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Abstract: In this paper, a linear quadratic (LQ) control law combined with a multimodel approach is designed for 
variable-speed, variable-pitch wind turbines. The presented technique is based on an optimal control method 
in order to improve the system global dynamic. A set of linear local models (sub-models) is then defined for 
different operating points corresponding to high wind speeds. Thereafter, a global asymptotic stability 
analysis is developed by solving a bilinear matrix inequality (BMI) feasibility problem based on the local 
stability of the sub-models. 

1 INTRODUCTION 

Nowadays, the growth of the utilization of the wind 
turbines is more and more important since they are 
producing carbon-emission-free electricity. Until 
today, only classic control laws, such as P, PI or PID 
controllers, are used in the wind turbines. However, 
the performance of these controllers is limited by the 
high nonlinear characteristics of the wind turbine 
and by the appearance of new control objectives 
required by the grid-codes; the reason why advanced 
control research area is improving every day.  

In the first axis of this paper, an LQ controller, 
which had been advocated by many researchers, is 
designed with a multimodel approach, for pitch 
regulated variable speed wind turbines operating at 
high wind speeds, in order to guarantee an optimal 
behavior for the studied process. However, this 
technique still presents some limits to satisfy all the 
control objectives especially those concerning the 
system global dynamic. This paper aims then to 
present an issue for this problem by adding an 
exponential term in the quadratic cost function. 

The second section deals with the asymptotic 
stability analysis of the global system by solving a 
set of BMI according to the Lyapunov theorems. In 
fact, the stability study is necessary and important to 
illustrate the effectiveness of the presented strategy. 

Finally, the simulation results realized on Matlab 
Simulink are presented and discussed.  

2 WIND TURBINE MODELLING 

2.1 Wind Turbine Description 

The considered wind turbine (Figure 1) is modeled 
as two inertias (the generator and the turbine inertias 
respectively Jg and JT) linked to a flexible shaft with 
a mechanical coupling damping coefficient d and a 
mechanical coupling stiffness coefficient k. This 
model is widely used in the literature (Bianchi et al., 
2004; Camblong et al., 2002). 

 
Figure 1: Wind turbine dynamic model. 

where ΩT and Ωg are the turbine and the generator 
rotational speeds, Tem is the generator torque, Tmec is 
the drive train mechanical torque and Taero is the 
torque caught by the wind turbine which is 
expressed by: 
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where ρ is the air density and R is the turbine radius. 
The power coefficient cp (Figure 2) is a non 

linear function of the blade pitch β and the tip speed 
ratio λ depending on the wind speed value v and 
given by: 
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λ
Ω ⋅

=  (2)

        
  

 
Figure 2: Power coefficient curves. 

The dynamic response of the rotor is given by: 

.T T aero mecJ T TΩ = −   (3)

The generator is driven by the mechanical torque 
and braked by the electromagnetic torque. Reported 
to the low speed shaft, the characteristic equation is 
the following: 

. .g ls g ls mec emJ T G T− −Ω = −   (4) 

 
where G is the gearbox gain and: 
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And the low speed shaft torque Tmec results from 
the torsion and friction effects due to the difference 
between the generator and the rotor speeds 
(Boukhezzara et al., 2007). It’s defined by the 
following equation reported to the low speed shaft: 

.( ) .( )mec T g ls T g lsT k d− −= Ω −Ω + Ω −Ω  (6) 
The pitch actuator dynamic is described by a first 

order system: 
1 ( )ref
β

β β β
τ

= −  (7) 

βref represents the control value of the blade-pitch 
angle β and τβ is the time constant of the pitch 
actuator. 

2.2 Linearization and State 
Representation 

The wind turbine is a complex non linear system 
presenting several difficulties in study and control. It 
seems then more suitable to describe it with a set of 
linear local models valid in different operating 
points corresponding to different levels of wind 
speed values. The principle of this method is used in 
several techniques. In this paper, we use the 
multimodel approach which was the subject of many 
research works (Kardous et al., 2006, 2007). 

For the studied system, we define a multimodel 
base made of four local models. The equivalent 
instantaneous model, as described in Figure 3, is 
obtained by a fusion of only two valid successive 
models. The choice of these models depends on the 
wind speed value. 

Figure 3: Wind-turbine multimodel description.  

The weighting coefficient µi is the validity value 
of the model Mi and it can be expressed by: 

1i iµ r= −  (8)
                        

ri is a normalized residue measuring the error 
between the instantaneous and the valid local model 
wind speed values (respectively v and vi). When Mi 
and Mi+1 are the valid models, the residue can be 
expressed as: 
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Thus, the validities satisfy the convex sum, such 
that: 1 1i iµ µ ++ =  

To obtain the local models, the system should be 
then linearized around the operating point. The non-
linearity of the system is due to the cp characteristic 
which is used in the expression of the aerodynamic 
torque. We need then to linearize the expression (1) 

M=µi. Mi+ 
µi+1. Mi+1
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of Taero around an operating point (o.p) defined by 
the wind speed value vi (Bianchi et al., 2007; 
Munteanu et al., 2005). We can define: 
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The symbol Δ represents the deviation from the 
chosen operating point corresponding to (ΩT_nom, Ωg-

ls-nom, βi-nom, Tmec-nom, Tem-nom and Pnom) where: Tem-nom 
and Tmec-nom are respectively the nominal values of 
the electromagnetic and the mechanical torques. 

Thereafter, the linearization of the non-linear 
system expressed in equations (3), (4), (6) and (7) 
around an operating point gives a state space 
representation of the form below: 

{ . .
. .

i i
i i

x A x B u
y C x D u
= +
= +  

 
(13) 

where x, u and y are respectively the state, control 
and output vectors defined as: 
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Notice that P=Tem.Ωg designates the generated 

electrical power. This leads to write around an 
operating point: 

( )_ _. . .em nom g ls em g ls nomP G T T− −Δ = ΔΩ + Δ Ω  (15) 
Hence, Ai, Bi, Ci and Di, which are respectively 

the state, input, output and feedthrough matrices, are 
defined as follows: 
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3 CONTROLLER DESIGN 

The control task is based on the objective of 
regulating the rotor rotational speed and the 
generated power by acting on two control variables: 
the electromagnetic torque Tem and the regulating 
pitch angle βref.  

βref Pitch 
actuator

Aerodynamic 
system 

Electrical 
system 

β ΩT  Pelec

wind

Tem 

 
Figure 4: Wind turbine block diagram. 

The LQ control strategy had been advocated by 
many research works (Boukhezzara et al., 2007; 
Khezami et al., 2009; Poulsen et al., 2005; 
Hammerum et al., 2007; Cutululis et al., 2006). This 
technique presents a good compromise between the 
performances optimization and the minimization of 
the control signals by the use of a quadratic cost 
function. However, it also presents the disadvantage 
of the non possibility of controlling the global 
system dynamic. In this paper, a solution that can 
partially solve this problem is presented. 

This controller aims to minimize the following 
quadratic criterion J : 

( ) 2
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where Q and R are diagonal positive definite 
matrices.  
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The term yT.Q.y expresses the performances 
optimization, the term uT.R.u expresses the 
minimization of the control signals and the term e2αt 
allows the performances improvement of the classic 
quadratic criterion. It leads to the placement of the 
system poles on the left of -α. 

The criterion can be rewritten as follows with an 
input-state cross term: 
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where Q1, R1 and N are defined as : 
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For this criterion, the optimal gain can be 
calculated from the following Riccati equation: 
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where I is the identity matrix. 
Since the dynamic of the pitch actuator should 

not be changed, the controller is designed in two 
steps. In the first step, we consider the blade pitch 
angle β and the electromagnetic torque Tem as control 
variables instead of βref and Tem. The state 
representation becomes then: 
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From this representation, the optimal gain 
_

_

i1
i1

i1 Tem

K
K

K
β⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

is calculated such that:       

.1 i1 1
em

u K x
T
βΔ⎡ ⎤

= = −⎢ ⎥Δ⎣ ⎦
 

 
(23) 

The relation (23) leads to the following optimal 
control law using the global state vector as shown in 
Figure 5: 
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Figure 5: The LQ controller design. 

4 STABILITY STUDY 

The quantum advance in stability theory that 
allowed one the analysis of arbitrary differential 
equations is due to Lyapunov, who introduced the 
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Figure 6: Comparison simulation between classic and improved LQ control laws. 

basic idea and the definitions of stability that are in 
use today. The concept of Lyapunov stability plays 
an important role in control and system theory. 

As we define a global model M by fusion of two 
successive local models Mi and Mi+1, the 
characteristic matrices of the system (13) can be 
obtained by: 
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The input vector is calculated by: 
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Hereafter, the state vector can be represented as: 
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where: .ij i i jG A B K= −  
To study the global asymptotic stability of the 

above system supplied by the multimodel LQ 
control, the first necessity is to analyze the stability 
of every local model. As we focus here especially on 
the closed-loop system, the criterion of stabilization  
consists then in finding, for a local model Mi, a 
positive definite matrix P that satisfies the following 
LMI (Chedli, 2002; Liberzon and Morse, 1999): 

. . 0T
ii iiG P P G+ <  (30) 

        
In the case of the multimodel systems, an extra 

condition is to add to the LMI (30) in order to 
guarantee the global stability (Chedli, 2002; 
Liberzon and Morse, 1999; Kardous et al., 2003) 
and it consists in: 

. . 0,T
ij ijQ P P Q i j+ < <  (31) 
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2

ij ji
ij

G G
Q

+
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And in our case, only two successive local 
models are valid at a time, which means that this 
condition will be considered for  i=1 to 3 and j=i+1. 

5 SIMULTATION RESULTS 

The proposed control approach and the stability 
analysis of the controlled system have been 
illustrated through simulations on Matlab Simulink.  

The simulated wind turbine parameters are 
presented in Table 1. 

To calculate the linearization coefficients ai and 
bi, the following cp empiric expression relative to 
2MW wind turbines is used: 

8 0.162 0.4 0.5900.18 6.8 0.115
0.4 0.5pc e λβ

λ

−
+

+⎛ ⎞= × − − ×⎜ ⎟+⎝ ⎠
 (32) 

Table 1: Wind turbine parameter values. 

Parameters Values 
Air density ρ 1,22 Kg/m3 
Turbine radius R 40m 
Nominal power Pnom 2MW 
Nominal speed ΩT-nom  18 rpm 
Optimal power 
coefficient 

cp-opt 0.4775 

Optimal speed ratio λopt 9 
Gearbox gain G 92.6 
Turbine inertia   JT 4.9×106 N.m.s² 
Generator inertia Jg 0.9×106 N.m.s² 
Mechanical coupling 
damping coefficient 

d 3.5×105 N.m-1.s 

Mechanical coupling 
stiffness coefficient 

k 114×106 N.m-1 
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Table 2 describes the four local models multimodel 
base used for the simulations. 

Table 2: Multimodel base parameters. 

Local model 
 Mi 

Wind speed 
 vi (m/s) 

Pitch angle  
βi-nom (°) 

M1 11.6 1.1 
M2 14 8 
M3 17 11.1 
M4 25 15.4 

From this base, four optimal gains are calculated. 
And thus, the stability feasibility problem 

consists in solving 8 LMI as shown after: 
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(33) 

The simulation leads to the following result: 

8.848 8.335 0.008 0.298
8.335 8.101 0.007 0.258
0.53 0.523 0.026 0.001
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Finding this positive definite matrix P is a 
sufficient condition proving the global stability of 
the control technique presented above. 

For the simulations, we had chosen to place the 
closed loop poles for the local models at the left of   
-α=-0.5. This gives the following poles for each 
local model: 
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 4th local model: 
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Thus, we can see that the pitch system pole (-1) 
is invariant for the four local models, and that all the 
other poles have their real parts less than –α.  

To test the performance of this control strategy, a 
series of simulation for several wind steps has been 
performed to show the improvement of the studied 
controller against a classic multimodel LQ controller 
(Khezami et al., 2009). 

The Figure 6 presents a comparison simulation 
between the two control laws. For this simulation, 
only the turbine rotational speed response for a wind 
step of 0.5 m/s is presented for the four local 
models. 

The local models poles for the classic LQ 
strategy have the following values: 
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In the comparison between both strategies, the 
system response for the proposed controller has 
indeed kept almost the same response time (about 
4s), unlike the case with the classic LQ where the 
response times are varying from 12s for the 1st local 
model to 2s for the 4th local model.  

Compared to the proposed strategy, the classic 
multimodel LQ control law shows responses with a 
more oscillating transient mode. 

The improvements of the multimodel LQ 
controller consist in a more damped oscillatory 
mode and a faster dynamic than the classical control 
mode with an almost fixed response time for all the 
local models. 

The simulation of the system with the proposed 
control strategy for a variable wind speed between 
12m/s and 25m/s leads to the results presented in the 
curves of Figure 7. 

The Figure 7 (a) illustrates a realistic aspect of 
the wind speed as described in a method elaborated 
by C. Nichita in (Nichita et al., 2003). From this 
aspect, the controller allowed a good regulation of 
the generated electrical power (Figure 7 (d)) and the 
rotation speeds of both the rotor (Figure 7 (b)) and 
the generator (Figure 7 (c)) around their rated values 
with taking into account the fatigue damage since 
the mechanical torque (Figure 7 (e)) maintains an 
almost constant value which thereby leads to have 
alleviated mechanical loads.  

The variations of the electromagnetic torque 
presented in Figure 7 (g) are smooth. However, the 
price paid for these performances is shown in Figure 
7 (h) by a large activity of the pitch actuator. 
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Figure 7: Variation of the system variables.

6 CONCLUSIONS 

This paper dealt with a technique of designing a 
multimodel LQ regulator allowing to partially 
control the process global dynamic, and with a study 
of the global asymptotic stability of the controller by 
means of a set of LMI. The proposed strategy 
presented a compromise between different control 
objectives: optimizing the performances of the 
different system variables especially generating an 
electrical power of a good quality, minimizing the 
control efforts, alleviating the drive train dynamic 
loads and controlling the global dynamic of the 
studied process. The simulations results showed 
good performances of the controller with acceptable 
mechanical stress. But, satisfying such a trade-off 
between all these objectives is indeed difficult and 
the cost is however some high forces on the pitch 
actuator. These effects brought more challenges in 
the system analysis to improve the obtained results 
in order to control actively the system dynamic and 
to totally damp the oscillatory mode. 
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