum
of the completion times of the jobs i.e. the makespan
(Cmax). Each job i, i ∈ I, is composed of ni operations
Oi,j , j = 1…ni, and each operation Oi,j has to be
processed on a fixed machine for pi,j time units.

The job shop problem plays an important role in
the scheduling theory because of its practical
applications. Most of job shop problems are NP-hard
and there are only few special cases which can be
solved polynomially. The two-machine job shop
problem with at most two operations per job is
denoted J2|ni≤2|Cmax. It was solved polynomially by
Jackson (Jackson, 1956) who proposed an algorithm
which calculates an optimal schedule in O(n*log(n))
steps using Johnson’s rule (Johnson, 1954). The
two-machine unit-time job shop problem is denoted

89Hermès F., Carlier J., Moukrim A. and Ghédira K. (2009).
MINIMIZING THE MAKESPAN IN TWO-MACHINE JOB SHOP SCHEDULING PROBLEMS WITH NO MACHINE IDLE-TIME.
In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Intelligent Control Systems and Optimization,
pages 89-96
DOI: 10.5220/0002213500890096
Copyright c© SciTePress

J2|pi,j=1|Cmax. It was proved to be polynomial by
(Hefetz and Adiri, 1982) where authors proposed the
longest remaining processing time first algorithm
which schedules operations in a decreasing order of
the remaining processing time of jobs. Lenstra,
Rinnooy Kan and Brucker showed in (Lenstra,
Rinnooy Kan and Brucker, 1977) that problem
J2||Cmax is strongly NP-hard. Later, Brucker showed
in (Brucker, 1994) that the two-machine job shop
problem with a fixed number k of jobs, denoted
J2|n=k|Cmax, can be solved polynomially by reducing
it to a shortest path problem and then he deduced
that it is possible to calculate an optimal schedule for
J2||Cmax for any fixed number of jobs in polynomial
time.

The paper is organized as follows: In section 2,
we define the studied problem and we recall some
backgrounds and basic results relying on the two-
machine job shop problem. In section 3, we study
the two-machine job shop problem where the
number of operations per job is at most equal to two
and machines must work under the no-idle
constraint. This problem is denoted J2|ni≤2,no-
idle|Cmax. We show that it can be solved in
polynomial time using Jackson’s rule (Jackson,
1956). In section 4, we study the two-machine unit-
time job shop problem with no machine idle time,
denoted J2|pi,j=1,no-idle|Cmax, and we extend the
results of (Hefetz and Adiri,1982). Finally, in
section 5, we deduce some special cases which are
polynomially solvable.

2 GENERAL POINTS

In this section, we first define the problem subject of
this study and we present some definitions. Next, we
present Johnson’s and Jackson’s algorithms where
Johnson’s algorithm (Johnson, 1954) solves the two-
machine flow shop problem with Cmax criterion
denoted F2||Cmax and Jackson’s algorithm (Jackson,
1956) solves problem J2|ni≤2|Cmax using Johnson’s
rule. Finally we introduce the longest remaining
processing time first algorithm (Hefetz and Adiri,
1982) which solves problem J2|pij=1|Cmax.

2.1 Problem Formulation and Basic
Definitions

The two-machine job shop problem is a problem
where a set I of n jobs, I = {1, ..., n} have to be
processed in a shop with two machines M1 and M2.
Each job i, i = 1, …, n, consists of a sequence of ni
operations Oi,1, Oi,2, ..., Oi,ni which must be

processed in this order. The precedence constraints
are so that Oi,j precedes Oi,j+1, j = 1, …, ni – 1. Each
operation Oi,j must be processed for pi,j time units on
machine µi,j∈{M1, M2}.

The following assumptions are made:
 A machine can process only one operation at a
time.
 An operation cannot be interrupted.
 The time zero is the earliest time an operation
can be started.
 All setup times are included into the job
processing times.
 If operation Oi,j must be processed on machine
M1, then operation Oi,j+1 must be processed on
machine M2 (µi,j ≠ µi,j+1 for i = 1,…, ni – 1).
Thus, job i may be characterized by the number
of operations and the machine on which the
first operation must be processed.
 Only no-idle schedules are considered.

Let ti,j be the starting time of operation Oi,j and
let Ci,j be its completion time. Let Ci be the
completion time of job i so that

Ci =
i1...nj

max
=

 Ci,j (1)

Let us present the following definitions:
 An initial operation is one without
predecessors: the operation Oi,1 is the initial
operation for job i.
 A terminal operation is one without successors:
the operation ini,O is the terminal operation for
job i.
 A ready operation is an operation that has not
yet been scheduled while all its predecessors
have been.
 A no-idle schedule satisfies the no-idle
constraint on each machine. In other words, if
operation Oi,j is executed immediately before
operation Oi’,j’ on the same machine then we
have:

Ci,j = ti,j + pi,j = ti’,j’ (2)

Given a feasible schedule π we have:

Cmax(π) =

i1...nj
1...ni

max
=
=

 Ci,j =
1...ni

max
=

Ci (3)

The objective is to find a no-idle schedule so as
to minimize the Cmax. The problem so formulated is
denoted J2|no-idle|Cmax. When the number of
operations per job is at most equal to two, the
problem is denoted J2|ni≤2,no-idle|Cmax and when all
operations have the same processing time which is
considered as the unit-time, the problem is denoted
J2|pi,j=1,no-idle|Cmax.

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

90

2.2 Jackson’s and Johnson’s
Algorithms

Jackson’s algorithm constructs an optimal schedule
for J2|ni≤2|Cmax problem reducing it to F2||Cmax
problem. Below, we first describe Johnson’s
algorithm. Then, we present Jackson’s algorithm.
Finally, we conclude with some results concerning
the presence of idle times on machines.

2.2.1 Johnson’s Algorithm

The two-machine flow shop problem is a problem
where a set I’ of n’ jobs, I’ = {1,2,…,n’} must visit
machines in the same order. Each job i consists of
two operations Oi,1 and Oi,2 which must be processed
respectively, first on machine M1 then on machine
M2. Johnson’s algorithm (Johnson, 1954) constructs
an optimal schedule in polynomial time
(O(n*log(n))) for F2||Cmax problem. It applies the
following steps:

i. Divide the set of jobs I’, I’ = {1,2,…,n’}, into two
subsets:

a. Let I’
1 denote the subset of jobs i, i = 1, …,

n’, which satisfy the condition pi,1 ≤ pi,2
b. Let I’

2 denote the subset of jobs i, i = 1, …,
n’, which satisfy the condition pi,1 > pi,2

ii. Schedule on each machine first the jobs of I’
1 in

an increasing order of pi,1 and then the jobs of I’
2

in a decreasing order of pi,2.

2.2.2 Jackson’s Algorithm

Jackson’s algorithm (Jackson, 1956) calculates an
optimal solution for problem J2|ni≤2|Cmax, in
polynomial time (O(n*log(n))) by first reducing it to
F2||Cmax problem and then using Johnson’s rule. It
applies the following steps:
i. Divide the set of jobs I = {1, 2, …, n} into four

subsets:
a. Let I1 denote the subset of jobs consisted of

only one operation which must be
processed on machine M1.

b. Let I2 denote the subset of jobs consisted of
only one operation which must be
processed on machine M2.

c. Let I1,2 denote the subset of jobs which are
processed first on machine M1 then on
machine M2.

d. Let I2,1 denote the subset of jobs which are
processed first on machine M2 then on
machine M1.

ii. Calculate an optimal sequence R1,2 for the flow
shop problem relative to the job set I1,2 .

iii. Calculate an optimal sequence R2,1 for the flow

shop problem relative to the job set I2,1 .
iv. On machine M1 schedule first I1,2 according to

R1,2, then all jobs in I1 and finally I2,1 according
to R2,1 .

v. On machine M2 schedule first I2,1 according to
R2,1, then all jobs in I2 and finally I1,2 according
to R1,2 .

2.2.3 Further Results

Adiri and Pohoryles (Adiri and Pohoryles, 1982)
observe that problems F2|prmu,no-idle|Cmax and
F2|prmu|Cmax are equivalent in the sense that every
F2|prmu|Cmax schedule can be transformed into an
F2|prmu,no-idle|Cmax schedule with maintaining the
same Cmax. Thus, both problems can be solved by
Johnson’s algorithm (Johnson, 1954). Johnson’s
schedule is an active schedule in which machine M1
is naturally no-idle since operations are processed
consecutively on it without idle interval. Moreover,
the jobs preceding each idle interval on the second
machine M2 can be delayed without increasing the
Cmax. It is enough to fix the starting time of the last
operation scheduled on M2 and to schedule the other
operations so that all operations are scheduled
consecutively without any intermediate delay.

Brucker (Brucker, 1995) observes that in
Jackson’s schedule at least one machine processes
jobs without idle intervals. More specifically, having
the following assumption:

∑+∑≤∑
∈∈∈ 11,22,1 Ii i,1Ii i,1Ii i,2 ppp (4)

then there is no idle time on machine M1. Otherwise,
there is no idle time on machine M2.

2.3 The Longest Remaining Processing
Time First Algorithm

The longest remaining processing time first
algorithm has been proposed by (Hefetz and Adiri,
1982) to solve J2|pi,j=1|Cmax problem. It constructs
an optimal schedule for this problem with applying
the following steps:

i. Give a label αi,j to each operation Oi,j so that:

αi,j = ni – j + 1 i = 1,…,n and j = 1,…,ni (5)

ii. Schedule the highest label operation for the
earliest possible time on the required machine,
with ties broken arbitrarily.

iii. Remove from the problem the scheduled
operation. Stop if all operations are scheduled,
otherwise return to (ii).

The authors noted that the operation with the
highest label in step (ii) must be a ready operation,

MINIMIZING THE MAKESPAN IN TWO-MACHINE JOB SHOP SCHEDULING PROBLEMS WITH NO MACHINE
IDLE-TIME

91

since, if it is not then there is an unscheduled
predecessor with a higher label, which is a
contradiction.

Let Tj, j = 1, 2, be the total processing time
required on machine Mj and pi the processing time
of job i. Thus, pi = ni in view of the fact that all
operations have unit duration.

Theorem 1 (Hefetz and Adiri, 1982). The longest
remaining processing time first algorithm constructs
an optimal schedule for J2|pi,j=1|Cmax problem. If all
initial operations require the same machine and we
have:

T1 = T2 ≥ maxi ni (6)

Then, the optimal schedule length is:
C*

max = T1 + 1 = T2 + 1 (7)
Otherwise, the optimal schedule length is:

C*
max = max(T1, T2, maxi ni) (8)

3 RESOLUTION OF THE
PROBLEM
J2|NI≤2,NO-IDLE|CMAX

The problem we consider in this section is to find an
optimal schedule for J2|ni≤2,no-idle|Cmax problem.
We propose first to study the feasibility of Jackson’s
schedule then, we prove its optimality. We also
deduce some interesting results which concern the
necessity of applying Johnson’s rule in Jackson’s
algorithm.

Proposition 1. The Cmax-value of Jackson’s schedule
is a lower bound for the optimal Cmax of J2|ni≤2,no-
idle|Cmax problem.

Proof. Jackson’s schedule is an active schedule in
which all the operations are scheduled as soon as
possible. On the other hand, to satisfy the no-idle
constraint, some operations must be delayed which
must increase the Cmax-value. So, the optimal Cmax of
J2|ni≤2,no-idle|Cmax problem must be greater than or
equal to that of J2|ni≤2|Cmax problem.

So, evidently Jackson’s schedule is optimal for
J2|ni≤2,no-idle|Cmax problem if it is no-idle or if it
can be transformed into a no-idle schedule without
increasing the Cmax-value.

Lemma 1. If (4) then there is no-idle time on
machine M1 and it is unnecessary for Jackson’s
algorithm to apply Johnson’s rule for the two-
machine flow shop sub-problem relative to I2,1.

M1

M2

I2,1 I11

I2,1 I2

j

0 t’ t Time

R1,2

j

R1,2
Figure 1: A schedule where there is no-idle time on
machine M1.

Proof. If (4) holds, then at time t where,

∑+∑=
∈∈ 11,2 Ii i,1Ii i,1 ppt (9)

all the operations of I2,1 which must be processed on
machine M1 are ready. Therefore, these operations
can be processed without idle time immediately after
the end of those of I1 as presented in figure 1 above.

As a result, the order of processing the
operations of I2,1 on machine M1 and on machine M2
does not affect the Cmax-value since all the
operations of I2,1 which must be processed on
machine M2 are naturally ready at time 0. They are
completed at time t’, where

 t i,2p t'
2,1Ii

≤∑=
∈

 (10)

Lemma 2. If

∑+∑≤∑
∈∈∈ 22,11,2 IiIiIi i,1 i,2p i,2pp (11)

then there is no-idle time on machine M2 and it is
unnecessary for Jackson’s algorithm to apply
Johnson’s rule for the two-machine flow shop sub-
problem relative to I1,2.

Proof. The proof is similar to that of lemma 1.

Let us note that if

∑≤∑
∈∈ 1,22,1 IiIi i,2 i,1pp (12)

then (4) holds. Also, if

∑≤∑
∈∈ 2,11,2 IiIi i,1 i,2pp (13)

then (11) holds.
By summation of (12) and (13), we have:

∑=∑
∈∈ 2,11,2 Ii i,2Ii

pi,1p (14)

Lemma 3. If any of the following assumptions hold,
namely, (4) and (13), (11) and (12), or (14) then
Jackson’s schedule is no-idle. It is consequently

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

92

optimal for problem J2|ni≤2,no-idle|Cmax and it is
unnecessary for Jackson’s algorithm to apply
Johnson’s rule neither for the two-machine flow
shop sub-problem relative to I1,2 nor for the two-
machine flow shop sub-problem relative to I2,1.

Proof. If (4) holds then there is no idle time on
machine M1 and it is pointless to apply Johnson’s
rule in Jackson’s algorithm to the sub-problem
relative to I2,1 (lemma 1).

If (13) holds then there is no-idle time on
machine M2 and it is pointless to apply Johnson’s
rule in Jackson’s algorithm to the sub-problem
relative to I2,1 (lemma 2).

By summation of (4) and (13), Jackson’s
schedule is no-idle. It is consequently optimal for
J2|ni≤2,no-idle|Cmax problem and it is unnecessary
for Jackson’s algorithm to apply Johnson’s rule
neither for the two-machine flow shop sub-problem
relative to I1,2 nor for the two-machine flow shop
sub-problem relative to I2,1.

In the same way, we deduce the same results if
assumptions (11) and (12) hold or assumption (14)
holds.

Proposition 2. The problem J2|ni≤2,no-idle|Cmax is
polynomial. It can be solved with Jackson’s
algorithm.

Proof. At least one machine is no-idle (Brucker,
1995). If there is an idle interval on machine M1 then
it is between the operations of I2,1 and in this case
the assumption (4) does not hold. If there is an idle
interval on machine M2 then it is between the
operations of I1,2 and in this case the assumption (11)
does not hold either.

Supposing that machine M2 contains an idle
time, then this idle time is between the operations of
I1,2 relative to the two-machine flow shop sub-
problem where each job visits first, machine M1 then
machine M2. This idle time can be reduced by fixing
the starting time of the last operation scheduled on
machine M2 and scheduling the other operations of
I1,2 consecutively without any intermediate delay
(Adiri and Pohoryles, 1982).

This action creates an other idle time between
the first operation scheduled of I1,2 on machine M2
and the last operation scheduled of I2 on the same
machine.

The last idle time can also be reduced by
delaying all the operations of I2 and then the idle
time becomes between the last operation scheduled
of I2,1 and the first operation scheduled of I2. Since,
there is no idle time on machine M1, then (4) holds.

Let t be the ending date of the last operation of
I1,2 scheduled on machine M1 and let t’ be the
starting time of the first operation of I1,2 scheduled
on machine M2.

Naturally, we have:
t’ ≤ t (15)

Because if (15) does not hold, then (4) does not
hold. Consequently, it is possible to shift the
operations of I2,1 on machine M2 to the right so that
there is no-idle time on machine M2.

Thus, the schedule constructed by Jackson’s
algorithm can be easily transformed into a no-idle
schedule without increasing the Cmax-value. It is
enough to fix the last operation on the machine
which contains idle intervals and shift to the right all
the other operations in order to have no idle
intervals.

As a result, Jackson’s algorithm also constructs
an optimal schedule for he problem J2|ni≤2,no-
idle|Cmax problem.

Proposition 3. The set of optimal solutions of
J2|ni≤2,no-idle|Cmax problem is included in the set of
optimal solutions of J2|ni≤2|Cmax problem.

Proof. Jackson’s schedule can easily be transformed
to a no-idle schedule without increasing the Cmax-
value. So, both problems have the same Cmax

*.
Besides, an optimal solution for J2|ni≤2,no-idle|Cmax
problem is also optimal for J2|ni≤2|Cmax problem.

Thus, the set of optimal solutions of J2|ni≤2,no-
idle|Cmax problem is included in the set of optimal
solutions of J2|ni≤2|Cmax problem.

4 RESOLUTION OF THE
PROBLEM J2|pij=1,no-idle|Cmax

In this section, we study J2|pij=1,no-idle|Cmax
problem.

Proposition 4. The optimal Cmax of J2|pij=1|Cmax
problem is a lower bound for the optimal Cmax of
J2|pij=1,no-idle|Cmax problem; if an optimal schedule
exists.

Proof. The proof is similar to that of proposition 1.

Below, we denote HA the longest remaining

processing time first algorithm. Let S be the
schedule constructed by HA algorithm.

MINIMIZING THE MAKESPAN IN TWO-MACHINE JOB SHOP SCHEDULING PROBLEMS WITH NO MACHINE
IDLE-TIME

93

Lemma 4. If there is no-idle time in S then the
makespan of S is minimal and the number of idle
times is minimal.

Proof. HA calculates a schedule with minimal
makespan for J2|pij = 1|Cmax problem (theorem 1).
Moreover, if there is no-idle time in S then the
number of idle times is also minimal.

Let us introduce a second criterion to minimize
which is the number of idle times denoted Ā. The
objective is then to minimize first the Cmax then Ā. In
this case, the related problem is denoted
J2|pij=1|Lex(Cmax,Ā).

Evidently, if an optimal schedule for
J2|pij=1|Lex(Cmax,Ā) problem is no-idle then it is
also optimal for J2|pij=1,no-idle|Cmax problem. Also,
if there is no-idle time in S, then S is optimal for
both problems J2|pij=1,no-idle|Cmax and
J2|pij=1|Lex(Cmax,Ā). Furthermore, if it is possible to
built a no-idle schedule S’ from S without increasing
the Cmax then S’ is optimal for both problems
J2|pij=1,no-idle|Cmax and J2|pij=1|Lex(Cmax,Ā).

Let us assume that job h is the job so that
nh = maxi ni (16)

Figure 2: The schedule resulting from the assumption of
an idle interval on machine M2 in interval t and t is even.

Lemma 5. If in S there is an idle time, on some
machine, then

i. the job h is unique, and it is processed
continuously from time 0 to nh, alternating on
the two machines;

ii. the only job processed on the machine
containing this idle time is the job h;

iii. from time t – 1, all the operations processed
on the other machine, except of those of the
job h, must have a label 1.

Proof. The time axis is supposed to be split into
intervals of unit times. We suppose that the first idle
interval is the interval t. Let us suppose also that t is
even and that this idle time is on machine M2. Let us
denote i1 (resp: j1) the job processed in interval 1 on
machine M2 (resp: M1) and so on. So, it-1 is the job
processed on machine M2 in interval t – 1, and it is
the job processed on machine M1 in interval t (figure
2). The label of job jt-1 is 1. Otherwise there doesn’t

exist any idle time in interval t. Consequently, all
jobs processed after t – 1, at the exception of job it
which is the only job which can have a label strictly
larger than 1. Let us set i = it. We prove that it-1 = i.
It is the only job which can have a label strictly
larger than 2. For the same reason it-2 = i (the only
job which can have a label strictly larger than 3) and
so on until i1= i. Consequently, i = h. The same
reasoning can be applied when t is odd.

Thus, the job i must be the job h and then the job
h is continuously scheduled from beginning to end
since at each time it have the greatest label. It is
consequently the job h verifying the assumption (16)
and it is unique.

Figure 3: The first operation of job h is processed on
machine M2 and machine M1 work for the first interval.

Figure 4: The first operation of job h is processed on
machine M2 and machine M1 is free for the first interval.

Algorithm IT

i. Built S with applying HA algorithm
ii. Built S’ by scheduling the first operation of

job h at time 0 and letting the other machine
idle at time 0 and scheduling the remaining
jobs by applying HA algorithm from time 1.

Theorem 2. One of the two schedules built by
algorithm IT is optimal for both objective functions.

Proof. First, let us note that if there is an idle time in
S then this idle time usually precedes an operation of
job h and it is also preceded with an operation of the
same job h. Indeed, if there is an idle time then the
job h is unique and therefore it is continuously
scheduled from beginning to the end (lemma 5).
Thus, in each interval the job h is processed on one
machine and on the other machine either another job
is processed or there is an idle time. On the other
hand, if the first operation of job h is processed on

M1

M2

 h

 h h

jt-1

h

j1 h

j2 h

h

h

 1 2 t-1 t t+1 t’-1 t’ Interval
 0 1 2 t-2 t-1 t t+1 t’-2 t’-1 t’ Time

M1

M2

 it

 it-1 it+1

jt-1

i1

j1 i2

j2

 1 2 t-1 t t+1 Interval
0 1 2 t-2 t-1 t t+1 Time

M1

M2

 h

 h h

jt-1

h

h

j2 h

h

h

 1 2 t-1 t t+1 t’-1 t’ Interval
 0 1 2 t-2 t-1 t t+1 t’-2 t’-1 t’ Time

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

94

machine M2 then if there is an idle time on machine
M2 which occurs in interval t then t is even and if
there an idle time on machine M1 which occurs in
interval t’ then t’ is odd. Otherwise, t is odd and t’ is
even.

Below, we show in four cases that S or S’ is
optimal for both objectives.

In the first case, we assume that the first
operation of job h is processed on machine M2 and
the machine M1 works for the first interval of time
(figure 3). In this case, the number of idle times on
machine M2 is minimal because the operations
scheduled on machine M2, except of those of the job
h, are used optimally to fill idle intervals created by
the job h. It is the same for machine M1 from time 1.
However, if it is possible to make machine begin
working later with one unit of time without
increasing the ending date on this machine and the
Cmax then we can suppress an idle time. This is done
eventually in S’.

In the second case, we assume that the first
operation of job h is processed on machine M1 and
the machine M2 works for the first interval of time.
This case is similar to the first one.

In the third case, we assume that the first
operation of job h is processed on machine M2 and
the machine M1 is free for the first interval of time
(figure 4). In this case, the number of idle times is
minimal in both machines because in each machine
the first operation scheduled is an operation of job h.

In the fourth case, we assume that the first
operation of job h is processed on machine M1 and
the machine M2 is free for the first interval of time.
This case is similar to the third one.

Thus, S or S’ is optimal for both objectives.
We can resume that S is no-idle if and only if

one of the following cases holds:

Case 1:

maxi ni ≤ min(T1, T2) (18)

Case 2:

maxi ni = min(T1, T2) + 1 (19)

and the last operation of the job h is scheduled on
the machine which determines the schedule length.

Case 3:

maxi ni = min(T1, T2) + 2 (20)

and all jobs begin in the same machine and the last
operation of the job h is scheduled on the machine
which determines the schedule length.

Finally, we note that S’ is no-idle if S is no-idle
or S contains only one idle time.

5 RESOLUTION OF THE
PROBLEM J2|n=k, no-idle|Cmax

In this section, we discuss J2|n=k,no-idle|Cmax
problem.

Proposition 5. The optimal Cmax of J2|n=k|Cmax
problem is a lower bound for the optimal Cmax of
J2|n=k,no-idle|Cmax problem; if an optimal schedule
exists.

Proof. The proof is similar to that of proposition 1.

So, the optimal schedule for J2|n=k|Cmax problem

is optimal for J2|n=k,no-idle|Cmax problem if it is no-
idle or if it can be transformed into no-idle schedule
without increasing the Cmax-value.

Obviously, if n = 1 and n1 > 2 then it is not
possible to construct a no-idle schedule. There are
exactly n1 – 2 idle intervals.

Let us consider the problem where the number of
jobs is equal to two. This problem is denoted
J2|n=2,no-idle|Cmax.

Figure 5: Schedule format with two jobs where n1 > n2.

Let us give the following cases:

Case 1: n1 = n2, μ1,1 ≠ μ2,1 and p1,j = p2,j for
j = 2… n1 – 1

Case 2: n1 = n2, μ1,1 = μ2,1 and p1,j+1 = p2,j for
j = 1… n1 – 1

Case 3: n1 = n2, μ1,1 = μ2,1 and p1,j = p2,j+1 for
j = 1… n1 – 1

Case 4: n1 = n2 +1, μ1,1 ≠ μ2,1 and p1,j = p2,j for
j = 2… n2

Case 5: n1 = n2 + 1 and μ1,1 = μ2,1 and p1,j+1 = p2,j
for j = 1…n2 – 1

Case 6: n2 = n1 + 1, μ1,1 ≠ μ2,1 and p1,j = p2,j for
j = 2…n1

Case 7: n2 = n1 + 1, μ1, 1 = μ2,1 and p1,j = p2,j+1 for
j = 1…n1 – 1

Case 8: n1 = n2 + 2, μ1,1 = μ2, 1, and p1,j+1 = p2,j
for j = 1…n2

Case 9: n2 = n1 + 2, μ1,1 = μ2, 1, and p1,j = p2,j+1
for j = 1…n1

 t0 t1 t2 t3 t4 2nt T=
1nt

2

2 M1

M2

1

1

1

1 1

1

1 2

2 2

2

1

1

MINIMIZING THE MAKESPAN IN TWO-MACHINE JOB SHOP SCHEDULING PROBLEMS WITH NO MACHINE
IDLE-TIME

95

Proposition 6. If any of the previous cases holds
then the no-idle schedule is unique; it is
consequently the optimal solution for J2|n=2,no-
idle|Cmax problem. Otherwise, it is impossible to get
a no-idle schedule.

Proof. A feasible schedule for J2|n=2|Cmax problem
takes the format presented in figure 5 above.
Clearly, having this format, it is not possible to
transform any schedule to a no-idle schedule. There
are at most max(n1, n2) – 2 idle intervals.

However, we deduce that if any of the previous
cases holds then the no-idle schedule is unique. It is
consequently the optimal solution for J2|n=2,no-
idle|Cmax problem. Otherwise, it is impossible to get
a no-idle schedule.

6 CONCLUSIONS

In this paper, we have studied the impact of adding
the no-idle constraint to the problem of minimizing
the makespan in a two-machine job shop. We have
studied separately the case where the number of
operations per job isn’t greater than two and the case
where all operations are of unit time. In the first case
we have showed that there exists usually an optimal
schedule which we can calculate using Jackson’s
rule and then fixing the last operation scheduled on
the machine which contains an idle time and then
scheduling the other operations consecutively
without idle times. However, in the second case, we
showed that it is not usually possible to build a
feasible no-idle schedule. Then, we have proposed
the IT algorithm which minimizes first the Cmax then
the number of idle times (Ā). We have shown that it
is impossible to build a schedule which contains a
number of idle times smaller than that of the
schedule obtained by applying IT algorithm.
Consequently, if this schedule is no-idle then it is
also optimal for the corresponding problem with
adding the no-idle constraint. Moreover, in the
general case, where the number of operations per job
can be greater than two and all operations do not
have the same processing time, we have shown that
where the number of jobs is equal to two there are
only few cases numbered from 1 to 9 which are
efficiently solvable and where the set of feasible no-
idle schedules contains a unique schedule. In
conclusion, we deduce that it is not usually possible
to construct a feasible no-idle schedule for the two-
machine job shop problem and that in the majority
of cases, this set is empty.

REFERENCES

Adiri, I., Pohoryles, D., 1982. Flow-shop/no-idle or no-
wait scheduling to minimise the sum of completion
times. Naval Research Logistics Quarterly, Vol. 29,
pp. 495-504.

Baptiste, P., Lee, K.H., 1997. A branch and bound
algorithm for the F|no-idle|Cmax. Proceedings of the
International Conference on Industrial Engineering
and Production Management (IEPM’1997), Lyon, vol.
1, pp. 429-438.

Brucker, P., 1994. A polynomial algorithm for the two
machine job-shop scheduling problem with fixed
number of jobs. Operations Research Spektrum, Vol.
16, pp. 5-7.

Brucker, P., 1995. Scheduling Algorithms, Springer,
ISBN: 3-540-60087-6.

Chrétienne, P., 2008. On single-machine scheduling
without intermediate delays. Discrete Applied
Mathematics, 156, p. 2543-2550.

Garey, M.R.D., Johnson, D.S., Sethi, R., 1976. The
complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, Vol. 1, pp. 117-129.

Hefetz, N. , Adiri, I., 1982. An Efficient Optimal
Algorithm for the Two-Machines Unit-Time Jobshop
Schedule-Length Problem. Mathematics of Operations
Research, Vol. 7, No. 3., pp. 354-360.

Jackson, J.R., 1956. An extension of Johnson’s results on
job lot scheduling. Naval Research Logistic Quarterly,
Vol. 3, pp. 201-203.

Johnson, S.M., 1954. Optimal two- and three-stage
production schedules with setup times included, Naval
Research Logistics Quarterly, Vol. 1, pp. 61-68.

Kalczynski, P. J., Kamburowski, J., 2007. On no-wait and
no-idle flow shops with makespan criterion. European
Journal of Operational Research, Vol. 178, pp. 677–685.

Lenstra, J. K., Rinnooy Kan, A.H.G., Brucker, P., 1977.
Complexity machine scheduling problems. Annals of
Discrete Mathematics, Vol. 1, pp. 343-362.

Saadani, H., Guinet, A., Moalla, M., 2001. A travelling
salesman approach to solve the F|no-idle|Cmax problem.
Proceedings of the International Conference on
Industrial Engineering and Production Management
(IEPM’ 2001), Quebec, vol. 2, 880-888.

Saadani, H., Guinet, A., Moalla, M., 2003. Three stage no-
idle flow-shops. Computers and Industrial
Engineering, 44, 425-434.

Valente, J. M. S., Alves, R. A. F. S., 2005. Improved
Heuristics for the Early/Tardy scheduling problem with
no idle time. Computers & Operations Research, 32: p.
557-569.

Valente, J. M. S., 2006. Heuristics for the single machine
scheduling problem with early and quadratic tardy
penalities. Working paper 234, Faculdade de Economia
do Porto, Portugal, December.

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

96

