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Abstract: This paper deals with two-machine job shop scheduling problems working under the no-idle constraint, that 
is, machines must work continuously without idle intervals. The makespan (Cmax) has to be minimized. 
First, we study the problem where each job consists of at most two operations and we show that it can be 
solved polynomially using Jackson’s rule (Jackson, 1956). Second, we study the problem where the number 
of operations per job can be greater than two and all operations are of unit time and we extend the results of 
(Hefetz and Adiri, 1982). Finally, we discuss the possibility of getting feasible solutions and then optimal 
solutions in the general case where the number of operations per job can be greater than two and all 
operations do not have the same processing time. 

1 INTRODUCTION 

Frequently, the cost of making machines wait is so 
high that a no-idle constraint is imposed on 
machines and no intermediate idle time between 
operations processed by the same machine is 
allowed. For example, if the machine is an oven that 
must cook some pieces at a given high temperature 
then maintaining the required temperature of the 
oven while it is empty may be too costly. However, 
studies of problems on this topic have not attracted a 
great deal of attention. In the literature, we find 
some works, most of which are recent, on the 
permutation flow shop ((Adiri and Pohoryles, 1982), 
(Baptiste and Lee, 1997), (Kalczynski and 
Kamburowski, 2007), (Saadani, Guinet and Moalla, 
2001), (Saadani, Guinet and Moalla, 2003)). There 
are also some recent works discussing one machine 
scheduling problems ((Chrétienne, 2008), (Valente 
and Alves, 2005), (Valente, 2006)). 

The aim of this paper is to study two-machine 
job shop problems where a set I of n jobs, I = {1, ..., 
n}, has to be scheduled without intermediate delay 
on two machines in order to minimize the maximum 
of the completion times of the jobs i.e. the makespan 
(Cmax). Each job i, i ∈ I, is composed of ni operations 
Oi,j , j = 1…ni, and each operation Oi,j has to be 
processed on a fixed machine for pi,j time units.  

The job shop problem plays an important role in 
the scheduling theory because of its practical 
applications. Most of job shop problems are NP-hard 
and there are only few special cases which can be 
solved polynomially. The two-machine job shop 
problem with at most two operations per job is 
denoted J2|ni≤2|Cmax. It was solved polynomially by 
Jackson (Jackson, 1956) who proposed an algorithm 
which calculates an optimal schedule in O(n*log(n)) 
steps using Johnson’s rule (Johnson, 1954).  The 
two-machine unit-time job shop problem is denoted 
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J2|pi,j=1|Cmax. It was proved to be polynomial by 
(Hefetz and Adiri, 1982) where authors proposed the 
longest remaining processing time first algorithm 
which schedules operations in a decreasing order of 
the remaining processing time of jobs. Lenstra, 
Rinnooy Kan and Brucker showed in (Lenstra, 
Rinnooy Kan and Brucker, 1977) that problem 
J2||Cmax is strongly NP-hard. Later, Brucker showed 
in (Brucker, 1994) that the two-machine job shop 
problem with a fixed number k of jobs, denoted 
J2|n=k|Cmax, can be solved polynomially by reducing 
it to a shortest path problem and then he deduced 
that it is possible to calculate an optimal schedule for 
J2||Cmax for any fixed number of jobs in polynomial 
time.  

The paper is organized as follows: In section 2, 
we define the studied problem and we recall some 
backgrounds and basic results relying on the two-
machine job shop problem. In section 3, we study 
the two-machine job shop problem where the 
number of operations per job is at most equal to two 
and machines must work under the no-idle 
constraint. This problem is denoted J2|ni≤2,no-
idle|Cmax. We show that it can be solved in 
polynomial time using Jackson’s rule (Jackson, 
1956). In section 4, we study the two-machine unit-
time job shop problem with no machine idle time, 
denoted J2|pi,j=1,no-idle|Cmax, and we extend the 
results of (Hefetz and Adiri,1982). Finally, in 
section 5, we deduce some special cases which are 
polynomially solvable. 

2 GENERAL POINTS  

In this section, we first define the problem subject of 
this study and we present some definitions. Next, we 
present Johnson’s and Jackson’s algorithms where 
Johnson’s algorithm (Johnson, 1954) solves the two-
machine flow shop problem with Cmax criterion 
denoted F2||Cmax and Jackson’s algorithm (Jackson, 
1956) solves problem J2|ni≤2|Cmax using Johnson’s 
rule. Finally we introduce the longest remaining 
processing time first algorithm (Hefetz and Adiri, 
1982) which solves problem J2|pij=1|Cmax. 

2.1 Problem Formulation and Basic 
Definitions 

The two-machine job shop problem is a problem 
where a set I of n jobs, I = {1, ..., n} have to be 
processed in a shop with two machines M1 and M2. 
Each job i, i = 1, …, n, consists of a sequence of ni 
operations Oi,1, Oi,2, ..., Oi,ni  which must be 

processed in this order. The precedence constraints 
are so that Oi,j precedes Oi,j+1, j = 1, …,   ni – 1. Each 
operation Oi,j must be processed for pi,j time units on 
machine µi,j∈{M1, M2}.  

The following assumptions are made: 
 A machine can process only one operation at a 
time.  
 An operation cannot be interrupted.  
 The time zero is the earliest time an operation 
can be started.  
 All setup times are included into the job 
processing times.  
 If operation Oi,j must be processed on machine 
M1, then operation Oi,j+1 must be processed on 
machine M2 (µi,j ≠ µi,j+1 for i = 1,…, ni – 1). 
Thus, job i may be characterized by the number 
of operations and the machine on which the 
first operation must be processed.  
 Only no-idle schedules are considered. 

Let ti,j be the starting time of operation Oi,j and 
let Ci,j be its completion time. Let Ci be the 
completion time of job i so that 

Ci = 
i1...nj

max
=

 Ci,j  (1) 

Let us present the following definitions: 
 An initial operation is one without 
predecessors: the operation Oi,1 is the initial 
operation for job i.  
 A terminal operation is one without successors: 
the operation ini,O  is the terminal operation for 
job i.  
 A ready operation is an operation that has not 
yet been scheduled while all its predecessors 
have been.  
 A no-idle schedule satisfies the no-idle 
constraint on each machine. In other words, if 
operation Oi,j is executed immediately before 
operation Oi’,j’ on the same machine then we 
have: 

Ci,j = ti,j + pi,j = ti’,j’  (2) 

Given a feasible schedule π we have:  

Cmax(π) = 

i1...nj
1...ni

max
=
=

 Ci,j = 
1...ni

max
=

Ci  (3) 

The objective is to find a no-idle schedule so as 
to minimize the Cmax. The problem so formulated is 
denoted J2|no-idle|Cmax. When the number of 
operations per job is at most equal to two, the 
problem is denoted J2|ni≤2,no-idle|Cmax and when all 
operations have the same processing time which is 
considered as the unit-time,  the problem is denoted 
J2|pi,j=1,no-idle|Cmax. 
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2.2 Jackson’s and Johnson’s 
Algorithms 

Jackson’s algorithm constructs an optimal schedule 
for J2|ni≤2|Cmax problem reducing it to F2||Cmax 
problem. Below, we first describe Johnson’s 
algorithm. Then, we present Jackson’s algorithm. 
Finally, we conclude with some results concerning 
the presence of idle times on machines. 

2.2.1 Johnson’s Algorithm 

The two-machine flow shop problem is a problem 
where a set I’ of n’ jobs, I’ = {1,2,…,n’} must visit 
machines in the same order. Each job i consists of 
two operations Oi,1 and Oi,2 which must be processed 
respectively, first on machine M1 then on machine 
M2. Johnson’s algorithm (Johnson, 1954) constructs 
an optimal schedule in polynomial time 
(O(n*log(n))) for F2||Cmax problem. It applies the 
following steps: 

i. Divide the set of jobs I’, I’ = {1,2,…,n’}, into two 
subsets:  

a. Let I’
1 denote the subset of jobs i, i = 1, …, 

n’, which satisfy the condition pi,1 ≤ pi,2 
b. Let I’

2 denote the subset of jobs i, i = 1, …, 
n’, which satisfy the condition pi,1 > pi,2 

ii. Schedule on each machine first the jobs of I’
1 in 

an increasing order of pi,1 and then the jobs of I’
2 

in a decreasing order of pi,2. 

2.2.2 Jackson’s Algorithm 

Jackson’s algorithm (Jackson, 1956) calculates an 
optimal solution for problem J2|ni≤2|Cmax, in 
polynomial time (O(n*log(n))) by first reducing it to 
F2||Cmax problem and then using Johnson’s rule. It 
applies the following steps: 
i. Divide the set of jobs I = {1, 2, …, n} into four 

subsets: 
a. Let I1 denote the subset of jobs consisted of 

only one operation which must be 
processed on machine M1.  

b. Let I2 denote the subset of jobs consisted of 
only one operation which must be 
processed on machine M2.  

c. Let I1,2 denote the subset of jobs which are 
processed first on machine M1 then on 
machine M2.  

d. Let I2,1 denote the subset of jobs which are 
processed first on machine M2 then on 
machine M1. 

ii. Calculate an optimal sequence R1,2 for the flow 
shop problem relative to the job set I1,2 . 

iii. Calculate an optimal sequence R2,1 for the flow 

shop problem relative to the job set I2,1 . 
iv. On machine M1 schedule first I1,2 according to 

R1,2, then all jobs in I1 and finally I2,1 according 
to R2,1 . 

v. On machine M2 schedule first I2,1 according to 
R2,1, then all jobs in I2 and finally I1,2 according 
to R1,2 . 

2.2.3 Further Results 

Adiri and Pohoryles (Adiri and Pohoryles, 1982) 
observe that problems F2|prmu,no-idle|Cmax and 
F2|prmu|Cmax are equivalent in the sense that every 
F2|prmu|Cmax schedule can be transformed into an 
F2|prmu,no-idle|Cmax schedule with maintaining the 
same Cmax. Thus, both problems can be solved by 
Johnson’s algorithm (Johnson, 1954). Johnson’s 
schedule is an active schedule in which machine M1 
is naturally no-idle since operations are processed 
consecutively on it without idle interval. Moreover, 
the jobs preceding each idle interval on the second 
machine M2 can be delayed without increasing the 
Cmax. It is enough to fix the starting time of the last 
operation scheduled on M2 and to schedule the other 
operations so that all operations are scheduled 
consecutively without any intermediate delay.  

Brucker (Brucker, 1995) observes that in 
Jackson’s schedule at least one machine processes 
jobs without idle intervals. More specifically, having 
the following assumption: 

∑+∑≤∑
∈∈∈ 11,22,1 Ii i,1Ii i,1Ii i,2 ppp  (4) 

then there is no idle time on machine M1. Otherwise, 
there is no idle time on machine M2. 

2.3 The Longest Remaining Processing 
Time First Algorithm 

The longest remaining processing time first 
algorithm has been proposed by (Hefetz and Adiri, 
1982) to solve J2|pi,j=1|Cmax problem. It constructs 
an optimal schedule for this problem with applying 
the following steps: 

i. Give a label αi,j to each operation Oi,j so that: 

αi,j = ni – j + 1     i = 1,…,n and j = 1,…,ni (5) 

ii. Schedule the highest label operation for the 
earliest possible time on the required machine, 
with ties broken arbitrarily. 

iii. Remove from the problem the scheduled 
operation. Stop if all operations are scheduled, 
otherwise return to (ii). 

The authors noted that the operation with the 
highest label in step (ii) must be a ready operation, 
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since, if it is not then there is an unscheduled 
predecessor with a higher label, which is a 
contradiction. 

Let Tj, j = 1, 2, be the total processing time 
required on machine Mj and pi the processing time 
of job i. Thus, pi = ni in view of the fact that all 
operations have unit duration.  

 
Theorem 1 (Hefetz and Adiri, 1982). The longest 
remaining processing time first algorithm constructs 
an optimal schedule for J2|pi,j=1|Cmax problem. If all 
initial operations require the same machine and we 
have: 

T1 = T2 ≥ maxi ni  (6) 

Then, the optimal schedule length is:  
C*

max = T1 + 1 = T2 + 1 (7) 
Otherwise, the optimal schedule length is: 

C*
max = max(T1, T2, maxi ni)  (8) 

3 RESOLUTION OF THE 
PROBLEM 
J2|NI≤2,NO-IDLE|CMAX 

The problem we consider in this section is to find an 
optimal schedule for J2|ni≤2,no-idle|Cmax problem. 
We propose first to study the feasibility of Jackson’s 
schedule then, we prove its optimality. We also 
deduce some interesting results which concern the 
necessity of applying Johnson’s rule in Jackson’s 
algorithm. 
 
Proposition 1. The Cmax-value of Jackson’s schedule 
is a lower bound for the optimal Cmax of J2|ni≤2,no-
idle|Cmax problem. 
 
Proof. Jackson’s schedule is an active schedule in 
which all the operations are scheduled as soon as 
possible. On the other hand, to satisfy the no-idle 
constraint, some operations must be delayed which 
must increase the Cmax-value. So, the optimal Cmax of 
J2|ni≤2,no-idle|Cmax problem must be greater than or 
equal to that of J2|ni≤2|Cmax problem.  

So, evidently Jackson’s schedule is optimal for 
J2|ni≤2,no-idle|Cmax problem if it is no-idle or if it 
can be transformed into a no-idle schedule without 
increasing the Cmax-value.     
 
Lemma 1. If (4) then there is no-idle time on 
machine M1 and it is unnecessary for Jackson’s 
algorithm to apply Johnson’s rule for the two-
machine flow shop sub-problem relative to I2,1.  

M1

M2 

I2,1 I11 

I2,1  I2

j

0            t’                                      t          Time 

R1,2

j 

R1,2   
Figure 1: A schedule where there is no-idle time on 
machine M1. 

Proof. If (4) holds, then at time t where, 

∑+∑=
∈∈ 11,2 Ii i,1Ii i,1 ppt  (9) 

all the operations of I2,1 which must be processed on 
machine M1 are ready. Therefore, these operations 
can be processed without idle time immediately after 
the end of those of I1 as presented in figure 1 above.  

As a result, the order of processing the 
operations of I2,1 on machine M1 and on machine M2 
does not affect the Cmax-value since all the 
operations of I2,1 which must be processed on 
machine M2 are naturally ready at time 0. They are 
completed at time t’, where 

 t  i,2p t'
2,1Ii

≤∑=
∈

 (10) 

 
Lemma 2. If 

∑+∑≤∑
∈∈∈ 22,11,2 IiIiIi i,1 i,2p  i,2pp  (11) 

then there is no-idle time on machine M2 and it is 
unnecessary for Jackson’s algorithm to apply 
Johnson’s rule for the two-machine flow shop sub-
problem relative to I1,2.  
 
Proof. The proof is similar to that of lemma 1. 
 

Let us note that if  

∑≤∑
∈∈ 1,22,1 IiIi i,2 i,1pp  (12) 

then (4) holds. Also, if 

∑≤∑
∈∈ 2,11,2 IiIi i,1 i,2pp  (13) 

then (11) holds.  
By summation of (12) and (13), we have: 

∑=∑
∈∈ 2,11,2 Ii i,2Ii

pi,1p  (14) 

 
Lemma 3. If any of the following assumptions hold, 
namely, (4) and (13), (11) and (12), or (14) then 
Jackson’s schedule is no-idle. It is consequently 
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optimal for problem J2|ni≤2,no-idle|Cmax and it is 
unnecessary for Jackson’s algorithm to apply 
Johnson’s rule neither for the two-machine flow 
shop sub-problem relative to I1,2 nor for the two-
machine flow shop sub-problem relative to I2,1. 
 
Proof. If (4) holds then there is no idle time on 
machine M1 and it is pointless to apply Johnson’s 
rule in Jackson’s algorithm to the sub-problem 
relative to I2,1 (lemma 1).  

If (13) holds then there is no-idle time on 
machine M2 and it is pointless to apply Johnson’s 
rule in Jackson’s algorithm to the sub-problem 
relative to I2,1 (lemma 2).  

By summation of (4) and (13), Jackson’s 
schedule is no-idle. It is consequently optimal for 
J2|ni≤2,no-idle|Cmax problem and it is unnecessary 
for Jackson’s algorithm to apply Johnson’s rule 
neither for the two-machine flow shop sub-problem 
relative to I1,2 nor for the two-machine flow shop 
sub-problem relative to I2,1. 

In the same way, we deduce the same results if 
assumptions (11) and (12) hold or assumption (14) 
holds.  

 
Proposition 2. The problem J2|ni≤2,no-idle|Cmax is 
polynomial. It can be solved with Jackson’s 
algorithm. 
 
Proof. At least one machine is no-idle (Brucker, 
1995). If there is an idle interval on machine M1 then 
it is between the operations of I2,1 and in this case 
the assumption (4) does not hold. If there is an idle 
interval on machine M2 then it is between the 
operations of I1,2 and in this case the assumption (11) 
does not hold either.  

Supposing that machine M2 contains an idle 
time, then this idle time is between the operations of 
I1,2 relative to the two-machine flow shop sub-
problem where each job visits first, machine M1 then 
machine M2. This idle time can be reduced by fixing 
the starting time of the last operation scheduled on 
machine M2 and scheduling the other operations of 
I1,2 consecutively without any intermediate delay 
(Adiri and Pohoryles, 1982).  

This action creates an other idle time between 
the first operation scheduled of I1,2 on machine M2 
and the last operation scheduled of I2 on the same 
machine.  

The last idle time can also be reduced by 
delaying all the operations of I2 and then the idle 
time becomes between the last operation scheduled 
of I2,1 and the first operation scheduled of I2. Since, 
there is no idle time on machine M1, then (4) holds.  

Let t be the ending date of the last operation of 
I1,2 scheduled on machine M1 and let t’ be the 
starting time of the first operation of I1,2 scheduled 
on machine M2.  

Naturally, we have: 
t’ ≤ t (15) 

Because if (15) does not hold, then (4) does not 
hold. Consequently, it is possible to shift the 
operations of I2,1 on machine M2 to the right so that 
there is no-idle time on machine M2.  

Thus, the schedule constructed by Jackson’s 
algorithm can be easily transformed into a no-idle 
schedule without increasing the Cmax-value. It is 
enough to fix the last operation on the machine 
which contains idle intervals and shift to the right all 
the other operations in order to have no idle 
intervals.  

As a result, Jackson’s algorithm also constructs 
an optimal schedule for he problem J2|ni≤2,no-
idle|Cmax problem. 

 
Proposition 3. The set of optimal solutions of 
J2|ni≤2,no-idle|Cmax problem is included in the set of 
optimal solutions of J2|ni≤2|Cmax problem. 

 
Proof. Jackson’s schedule can easily be transformed 
to a no-idle schedule without increasing the Cmax-
value. So, both problems have the same Cmax

*.  
Besides, an optimal solution for J2|ni≤2,no-idle|Cmax 
problem is also optimal for J2|ni≤2|Cmax problem.  

Thus, the set of optimal solutions of J2|ni≤2,no-
idle|Cmax problem is included in the set of optimal 
solutions of J2|ni≤2|Cmax problem. 

4 RESOLUTION OF THE 
PROBLEM J2|pij=1,no-idle|Cmax  

In this section, we study J2|pij=1,no-idle|Cmax 
problem.  
 
Proposition 4. The optimal Cmax of J2|pij=1|Cmax 
problem is a lower bound for the optimal Cmax of 
J2|pij=1,no-idle|Cmax problem; if an optimal schedule 
exists. 
 
Proof. The proof is similar to that of proposition 1. 

 
Below, we denote HA the longest remaining 

processing time first algorithm. Let S be the 
schedule constructed by HA algorithm. 
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Lemma 4. If there is no-idle time in S then the 
makespan of S is minimal and the number of idle 
times is minimal. 
 
Proof. HA calculates a schedule with minimal 
makespan for J2|pij = 1|Cmax problem (theorem 1). 
Moreover, if there is no-idle time in S then the 
number of idle times is also minimal.  

Let us introduce a second criterion to minimize 
which is the number of idle times denoted Ā. The 
objective is then to minimize first the Cmax then Ā. In 
this case, the related problem is denoted 
J2|pij=1|Lex(Cmax,Ā).  

Evidently, if an optimal schedule for 
J2|pij=1|Lex(Cmax,Ā) problem is no-idle then it is 
also optimal for J2|pij=1,no-idle|Cmax problem. Also, 
if there is no-idle time in S, then S is optimal for 
both problems J2|pij=1,no-idle|Cmax and 
J2|pij=1|Lex(Cmax,Ā). Furthermore, if it is possible to 
built a no-idle schedule S’ from S without increasing 
the Cmax then S’ is optimal for both problems 
J2|pij=1,no-idle|Cmax and J2|pij=1|Lex(Cmax,Ā). 

Let us assume that job h is the job so that 
nh = maxi ni (16) 

 
 
 
 
 
 

 
Figure 2: The schedule resulting from the assumption of 
an idle interval on machine M2 in interval t and t is even. 

Lemma 5. If in S there is an idle time, on some 
machine, then 

i. the job h is unique, and it is processed 
continuously from time 0 to nh, alternating on 
the two machines; 

ii. the only job processed on the machine 
containing this idle time is the job h; 

iii. from time t – 1, all the operations processed 
on the other machine, except of those of the 
job h, must have a label 1.  

 
Proof. The time axis is supposed to be split into 
intervals of unit times. We suppose that the first idle 
interval is the interval t. Let us suppose also that t is 
even and that this idle time is on machine M2. Let us 
denote i1 (resp: j1) the job processed in interval 1 on 
machine M2 (resp: M1) and so on. So, it-1 is the job 
processed on machine M2 in interval t – 1, and it is 
the job processed on machine M1 in interval t (figure 
2). The label of job jt-1 is 1. Otherwise there doesn’t 

exist any idle time in interval t. Consequently, all 
jobs processed after t – 1, at the exception of job it 
which is the only job which can have a label strictly 
larger than 1. Let us set i = it. We prove that it-1 = i.  
It is the only job which can have a label strictly 
larger than 2. For the same reason it-2 = i (the only 
job which can have a label strictly larger than 3) and 
so on until i1= i. Consequently, i = h. The same 
reasoning can be applied when t is odd. 

Thus, the job i must be the job h and then the job 
h is continuously scheduled from beginning to end 
since at each time it have the greatest label. It is 
consequently the job h verifying the assumption (16) 
and it is unique. 
 

 
 
 
 
 
 

 
Figure 3: The first operation of job h is processed on 
machine M2 and machine M1 work for the first interval.  

 
 
 
 
 
 

 
Figure 4: The first operation of job h is processed on 
machine M2 and machine M1 is free for the first interval. 

Algorithm IT 

i. Built S with applying HA algorithm 
ii. Built S’ by scheduling the first operation of 

job h at time 0 and letting the other machine 
idle at time 0 and scheduling the remaining 
jobs by applying HA algorithm from time 1.  

 
Theorem 2. One of the two schedules built by 
algorithm IT is optimal for both objective functions.  

 
Proof. First, let us note that if there is an idle time in 
S then this idle time usually precedes an operation of 
job h and it is also preceded with an operation of the 
same job h. Indeed, if there is an idle time then the 
job h is unique and therefore it is continuously 
scheduled from beginning to the end (lemma 5). 
Thus, in each interval the job h is processed on one 
machine and on the other machine either another job 
is processed or there is an idle time. On the other 
hand, if the first operation of job h is processed on 

M1 

M2 

 h 

 h h 

jt-1

h 

j1 h 

j2 h 

h 

h 

   1    2                t-1   t    t+1         t’-1  t’        Interval 
 0   1    2          t-2   t-1   t   t+1   t’-2  t’-1  t’    Time 

M1 

M2 

  it

 it-1  it+1 

jt-1 

i1 

j1 i2 

j2 

  1    2                t-1   t    t+1               Interval     
0   1    2          t-2  t-1   t    t+1           Time 

M1 

M2 

 h 

 h h 

jt-1

h 

h 

j2 h 

h 

h 

   1    2                t-1   t    t+1         t’-1  t’        Interval 
 0   1    2          t-2   t-1   t   t+1   t’-2  t’-1  t’    Time 
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machine M2 then if there is an idle time on machine 
M2 which occurs in interval t then t is even and if 
there an idle time on machine M1 which occurs in 
interval t’ then t’ is odd. Otherwise, t is odd and t’ is 
even.  

Below, we show in four cases that S or S’ is 
optimal for both objectives. 

In the first case, we assume that the first 
operation of job h is processed on machine M2 and 
the machine M1 works for the first interval of time 
(figure 3). In this case, the number of idle times on 
machine M2 is minimal because the operations 
scheduled on machine M2, except of those of the job 
h, are used optimally to fill idle intervals created by 
the job h. It is the same for machine M1 from time 1. 
However, if it is possible to make machine begin 
working later with one unit of time without 
increasing the ending date on this machine and the 
Cmax then we can suppress an idle time. This is done 
eventually in S’. 

In the second case, we assume that the first 
operation of job h is processed on machine M1 and 
the machine M2 works for the first interval of time. 
This case is similar to the first one. 

In the third case, we assume that the first 
operation of job h is processed on machine M2 and 
the machine M1 is free for the first interval of time 
(figure 4). In this case, the number of idle times is 
minimal in both machines because in each machine 
the first operation scheduled is an operation of job h. 

In the fourth case, we assume that the first 
operation of job h is processed on machine M1 and 
the machine M2 is free for the first interval of time. 
This case is similar to the third one. 

Thus, S or S’ is optimal for both objectives. 
We can resume that S is no-idle if and only if 

one of the following cases holds: 

Case 1:   

maxi ni ≤ min(T1, T2) (18) 

 
Case 2:  

maxi ni = min(T1, T2) + 1 (19) 

and the last operation of the job h is scheduled on 
the machine which determines the schedule length.  

Case 3: 

maxi ni = min(T1, T2) + 2 (20) 

and all jobs begin in the same machine and the last 
operation of the job h is scheduled on the machine 
which determines the schedule length.  

Finally, we note that S’ is no-idle if S is no-idle 
or S contains only one idle time. 

5 RESOLUTION OF THE 
PROBLEM J2|n=k, no-idle|Cmax 

In this section, we discuss J2|n=k,no-idle|Cmax 
problem.  
 
Proposition 5. The optimal Cmax of J2|n=k|Cmax 
problem is a lower bound for the optimal Cmax of 
J2|n=k,no-idle|Cmax problem; if an optimal schedule 
exists. 

 
Proof. The proof is similar to that of  proposition 1. 

 
So, the optimal schedule for J2|n=k|Cmax problem 

is optimal for J2|n=k,no-idle|Cmax problem if it is no-
idle or if it can be transformed into no-idle schedule 
without increasing the Cmax-value. 

Obviously, if n = 1 and n1 > 2 then it is not 
possible to construct a no-idle schedule. There are 
exactly n1 – 2 idle intervals.  

Let us consider the problem where the number of 
jobs is equal to two. This problem is denoted 
J2|n=2,no-idle|Cmax.  

 
Figure 5: Schedule format with two jobs where n1 > n2. 

Let us give the following cases: 

Case 1: n1 = n2, μ1,1 ≠ μ2,1 and p1,j = p2,j for          
j = 2… n1 – 1  

Case 2: n1 = n2, μ1,1 = μ2,1 and p1,j+1 = p2,j for        
j = 1… n1 – 1  

Case 3: n1 = n2, μ1,1 = μ2,1 and p1,j = p2,j+1 for        
j = 1… n1 – 1  

Case 4: n1 = n2 +1, μ1,1 ≠ μ2,1 and p1,j = p2,j for     
j = 2… n2  

Case 5: n1 = n2 + 1 and μ1,1 = μ2,1 and p1,j+1 = p2,j 
for j = 1…n2 – 1 

Case 6: n2 = n1 + 1, μ1,1 ≠ μ2,1 and p1,j = p2,j for    
j = 2…n1 

Case 7: n2 = n1 + 1, μ1, 1 = μ2,1 and p1,j = p2,j+1 for 
j = 1…n1 – 1   

Case 8: n1 = n2 + 2, μ1,1  = μ2, 1, and p1,j+1 = p2,j 
for j = 1…n2   

Case 9: n2 = n1 + 2, μ1,1  = μ2, 1, and p1,j = p2,j+1 
for j = 1…n1   
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Proposition 6. If any of the previous cases holds 
then the no-idle schedule is unique; it is 
consequently the optimal solution for J2|n=2,no-
idle|Cmax problem.  Otherwise, it is impossible to get 
a no-idle schedule. 
 
Proof. A feasible schedule for J2|n=2|Cmax problem 
takes the format presented in figure 5 above. 
Clearly, having this format, it is not possible to 
transform any schedule to a no-idle schedule. There 
are at most max(n1, n2) – 2 idle intervals.  

However, we deduce that if any of the previous 
cases holds then the no-idle schedule is unique. It is 
consequently the optimal solution for J2|n=2,no-
idle|Cmax problem.  Otherwise, it is impossible to get 
a no-idle schedule.   

6 CONCLUSIONS 

In this paper, we have studied the impact of adding 
the no-idle constraint to the problem of minimizing 
the makespan in a two-machine job shop. We have 
studied separately the case where the number of 
operations per job isn’t greater than two and the case 
where all operations are of unit time. In the first case 
we have showed that there exists usually an optimal 
schedule which we can calculate using Jackson’s 
rule and then fixing the last operation scheduled on 
the machine which contains an idle time and then 
scheduling the other operations consecutively 
without idle times. However, in the second case, we 
showed that it is not usually possible to build a 
feasible no-idle schedule. Then, we have proposed 
the IT algorithm which minimizes first the Cmax then 
the number of idle times (Ā). We have shown that it 
is impossible to build a schedule which contains a 
number of idle times smaller than that of the 
schedule obtained by applying IT algorithm. 
Consequently, if this schedule is no-idle then it is 
also optimal for the corresponding problem with 
adding the no-idle constraint. Moreover, in the 
general case, where the number of operations per job 
can be greater than two and all operations do not 
have the same processing time, we have shown that 
where the number of jobs is equal to two there are 
only few cases numbered from 1 to 9 which are 
efficiently solvable and where the set of feasible no-
idle schedules contains a unique schedule. In 
conclusion, we deduce that it is not usually possible 
to construct a feasible no-idle schedule for the two-
machine job shop problem and that in the majority 
of cases, this set is empty. 
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